Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators

The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat indicators based on the fusion...

Full description

Saved in:
Bibliographic Details
Published in:International journal of minerals, metallurgy and materials Vol. 31; no. 6; pp. 1228 - 1240
Main Authors: Shi, Quan, Tang, Jue, Chu, Mansheng
Format: Journal Article
Language:English
Published: Beijing University of Science and Technology Beijing 01.06.2024
Springer Nature B.V
Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China
School of Metallurgy,Northeastern University,Shenyang 110819,China
Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China
Subjects:
ISSN:1674-4799, 1869-103X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials, process operation, smelting state, and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently improved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model. The hit ratio for predicting the temperature of hot metal in the error range of ±10°C was 92.4%, and that for the chemical heat of hot metal in the error range of ±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience, a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These suggestions were highly accepted by BF operators. Finally, the comprehensive and dynamic model proposed in this work was successfully applied in a practical BF system. It improved the BF temperature level remarkably, increasing the furnace temperature stability rate from 54.9% to 84.9%. This improvement achieved considerable economic benefits.
AbstractList The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials, process operation, smelting state, and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently improved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model. The hit ratio for predicting the temperature of hot metal in the error range of ±10°C was 92.4%, and that for the chemical heat of hot metal in the error range of ±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience, a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These suggestions were highly accepted by BF operators. Finally, the comprehensive and dynamic model proposed in this work was successfully applied in a practical BF system. It improved the BF temperature level remarkably, increasing the furnace temperature stability rate from 54.9% to 84.9%. This improvement achieved considerable economic benefits.
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model. The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These sugges-tions were highly accepted by BF operators. Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system. It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9% to 84.9%. This improvement achieved considerable economic benefits.
Author Chu, Mansheng
Tang, Jue
Shi, Quan
AuthorAffiliation School of Metallurgy,Northeastern University,Shenyang 110819,China;Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China;Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China
AuthorAffiliation_xml – name: School of Metallurgy,Northeastern University,Shenyang 110819,China;Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China;Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China
Author_xml – sequence: 1
  givenname: Quan
  surname: Shi
  fullname: Shi, Quan
  organization: School of Metallurgy, Northeastern University, Institute for Frontier Technologies of Low-carbon Steelmaking, Northeastern University, Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking, Ministry of Education
– sequence: 2
  givenname: Jue
  surname: Tang
  fullname: Tang, Jue
  email: tangj@smm.neu.edu.cn
  organization: School of Metallurgy, Northeastern University, Institute for Frontier Technologies of Low-carbon Steelmaking, Northeastern University, Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking, Ministry of Education
– sequence: 3
  givenname: Mansheng
  surname: Chu
  fullname: Chu, Mansheng
  email: chums@smm.neu.edu.cn
  organization: School of Metallurgy, Northeastern University, Institute for Frontier Technologies of Low-carbon Steelmaking, Northeastern University, Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking, Ministry of Education
BookMark eNqFkU1rFTEUhoO0YD_8Ae4CLiV6MsnkTJZS_IKCLiwILkImH9e5nWauSW5t_725jlAQtKscyPMcXs57So7SkgIhzzm84gD4uvBOccGgE6xTWjB8Qk74oDTjIL4etVmhZBK1fkpOS9kCKETAE_Ltc15cKIXehGrneZ8399QmT72tlvk83YZEdzn4ydVpSb-_Ygh-tO6aLpGOsy2Vxn1O1gX6PdhKp9RgW5dczslxtHMJz_68Z-Tq3dsvFx_Y5af3Hy_eXDInOFSmxxGta_F7r72PnmNAGDRqJ9GD5KMYgsIIyus-xGHQ2jnp1SgHFFz2XpyRl-venzZFmzZmuxwCzcWM2-utv7sbTeigk6AA-ka_WOldXn7sQ6kPuGgEapCCP0Yp0XOpG4Ur5fJSSg7RuKnaw6VqttNsOJhDO2Ztx7R2zKEdg83kf5m7PN3YfP9fp1ud0ti0Cfkh07-lX50DotQ
CitedBy_id crossref_primary_10_1002_srin_202400896
crossref_primary_10_1016_j_ces_2025_122580
crossref_primary_10_1016_j_mineng_2025_109677
crossref_primary_10_1007_s42243_025_01569_3
crossref_primary_10_1007_s11663_025_03452_8
crossref_primary_10_1007_s42243_025_01605_2
crossref_primary_10_1002_srin_202300671
crossref_primary_10_1007_s40831_025_01219_8
crossref_primary_10_1016_j_seppur_2025_135126
crossref_primary_10_1007_s40831_025_01175_3
crossref_primary_10_2355_isijinternational_ISIJINT_2025_155
crossref_primary_10_3390_met15040461
Cites_doi 10.1049/iet-cta.2016.1474
10.1109/TIM.2022.3185325
10.1007/s12613-020-2220-z
10.1007/s12613-023-2636-3
10.1016/j.fss.2020.08.012
10.1109/TIE.2020.3031525
10.1016/S1006-706X(15)30031-5
10.1007/s12613-022-2595-0
10.1016/j.ins.2015.07.002
10.1109/CAC.2017.8243432
10.1002/srin.202300385
10.1109/TFUZZ.2020.2983667
10.1007/s12613-023-2646-1
10.2355/isijinternational.ISIJINT-2019-545
10.1016/j.engappai.2021.104197
10.1515/htmp-2019-0049
10.3390/s18113792
10.2355/isijinternational.ISIJINT-2020-249
ContentType Journal Article
Copyright University of Science and Technology Beijing 2024
University of Science and Technology Beijing 2024.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: University of Science and Technology Beijing 2024
– notice: University of Science and Technology Beijing 2024.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12613-023-2693-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Materials Science Collection



Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-103X
EndPage 1240
ExternalDocumentID bjkjdxxb_e202406005
10_1007_s12613_023_2693_7
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
1N0
1~5
2B.
2C0
2KG
2LR
2VQ
30V
4.4
406
408
40D
4G.
67Z
7-5
71M
8RM
92H
92I
96X
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CAJEB
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OZT
P2P
P9N
PCBAR
PDBOC
PT4
Q--
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
9DU
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
D1I
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
4A8
93N
ACMFV
PMFND
PSX
ID FETCH-LOGICAL-c310t-9bb7ac2615d9ddfd17e708979c47d041b38e67f06d95ef8899cc4d6b4873145d3
IEDL.DBID KB.
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233409500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-4799
IngestDate Thu May 29 04:00:21 EDT 2025
Wed Nov 05 03:15:07 EST 2025
Wed Nov 05 09:02:12 EST 2025
Tue Nov 18 21:22:42 EST 2025
Sat Nov 29 02:33:44 EST 2025
Fri Feb 21 02:42:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords genetic algorithm
furnace heat
blast furnace
prediction and feedback
stacking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-9bb7ac2615d9ddfd17e708979c47d041b38e67f06d95ef8899cc4d6b4873145d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3060635149
PQPubID 2043631
PageCount 13
ParticipantIDs wanfang_journals_bjkjdxxb_e202406005
proquest_journals_3060790431
proquest_journals_3060635149
crossref_citationtrail_10_1007_s12613_023_2693_7
crossref_primary_10_1007_s12613_023_2693_7
springer_journals_10_1007_s12613_023_2693_7
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of minerals, metallurgy and materials
PublicationTitleAbbrev Int J Miner Metall Mater
PublicationTitle_FL International Journal of Minerals, Metallurgy and Materials
PublicationYear 2024
Publisher University of Science and Technology Beijing
Springer Nature B.V
Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China
School of Metallurgy,Northeastern University,Shenyang 110819,China
Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China
Publisher_xml – name: University of Science and Technology Beijing
– name: Springer Nature B.V
– name: School of Metallurgy,Northeastern University,Shenyang 110819,China
– name: Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China
– name: Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China
References YuHBZhuQNKangLQiaoGZZengJCA Multi-operator collaborative particle swarm optimization algorithm with biased rouletteControl Decis.20243941167
L. Wei, S.S. Yang, F. Zhang, and Q. Bai, A Mathematical model on prediction of hot metal silicon content and temperature using blast furnace hearth thermal state parameters, [in] Metallurgical Research Center 2005 Metallurgical Engineering Science Forum, Beijing, 2005, p. 62.
HuangCLTangYLZhangXFChuYZPrediction and simulation of silicon content in blast furnace for PCA and PSO–ELMComput. Simul.2020372398
LiuXGLiuFBlast Furnace Ironmaking Process Optimization and Intelligent Control system2003BeijingMetallurgy Industry Press90
ShiQTangJChuMSKey issues and progress of industrial big data-based intelligent blast furnace ironmaking technologyInt. J. Miner. Metall. Mater.2023309165110.1007/s12613-023-2636-3
ZhouPYuanMWangHWangZChaiTYMultivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connectionsInf. Sci.201532523710.1016/j.ins.2015.07.002
NiuXQYeQWZhouYWangXDAutoregressive model electroencephalogram signal identification based on feature selection of genetic algorithmComput. Eng.2016423283
LiuXZhangWJShiQZhouLOperation parameters optimization of blast furnaces based on data mining and cleaningJ. Northeastern Univ. Nat. Sci.20204181153
YuanMZhouPLiMLLiRFWangHChaiTYIntelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCAJ. Iron Steel Res. Int.201522648710.1016/S1006-706X(15)30031-5
WangZYJiangDHWangXDZhangJLLiuZJZhaoBJPrediction of blast furnace hot metal temperature based on support vector regression and extreme learning machineChin. J. Eng.2021434569
LiJPHuaCCYangYNGuanXPA novel MIMO T–S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputsIEEE Trans. Fuzzy Syst.2021296165410.1109/TFUZZ.2020.2983667
Y.R. Li and C.J. Yang, Domain knowledge based explainable feature construction method and its application in ironmaking process, Eng. Appl. Artif. Intell., 100(2021), art. No. 104197.
LiHYBuXPLiuXJEvaluation and prediction of blast furnace status based on big data platform of ironmaking and data miningISIJ Int.20216111081:CAS:528:DC%2BB3MXjt1ahurg%3D10.2355/isijinternational.ISIJINT-2020-249
ZhangJLJiangXDZuoHBLiuZJHeat state judgment for calcium carbide furnaces based on heat index calculation and furnace temperature predictionChin. J. Eng.201335911311:CAS:528:DC%2BC2cXjt1Onsbs%3D
LiuXJDengYLiXHaoLYLiuEHLyuQPrediction of silicon content in hot molten of blast furnace based on bid data technologyChina Metall.202131210
ChuMSYagiJShenFModelling on Blast Furnace Process and Innovative Ironmaking Technologies2006ShenyangNortheastern University Press36
HanYHuZBYangAMLiJZhangYZIntelligent recommendation model for reducing silicon deviation fluctuation of hot metal in BF and applicationIron Steel202358301:CAS:528:DC%2BB3sXhvF2ks7%2FM
LiZQDuJQNieBXiongWPHuangCYLiHSummary of feature selection methodsComput. Eng. Appl.2019552410
ZhouPDaiPSongHDChaiTYData-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmakingIET Control Theory Appl.20171114234310.1049/iet-cta.2016.1474
XuJWYangYA survey of ensemble learning approachesJ. Yunnan Univ. Nat. Sci. Ed.20184061082
YinRYReview on the study of metallurgical process engineeringInt. J. Miner. Metall. Mater.2021288125310.1007/s12613-020-2220-z
BaiJLZhangJLGuoHWDuSCaoYJBasic mathematical models in blast furnace expert systemJ. Wuhan Univ. Sci. Technol.2013365331
PanGFWangFYShangCLAdvances in machine learning- and artificial intelligence-assisted material design of steelsInt. J. Miner. Metall. Mater.2023306100310.1007/s12613-022-2595-0
DengYLyuQEstablishment of evaluation and prediction system of comprehensive state based on big data technology in a commercial blast furnaceISIJ Int.20206058981:CAS:528:DC%2BB3cXhvFSmtbfM10.2355/isijinternational.ISIJINT-2019-545
LiZNPrediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining2020ShenyangNortheastern University27
ZhangRHYangJState of the art in applications of machine learning in steelmaking process modelingInt. J. Miner. Metall. Mater.20233011205510.1007/s12613-023-2646-1
J.P. Li, C.C. Hua, and X.P. Guan, Inputs screening of hot metal silicon content model on blast furnace, [in] 2017 Chinese Automation Congress (CAC), Jinan, 2017, p. 3747.
K. Jiang, Z.H. Jiang, Y.F. Xie, D. Pan, and W.H. Gui, Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network, IEEE Trans. Instrum. Meas., 71(2022), art. No. 2512114.
FengQLiQQuanWPeiXMOverview of multiobjective particle swarm optimization algorithmChin. J. Eng.2021436745
D. Pan, Z.H. Jiang, Z.P. Chen, W.H. Gui, Y.F. Xie, and C.H. Yang, Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model, Sensors, 18(2018), No. 11, art. No. 3792.
LiZNChuMSLiuZGRuanGJLiBFFurnace heat prediction and control model and its application to large blast furnaceHigh Temp. Mater. Process.2019388841:CAS:528:DC%2BB3cXjvFWrsLs%3D10.1515/htmp-2019-0049
Q. Shi, J. Tang, and M.S. Chu, Evaluation, prediction, and feedback of blast furnace hearth activity based on data-driven analysis and process metallurgy, Steel Res. Int., 95 (2024), art. No. 2300385.
LiZNChuMSLiuZGLiBFPrediction and optimization of blast furnace parameters based on machine learning and genetic algorithmJ. Northeastern Univ. Nat. Sci. Ed.202041912621:CAS:528:DC%2BB3cXis1Siu7w%3D
LiJPHuaCCYangYNA novel multiple-input–multiple-output random vector functional-link networks for predicting molten iron quality indexes in blast furnaceIEEE Trans. Ind. Electron.202168111130910.1109/TIE.2020.3031525
LiJPHuaCCQianJLGuanXPLow-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnaceFuzzy Sets Syst.202142117810.1016/j.fss.2020.08.012
XQ Niu (2693_CR30) 2016; 42
XG Liu (2693_CR6) 2003
2693_CR9
ZN Li (2693_CR24) 2020
JP Li (2693_CR22) 2021; 68
HY Li (2693_CR26) 2021; 61
2693_CR1
XJ Liu (2693_CR4) 2021; 31
GF Pan (2693_CR10) 2023; 30
CL Huang (2693_CR12) 2020; 37
2693_CR16
P Zhou (2693_CR14) 2015; 325
X Liu (2693_CR2) 2020; 41
2693_CR19
MS Chu (2693_CR5) 2006
JL Zhang (2693_CR28) 2013; 35
Q Shi (2693_CR7) 2023; 30
HB Yu (2693_CR32) 2024; 39
Q Feng (2693_CR35) 2021; 43
RH Zhang (2693_CR11) 2023; 30
JP Li (2693_CR23) 2021; 421
JL Bai (2693_CR27) 2013; 36
Y Deng (2693_CR17) 2020; 60
P Zhou (2693_CR18) 2017; 11
ZN Li (2693_CR3) 2019; 38
M Yuan (2693_CR13) 2015; 22
ZY Wang (2693_CR15) 2021; 43
JW Xu (2693_CR33) 2018; 40
2693_CR20
RY Yin (2693_CR8) 2021; 28
JP Li (2693_CR21) 2021; 29
Y Han (2693_CR25) 2023; 58
2693_CR29
ZQ Li (2693_CR31) 2019; 55
ZN Li (2693_CR34) 2020; 41
References_xml – reference: J.P. Li, C.C. Hua, and X.P. Guan, Inputs screening of hot metal silicon content model on blast furnace, [in] 2017 Chinese Automation Congress (CAC), Jinan, 2017, p. 3747.
– reference: ZhouPDaiPSongHDChaiTYData-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmakingIET Control Theory Appl.20171114234310.1049/iet-cta.2016.1474
– reference: ShiQTangJChuMSKey issues and progress of industrial big data-based intelligent blast furnace ironmaking technologyInt. J. Miner. Metall. Mater.2023309165110.1007/s12613-023-2636-3
– reference: HuangCLTangYLZhangXFChuYZPrediction and simulation of silicon content in blast furnace for PCA and PSO–ELMComput. Simul.2020372398
– reference: HanYHuZBYangAMLiJZhangYZIntelligent recommendation model for reducing silicon deviation fluctuation of hot metal in BF and applicationIron Steel202358301:CAS:528:DC%2BB3sXhvF2ks7%2FM
– reference: ZhangJLJiangXDZuoHBLiuZJHeat state judgment for calcium carbide furnaces based on heat index calculation and furnace temperature predictionChin. J. Eng.201335911311:CAS:528:DC%2BC2cXjt1Onsbs%3D
– reference: LiuXGLiuFBlast Furnace Ironmaking Process Optimization and Intelligent Control system2003BeijingMetallurgy Industry Press90
– reference: LiZNChuMSLiuZGRuanGJLiBFFurnace heat prediction and control model and its application to large blast furnaceHigh Temp. Mater. Process.2019388841:CAS:528:DC%2BB3cXjvFWrsLs%3D10.1515/htmp-2019-0049
– reference: ChuMSYagiJShenFModelling on Blast Furnace Process and Innovative Ironmaking Technologies2006ShenyangNortheastern University Press36
– reference: WangZYJiangDHWangXDZhangJLLiuZJZhaoBJPrediction of blast furnace hot metal temperature based on support vector regression and extreme learning machineChin. J. Eng.2021434569
– reference: YuanMZhouPLiMLLiRFWangHChaiTYIntelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCAJ. Iron Steel Res. Int.201522648710.1016/S1006-706X(15)30031-5
– reference: LiZNPrediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining2020ShenyangNortheastern University27
– reference: LiuXJDengYLiXHaoLYLiuEHLyuQPrediction of silicon content in hot molten of blast furnace based on bid data technologyChina Metall.202131210
– reference: D. Pan, Z.H. Jiang, Z.P. Chen, W.H. Gui, Y.F. Xie, and C.H. Yang, Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model, Sensors, 18(2018), No. 11, art. No. 3792.
– reference: LiJPHuaCCYangYNA novel multiple-input–multiple-output random vector functional-link networks for predicting molten iron quality indexes in blast furnaceIEEE Trans. Ind. Electron.202168111130910.1109/TIE.2020.3031525
– reference: BaiJLZhangJLGuoHWDuSCaoYJBasic mathematical models in blast furnace expert systemJ. Wuhan Univ. Sci. Technol.2013365331
– reference: K. Jiang, Z.H. Jiang, Y.F. Xie, D. Pan, and W.H. Gui, Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network, IEEE Trans. Instrum. Meas., 71(2022), art. No. 2512114.
– reference: XuJWYangYA survey of ensemble learning approachesJ. Yunnan Univ. Nat. Sci. Ed.20184061082
– reference: LiHYBuXPLiuXJEvaluation and prediction of blast furnace status based on big data platform of ironmaking and data miningISIJ Int.20216111081:CAS:528:DC%2BB3MXjt1ahurg%3D10.2355/isijinternational.ISIJINT-2020-249
– reference: LiJPHuaCCYangYNGuanXPA novel MIMO T–S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputsIEEE Trans. Fuzzy Syst.2021296165410.1109/TFUZZ.2020.2983667
– reference: DengYLyuQEstablishment of evaluation and prediction system of comprehensive state based on big data technology in a commercial blast furnaceISIJ Int.20206058981:CAS:528:DC%2BB3cXhvFSmtbfM10.2355/isijinternational.ISIJINT-2019-545
– reference: ZhangRHYangJState of the art in applications of machine learning in steelmaking process modelingInt. J. Miner. Metall. Mater.20233011205510.1007/s12613-023-2646-1
– reference: YinRYReview on the study of metallurgical process engineeringInt. J. Miner. Metall. Mater.2021288125310.1007/s12613-020-2220-z
– reference: FengQLiQQuanWPeiXMOverview of multiobjective particle swarm optimization algorithmChin. J. Eng.2021436745
– reference: ZhouPYuanMWangHWangZChaiTYMultivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connectionsInf. Sci.201532523710.1016/j.ins.2015.07.002
– reference: LiuXZhangWJShiQZhouLOperation parameters optimization of blast furnaces based on data mining and cleaningJ. Northeastern Univ. Nat. Sci.20204181153
– reference: PanGFWangFYShangCLAdvances in machine learning- and artificial intelligence-assisted material design of steelsInt. J. Miner. Metall. Mater.2023306100310.1007/s12613-022-2595-0
– reference: Y.R. Li and C.J. Yang, Domain knowledge based explainable feature construction method and its application in ironmaking process, Eng. Appl. Artif. Intell., 100(2021), art. No. 104197.
– reference: NiuXQYeQWZhouYWangXDAutoregressive model electroencephalogram signal identification based on feature selection of genetic algorithmComput. Eng.2016423283
– reference: Q. Shi, J. Tang, and M.S. Chu, Evaluation, prediction, and feedback of blast furnace hearth activity based on data-driven analysis and process metallurgy, Steel Res. Int., 95 (2024), art. No. 2300385.
– reference: L. Wei, S.S. Yang, F. Zhang, and Q. Bai, A Mathematical model on prediction of hot metal silicon content and temperature using blast furnace hearth thermal state parameters, [in] Metallurgical Research Center 2005 Metallurgical Engineering Science Forum, Beijing, 2005, p. 62.
– reference: LiZQDuJQNieBXiongWPHuangCYLiHSummary of feature selection methodsComput. Eng. Appl.2019552410
– reference: LiZNChuMSLiuZGLiBFPrediction and optimization of blast furnace parameters based on machine learning and genetic algorithmJ. Northeastern Univ. Nat. Sci. Ed.202041912621:CAS:528:DC%2BB3cXis1Siu7w%3D
– reference: YuHBZhuQNKangLQiaoGZZengJCA Multi-operator collaborative particle swarm optimization algorithm with biased rouletteControl Decis.20243941167
– reference: LiJPHuaCCQianJLGuanXPLow-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnaceFuzzy Sets Syst.202142117810.1016/j.fss.2020.08.012
– volume: 40
  start-page: 1082
  issue: 6
  year: 2018
  ident: 2693_CR33
  publication-title: J. Yunnan Univ. Nat. Sci. Ed.
– volume: 11
  start-page: 2343
  issue: 14
  year: 2017
  ident: 2693_CR18
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2016.1474
– ident: 2693_CR20
  doi: 10.1109/TIM.2022.3185325
– volume: 41
  start-page: 1153
  issue: 8
  year: 2020
  ident: 2693_CR2
  publication-title: J. Northeastern Univ. Nat. Sci.
– volume: 41
  start-page: 1262
  issue: 9
  year: 2020
  ident: 2693_CR34
  publication-title: J. Northeastern Univ. Nat. Sci. Ed.
– volume: 43
  start-page: 569
  issue: 4
  year: 2021
  ident: 2693_CR15
  publication-title: Chin. J. Eng.
– volume: 55
  start-page: 10
  issue: 24
  year: 2019
  ident: 2693_CR31
  publication-title: Comput. Eng. Appl.
– volume: 28
  start-page: 1253
  issue: 8
  year: 2021
  ident: 2693_CR8
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-2220-z
– volume: 30
  start-page: 1651
  issue: 9
  year: 2023
  ident: 2693_CR7
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-023-2636-3
– ident: 2693_CR29
– start-page: 36
  volume-title: Modelling on Blast Furnace Process and Innovative Ironmaking Technologies
  year: 2006
  ident: 2693_CR5
– volume: 42
  start-page: 283
  issue: 3
  year: 2016
  ident: 2693_CR30
  publication-title: Comput. Eng.
– volume: 35
  start-page: 1131
  issue: 9
  year: 2013
  ident: 2693_CR28
  publication-title: Chin. J. Eng.
– volume: 31
  start-page: 10
  issue: 2
  year: 2021
  ident: 2693_CR4
  publication-title: China Metall.
– volume: 421
  start-page: 178
  year: 2021
  ident: 2693_CR23
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2020.08.012
– start-page: 27
  volume-title: Prediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining
  year: 2020
  ident: 2693_CR24
– volume: 68
  start-page: 11309
  issue: 11
  year: 2021
  ident: 2693_CR22
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3031525
– volume: 22
  start-page: 487
  issue: 6
  year: 2015
  ident: 2693_CR13
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(15)30031-5
– volume: 30
  start-page: 1003
  issue: 6
  year: 2023
  ident: 2693_CR10
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-022-2595-0
– volume: 325
  start-page: 237
  year: 2015
  ident: 2693_CR14
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.07.002
– ident: 2693_CR16
  doi: 10.1109/CAC.2017.8243432
– ident: 2693_CR9
  doi: 10.1002/srin.202300385
– volume: 36
  start-page: 331
  issue: 5
  year: 2013
  ident: 2693_CR27
  publication-title: J. Wuhan Univ. Sci. Technol.
– volume: 43
  start-page: 745
  issue: 6
  year: 2021
  ident: 2693_CR35
  publication-title: Chin. J. Eng.
– volume: 29
  start-page: 1654
  issue: 6
  year: 2021
  ident: 2693_CR21
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2983667
– start-page: 90
  volume-title: Blast Furnace Ironmaking Process Optimization and Intelligent Control system
  year: 2003
  ident: 2693_CR6
– volume: 30
  start-page: 2055
  issue: 11
  year: 2023
  ident: 2693_CR11
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-023-2646-1
– volume: 60
  start-page: 898
  issue: 5
  year: 2020
  ident: 2693_CR17
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2019-545
– ident: 2693_CR19
  doi: 10.1016/j.engappai.2021.104197
– volume: 38
  start-page: 884
  year: 2019
  ident: 2693_CR3
  publication-title: High Temp. Mater. Process.
  doi: 10.1515/htmp-2019-0049
– ident: 2693_CR1
  doi: 10.3390/s18113792
– volume: 39
  start-page: 1167
  issue: 4
  year: 2024
  ident: 2693_CR32
  publication-title: Control Decis.
– volume: 61
  start-page: 108
  issue: 1
  year: 2021
  ident: 2693_CR26
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2020-249
– volume: 58
  start-page: 30
  year: 2023
  ident: 2693_CR25
  publication-title: Iron Steel
– volume: 37
  start-page: 398
  issue: 2
  year: 2020
  ident: 2693_CR12
  publication-title: Comput. Simul.
SSID ssj0067707
Score 2.3918679
Snippet The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1228
SubjectTerms Algorithms
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Corrosion and Coatings
Delay
Dynamic models
Extractive metallurgy
Feedback
Genetic algorithms
Glass
Heat
Indicators
Ironmaking
Machine learning
Materials Science
Metallic Materials
Metallurgy
Natural Materials
Prediction models
Predictions
Process metallurgy
Research Article
Slag
Surfaces and Interfaces
Thin Films
Tribology
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7FaZQ89KYG0eUz2KGLxIEV8UfAQsi_xlZa0lfrvnUkTU0ELet4ns7sz3-y8GGta8KMwEeBQLjHHTwDfnAbydUV5bUNfqCSvWnIJ3W7U64mrIo57WHq7lybJnFNXwW4I9snm6DntUHgOLLIllHYRvcbrm_uS_YYAeYw0edfTt5EoTZk_TfFdGFUI88somofypDZJH2ekTmf9X_vdYGsFyOSn01uxyRZMusVWZ1IPbrOHIkKAvxmE36_j7PGDJ6nm5DHq6Ix4IB9kZMWhk8ubLAo6magX3rdcIugecUvrKMOJoXMyfitS4Yc77K5zfnt24RSFFhyF6G7kCCkhUbjdQAutrW6BATcSIJQP2vVb0otMCNYNtQiMjVBFU8rXoURlx2v5gfZ2WS3tp2aP8cBVgLO5ESiPsAEVmVWAapMMdaLbos7ckuKxKrKQUzGM17jKn0x0i5FuMdEthjo7_hoymKbgmNe5UR5jXLzGYYxqESIxhIbi12YQlGWozk7Ks6ya56zVLC5H1Vk-vzzryUTGpk3Z4xBOBvt_mvSArdDIqTdag9VG2dgcsmX1PnoaZkf5Vf8E_mX1yg
  priority: 102
  providerName: Springer Nature
Title Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators
URI https://link.springer.com/article/10.1007/s12613-023-2693-7
https://www.proquest.com/docview/3060635149
https://www.proquest.com/docview/3060790431
https://d.wanfangdata.com.cn/periodical/bjkjdxxb-e202406005
Volume 31
WOSCitedRecordID wos001233409500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1869-103X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0067707
  issn: 1674-4799
  databaseCode: PCBAR
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1869-103X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0067707
  issn: 1674-4799
  databaseCode: KB.
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1869-103X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0067707
  issn: 1674-4799
  databaseCode: BENPR
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1869-103X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067707
  issn: 1674-4799
  databaseCode: RSV
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BwgEOLU8RaKs99ARacOLHeE-orVohgaKoPFSJg-V9VX3gBCep2n_fGWddlwO5cPFl115rZ3YeOzPfAOx6TPKsVCgZS0wmJdKZs8i5rqSvfZYoUzZdS77ieJyfnKhJuHCbh7TKViY2gtpODd-RfyTTlrQpqXf1afZHctcojq6GFhoPoc8oCdy64cv-h1YSZ4hNuTQn2vMNkmqjmk3pHLkOHMGM5ShTscS_9VJnbN7FR5uqnsqX1ek9BXS0-b-__hQ2gukp9la88gweuOo5PLkHSPgCfoW6AfHbkVF-uaxPb0RZWcF5pNLWLBnFrObYDtOzGfKk_nRpLsTUC02m-EJ4Xsc4wWJecEjcsGM_fwk_jg6_H3yWof2CNGTzLaTSGktD25RaZa23Q3QY5QqVSdBGyVDHucvQR5lVqfM5OW7GJDbT5ALFwyS18SvoVdPKvQaRRgbpa1GOJmaLgVvPGiRnSme2tCM1gKjd_MIEbHJukXFZdKjKTK-C6FUwvQocwLu7V2YrYI51k7dayhThjM6Ljiz_HEbF2EMDeN8yQTe8Zq3dwCfdZH1-cW6vr3XhRowpR0Zm-mb9L72Fxzx1lZS2Bb1FvXTb8MhcLc7m9Q709w_Hk-Odht3pefzt5y1D3gLg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKRJwYEcNFJhD4QCycLzM8xw4lELVqiGqUJEqcXA9W9UFJzgptH-K38h7jl2XA7n1wHlWe755y7wNYM1jkslCYcC5xIKkQLpzFtnXlfi1l4kyRV21ZIijUba_r3aX4HcbC8NulS1NrAm1HRt-I39Hoi1xU2LvqvGg3HEXv0g_m77f_kiH-SqKNj_tbWwFTQmBwJDcMguU1lgY0hJSq6z1doAOw0yhMgnaMBnoOHMSfSitSp3PSPkwJrFSkxgfD5LUxjTv68mPgKtUsTW3KdlxA5YzqdKkB8u7Gx_Wv7S0XyLWAdrs2s9vVqq1o9bBerQNtpnGQSRVHODfnLATby8tsnUcUemL8vAKy9u897_9rPtwtxGuxfr8NjyAJVc-hDtXUi4-gm9NZIT47kjtOD2rDi9EUVrBnrKBrZj2i0nF1itGbN3kicHrwpyIsRealI2Z8LyOcYIZmWCjv-Gni-lj-HotH_wEeuW4dCsg0tAgzRZmaGKWibi4rkFSF7W0hY1UH8L2sHPTZF_nIiCneZc3mvGREz5yxkeOfXhzOWQyTz2yqPNqi4S8oULTvIPBP5tRcXalPrxtQdc1L1hrrcFl11kfnxzb83Odu4iz5pEYnT5dvKWXcGtr7_MwH26Pdp7BbR42d8Fbhd6sOnPP4ab5OTuaVi-aSybg4LrR-wdNc14g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9aK0UfbNWKp1b3wSclmLt8TPZRbI-WyiG0FcGHJfslfjQeuSj63zuTS4xCFUqfdzO77Nf8JjPzG4Btj3GW5hID5hIL4hzpzlnkWFfS1z6NpcnrqiWHOBplJyfyqKlzOmmj3VuX5DSngVmaimpvbP1el_hGwJ_9j1EwSGUU4Ft4F3PNIDbXfx63T3GKWOdLc6Q9_0KSrVvzbyKeK6YObT46SOu0nsLnxdkTDTT88N9z_wgLDfgU-9PTsghvXLEE808oCZfhtMkcEH8cwfKrm_LsXuSFFRxJGtiS30YxLtm7wztaN3lSgDo3l-LaC01gvBKexzFO8EMv2Clu2LSffILfw6-_Dr4FTQGGwBDqqwKpNeaGpptYaa23fXQYZhKlidGGcV9HmUvRh6mVifMZmW7GxDbVZARF_Tix0QrMFNeFWwWRhAZJWpihiRgzcPFZg2RO6dTmdiB7ELarr0zDTs5FMq5Ux6vM66Zo3RSvm8Ie7Dx-Mp5Sc7zWeaPdUtXc0okic4kQGkFG-WIzSmYf6sFuu69d8ytjbTcHpeusLy4v7N2dVm7ArHIEM5O1fxK6Be-PvgzV4ffRj3WYYyHTgLUNmKnKG_cZZs1tdT4pN-sb8ACdtwGh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+metallurgy+and+data-driven+prediction+and+feedback+of+blast+furnace+heat+indicators&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Quan+Shi&rft.au=Jue+Tang&rft.au=Mansheng+Chu&rft.date=2024-06-01&rft.pub=Engineering+Research+Center+of+Frontier+Technologies+for+Low-carbon+Steelmaking+%28Ministry+of+Education%29%2CShenyang+110819%2CChina&rft.issn=1674-4799&rft.volume=31&rft.issue=6&rft.spage=1228&rft.epage=1240&rft_id=info:doi/10.1007%2Fs12613-023-2693-7&rft.externalDocID=bjkjdxxb_e202406005
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb-e%2Fbjkjdxxb-e.jpg