Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat indicators based on the fusion...
Saved in:
| Published in: | International journal of minerals, metallurgy and materials Vol. 31; no. 6; pp. 1228 - 1240 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Beijing
University of Science and Technology Beijing
01.06.2024
Springer Nature B.V Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China School of Metallurgy,Northeastern University,Shenyang 110819,China Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China |
| Subjects: | |
| ISSN: | 1674-4799, 1869-103X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials, process operation, smelting state, and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently improved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model. The hit ratio for predicting the temperature of hot metal in the error range of ±10°C was 92.4%, and that for the chemical heat of hot metal in the error range of ±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience, a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These suggestions were highly accepted by BF operators. Finally, the comprehensive and dynamic model proposed in this work was successfully applied in a practical BF system. It improved the BF temperature level remarkably, increasing the furnace temperature stability rate from 54.9% to 84.9%. This improvement achieved considerable economic benefits. |
|---|---|
| AbstractList | The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials, process operation, smelting state, and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently improved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model. The hit ratio for predicting the temperature of hot metal in the error range of ±10°C was 92.4%, and that for the chemical heat of hot metal in the error range of ±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience, a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These suggestions were highly accepted by BF operators. Finally, the comprehensive and dynamic model proposed in this work was successfully applied in a practical BF system. It improved the BF temperature level remarkably, increasing the furnace temperature stability rate from 54.9% to 84.9%. This improvement achieved considerable economic benefits. The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model. The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These sugges-tions were highly accepted by BF operators. Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system. It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9% to 84.9%. This improvement achieved considerable economic benefits. |
| Author | Chu, Mansheng Tang, Jue Shi, Quan |
| AuthorAffiliation | School of Metallurgy,Northeastern University,Shenyang 110819,China;Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China;Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China |
| AuthorAffiliation_xml | – name: School of Metallurgy,Northeastern University,Shenyang 110819,China;Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China;Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China |
| Author_xml | – sequence: 1 givenname: Quan surname: Shi fullname: Shi, Quan organization: School of Metallurgy, Northeastern University, Institute for Frontier Technologies of Low-carbon Steelmaking, Northeastern University, Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking, Ministry of Education – sequence: 2 givenname: Jue surname: Tang fullname: Tang, Jue email: tangj@smm.neu.edu.cn organization: School of Metallurgy, Northeastern University, Institute for Frontier Technologies of Low-carbon Steelmaking, Northeastern University, Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking, Ministry of Education – sequence: 3 givenname: Mansheng surname: Chu fullname: Chu, Mansheng email: chums@smm.neu.edu.cn organization: School of Metallurgy, Northeastern University, Institute for Frontier Technologies of Low-carbon Steelmaking, Northeastern University, Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking, Ministry of Education |
| BookMark | eNqFkU1rFTEUhoO0YD_8Ae4CLiV6MsnkTJZS_IKCLiwILkImH9e5nWauSW5t_725jlAQtKscyPMcXs57So7SkgIhzzm84gD4uvBOccGgE6xTWjB8Qk74oDTjIL4etVmhZBK1fkpOS9kCKETAE_Ltc15cKIXehGrneZ8399QmT72tlvk83YZEdzn4ydVpSb-_Ygh-tO6aLpGOsy2Vxn1O1gX6PdhKp9RgW5dczslxtHMJz_68Z-Tq3dsvFx_Y5af3Hy_eXDInOFSmxxGta_F7r72PnmNAGDRqJ9GD5KMYgsIIyus-xGHQ2jnp1SgHFFz2XpyRl-venzZFmzZmuxwCzcWM2-utv7sbTeigk6AA-ka_WOldXn7sQ6kPuGgEapCCP0Yp0XOpG4Ur5fJSSg7RuKnaw6VqttNsOJhDO2Ztx7R2zKEdg83kf5m7PN3YfP9fp1ud0ti0Cfkh07-lX50DotQ |
| CitedBy_id | crossref_primary_10_1002_srin_202400896 crossref_primary_10_1016_j_ces_2025_122580 crossref_primary_10_1016_j_mineng_2025_109677 crossref_primary_10_1007_s42243_025_01569_3 crossref_primary_10_1007_s11663_025_03452_8 crossref_primary_10_1007_s42243_025_01605_2 crossref_primary_10_1002_srin_202300671 crossref_primary_10_1007_s40831_025_01219_8 crossref_primary_10_1016_j_seppur_2025_135126 crossref_primary_10_1007_s40831_025_01175_3 crossref_primary_10_2355_isijinternational_ISIJINT_2025_155 crossref_primary_10_3390_met15040461 |
| Cites_doi | 10.1049/iet-cta.2016.1474 10.1109/TIM.2022.3185325 10.1007/s12613-020-2220-z 10.1007/s12613-023-2636-3 10.1016/j.fss.2020.08.012 10.1109/TIE.2020.3031525 10.1016/S1006-706X(15)30031-5 10.1007/s12613-022-2595-0 10.1016/j.ins.2015.07.002 10.1109/CAC.2017.8243432 10.1002/srin.202300385 10.1109/TFUZZ.2020.2983667 10.1007/s12613-023-2646-1 10.2355/isijinternational.ISIJINT-2019-545 10.1016/j.engappai.2021.104197 10.1515/htmp-2019-0049 10.3390/s18113792 10.2355/isijinternational.ISIJINT-2020-249 |
| ContentType | Journal Article |
| Copyright | University of Science and Technology Beijing 2024 University of Science and Technology Beijing 2024. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: University of Science and Technology Beijing 2024 – notice: University of Science and Technology Beijing 2024. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s12613-023-2693-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Materials Science Collection |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1869-103X |
| EndPage | 1240 |
| ExternalDocumentID | bjkjdxxb_e202406005 10_1007_s12613_023_2693_7 |
| GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 1N0 1~5 2B. 2C0 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BENPR BGLVJ BGNMA BHPHI BKSAR CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X Z7Y Z7Z Z85 ZMTXR ~A9 9DU AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG D1I DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 4A8 93N ACMFV PMFND PSX |
| ID | FETCH-LOGICAL-c310t-9bb7ac2615d9ddfd17e708979c47d041b38e67f06d95ef8899cc4d6b4873145d3 |
| IEDL.DBID | KB. |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233409500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1674-4799 |
| IngestDate | Thu May 29 04:00:21 EDT 2025 Wed Nov 05 03:15:07 EST 2025 Wed Nov 05 09:02:12 EST 2025 Tue Nov 18 21:22:42 EST 2025 Sat Nov 29 02:33:44 EST 2025 Fri Feb 21 02:42:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | genetic algorithm furnace heat blast furnace prediction and feedback stacking |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-9bb7ac2615d9ddfd17e708979c47d041b38e67f06d95ef8899cc4d6b4873145d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3060635149 |
| PQPubID | 2043631 |
| PageCount | 13 |
| ParticipantIDs | wanfang_journals_bjkjdxxb_e202406005 proquest_journals_3060790431 proquest_journals_3060635149 crossref_citationtrail_10_1007_s12613_023_2693_7 crossref_primary_10_1007_s12613_023_2693_7 springer_journals_10_1007_s12613_023_2693_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing – name: Heidelberg |
| PublicationTitle | International journal of minerals, metallurgy and materials |
| PublicationTitleAbbrev | Int J Miner Metall Mater |
| PublicationTitle_FL | International Journal of Minerals, Metallurgy and Materials |
| PublicationYear | 2024 |
| Publisher | University of Science and Technology Beijing Springer Nature B.V Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China School of Metallurgy,Northeastern University,Shenyang 110819,China Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China |
| Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V – name: School of Metallurgy,Northeastern University,Shenyang 110819,China – name: Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education),Shenyang 110819,China – name: Institute for Frontier Technologies of Low-carbon Steelmaking,Northeastern University,Shenyang 110819,China |
| References | YuHBZhuQNKangLQiaoGZZengJCA Multi-operator collaborative particle swarm optimization algorithm with biased rouletteControl Decis.20243941167 L. Wei, S.S. Yang, F. Zhang, and Q. Bai, A Mathematical model on prediction of hot metal silicon content and temperature using blast furnace hearth thermal state parameters, [in] Metallurgical Research Center 2005 Metallurgical Engineering Science Forum, Beijing, 2005, p. 62. HuangCLTangYLZhangXFChuYZPrediction and simulation of silicon content in blast furnace for PCA and PSO–ELMComput. Simul.2020372398 LiuXGLiuFBlast Furnace Ironmaking Process Optimization and Intelligent Control system2003BeijingMetallurgy Industry Press90 ShiQTangJChuMSKey issues and progress of industrial big data-based intelligent blast furnace ironmaking technologyInt. J. Miner. Metall. Mater.2023309165110.1007/s12613-023-2636-3 ZhouPYuanMWangHWangZChaiTYMultivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connectionsInf. Sci.201532523710.1016/j.ins.2015.07.002 NiuXQYeQWZhouYWangXDAutoregressive model electroencephalogram signal identification based on feature selection of genetic algorithmComput. Eng.2016423283 LiuXZhangWJShiQZhouLOperation parameters optimization of blast furnaces based on data mining and cleaningJ. Northeastern Univ. Nat. Sci.20204181153 YuanMZhouPLiMLLiRFWangHChaiTYIntelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCAJ. Iron Steel Res. Int.201522648710.1016/S1006-706X(15)30031-5 WangZYJiangDHWangXDZhangJLLiuZJZhaoBJPrediction of blast furnace hot metal temperature based on support vector regression and extreme learning machineChin. J. Eng.2021434569 LiJPHuaCCYangYNGuanXPA novel MIMO T–S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputsIEEE Trans. Fuzzy Syst.2021296165410.1109/TFUZZ.2020.2983667 Y.R. Li and C.J. Yang, Domain knowledge based explainable feature construction method and its application in ironmaking process, Eng. Appl. Artif. Intell., 100(2021), art. No. 104197. LiHYBuXPLiuXJEvaluation and prediction of blast furnace status based on big data platform of ironmaking and data miningISIJ Int.20216111081:CAS:528:DC%2BB3MXjt1ahurg%3D10.2355/isijinternational.ISIJINT-2020-249 ZhangJLJiangXDZuoHBLiuZJHeat state judgment for calcium carbide furnaces based on heat index calculation and furnace temperature predictionChin. J. Eng.201335911311:CAS:528:DC%2BC2cXjt1Onsbs%3D LiuXJDengYLiXHaoLYLiuEHLyuQPrediction of silicon content in hot molten of blast furnace based on bid data technologyChina Metall.202131210 ChuMSYagiJShenFModelling on Blast Furnace Process and Innovative Ironmaking Technologies2006ShenyangNortheastern University Press36 HanYHuZBYangAMLiJZhangYZIntelligent recommendation model for reducing silicon deviation fluctuation of hot metal in BF and applicationIron Steel202358301:CAS:528:DC%2BB3sXhvF2ks7%2FM LiZQDuJQNieBXiongWPHuangCYLiHSummary of feature selection methodsComput. Eng. Appl.2019552410 ZhouPDaiPSongHDChaiTYData-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmakingIET Control Theory Appl.20171114234310.1049/iet-cta.2016.1474 XuJWYangYA survey of ensemble learning approachesJ. Yunnan Univ. Nat. Sci. Ed.20184061082 YinRYReview on the study of metallurgical process engineeringInt. J. Miner. Metall. Mater.2021288125310.1007/s12613-020-2220-z BaiJLZhangJLGuoHWDuSCaoYJBasic mathematical models in blast furnace expert systemJ. Wuhan Univ. Sci. Technol.2013365331 PanGFWangFYShangCLAdvances in machine learning- and artificial intelligence-assisted material design of steelsInt. J. Miner. Metall. Mater.2023306100310.1007/s12613-022-2595-0 DengYLyuQEstablishment of evaluation and prediction system of comprehensive state based on big data technology in a commercial blast furnaceISIJ Int.20206058981:CAS:528:DC%2BB3cXhvFSmtbfM10.2355/isijinternational.ISIJINT-2019-545 LiZNPrediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining2020ShenyangNortheastern University27 ZhangRHYangJState of the art in applications of machine learning in steelmaking process modelingInt. J. Miner. Metall. Mater.20233011205510.1007/s12613-023-2646-1 J.P. Li, C.C. Hua, and X.P. Guan, Inputs screening of hot metal silicon content model on blast furnace, [in] 2017 Chinese Automation Congress (CAC), Jinan, 2017, p. 3747. K. Jiang, Z.H. Jiang, Y.F. Xie, D. Pan, and W.H. Gui, Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network, IEEE Trans. Instrum. Meas., 71(2022), art. No. 2512114. FengQLiQQuanWPeiXMOverview of multiobjective particle swarm optimization algorithmChin. J. Eng.2021436745 D. Pan, Z.H. Jiang, Z.P. Chen, W.H. Gui, Y.F. Xie, and C.H. Yang, Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model, Sensors, 18(2018), No. 11, art. No. 3792. LiZNChuMSLiuZGRuanGJLiBFFurnace heat prediction and control model and its application to large blast furnaceHigh Temp. Mater. Process.2019388841:CAS:528:DC%2BB3cXjvFWrsLs%3D10.1515/htmp-2019-0049 Q. Shi, J. Tang, and M.S. Chu, Evaluation, prediction, and feedback of blast furnace hearth activity based on data-driven analysis and process metallurgy, Steel Res. Int., 95 (2024), art. No. 2300385. LiZNChuMSLiuZGLiBFPrediction and optimization of blast furnace parameters based on machine learning and genetic algorithmJ. Northeastern Univ. Nat. Sci. Ed.202041912621:CAS:528:DC%2BB3cXis1Siu7w%3D LiJPHuaCCYangYNA novel multiple-input–multiple-output random vector functional-link networks for predicting molten iron quality indexes in blast furnaceIEEE Trans. Ind. Electron.202168111130910.1109/TIE.2020.3031525 LiJPHuaCCQianJLGuanXPLow-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnaceFuzzy Sets Syst.202142117810.1016/j.fss.2020.08.012 XQ Niu (2693_CR30) 2016; 42 XG Liu (2693_CR6) 2003 2693_CR9 ZN Li (2693_CR24) 2020 JP Li (2693_CR22) 2021; 68 HY Li (2693_CR26) 2021; 61 2693_CR1 XJ Liu (2693_CR4) 2021; 31 GF Pan (2693_CR10) 2023; 30 CL Huang (2693_CR12) 2020; 37 2693_CR16 P Zhou (2693_CR14) 2015; 325 X Liu (2693_CR2) 2020; 41 2693_CR19 MS Chu (2693_CR5) 2006 JL Zhang (2693_CR28) 2013; 35 Q Shi (2693_CR7) 2023; 30 HB Yu (2693_CR32) 2024; 39 Q Feng (2693_CR35) 2021; 43 RH Zhang (2693_CR11) 2023; 30 JP Li (2693_CR23) 2021; 421 JL Bai (2693_CR27) 2013; 36 Y Deng (2693_CR17) 2020; 60 P Zhou (2693_CR18) 2017; 11 ZN Li (2693_CR3) 2019; 38 M Yuan (2693_CR13) 2015; 22 ZY Wang (2693_CR15) 2021; 43 JW Xu (2693_CR33) 2018; 40 2693_CR20 RY Yin (2693_CR8) 2021; 28 JP Li (2693_CR21) 2021; 29 Y Han (2693_CR25) 2023; 58 2693_CR29 ZQ Li (2693_CR31) 2019; 55 ZN Li (2693_CR34) 2020; 41 |
| References_xml | – reference: J.P. Li, C.C. Hua, and X.P. Guan, Inputs screening of hot metal silicon content model on blast furnace, [in] 2017 Chinese Automation Congress (CAC), Jinan, 2017, p. 3747. – reference: ZhouPDaiPSongHDChaiTYData-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmakingIET Control Theory Appl.20171114234310.1049/iet-cta.2016.1474 – reference: ShiQTangJChuMSKey issues and progress of industrial big data-based intelligent blast furnace ironmaking technologyInt. J. Miner. Metall. Mater.2023309165110.1007/s12613-023-2636-3 – reference: HuangCLTangYLZhangXFChuYZPrediction and simulation of silicon content in blast furnace for PCA and PSO–ELMComput. Simul.2020372398 – reference: HanYHuZBYangAMLiJZhangYZIntelligent recommendation model for reducing silicon deviation fluctuation of hot metal in BF and applicationIron Steel202358301:CAS:528:DC%2BB3sXhvF2ks7%2FM – reference: ZhangJLJiangXDZuoHBLiuZJHeat state judgment for calcium carbide furnaces based on heat index calculation and furnace temperature predictionChin. J. Eng.201335911311:CAS:528:DC%2BC2cXjt1Onsbs%3D – reference: LiuXGLiuFBlast Furnace Ironmaking Process Optimization and Intelligent Control system2003BeijingMetallurgy Industry Press90 – reference: LiZNChuMSLiuZGRuanGJLiBFFurnace heat prediction and control model and its application to large blast furnaceHigh Temp. Mater. Process.2019388841:CAS:528:DC%2BB3cXjvFWrsLs%3D10.1515/htmp-2019-0049 – reference: ChuMSYagiJShenFModelling on Blast Furnace Process and Innovative Ironmaking Technologies2006ShenyangNortheastern University Press36 – reference: WangZYJiangDHWangXDZhangJLLiuZJZhaoBJPrediction of blast furnace hot metal temperature based on support vector regression and extreme learning machineChin. J. Eng.2021434569 – reference: YuanMZhouPLiMLLiRFWangHChaiTYIntelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCAJ. Iron Steel Res. Int.201522648710.1016/S1006-706X(15)30031-5 – reference: LiZNPrediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining2020ShenyangNortheastern University27 – reference: LiuXJDengYLiXHaoLYLiuEHLyuQPrediction of silicon content in hot molten of blast furnace based on bid data technologyChina Metall.202131210 – reference: D. Pan, Z.H. Jiang, Z.P. Chen, W.H. Gui, Y.F. Xie, and C.H. Yang, Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model, Sensors, 18(2018), No. 11, art. No. 3792. – reference: LiJPHuaCCYangYNA novel multiple-input–multiple-output random vector functional-link networks for predicting molten iron quality indexes in blast furnaceIEEE Trans. Ind. Electron.202168111130910.1109/TIE.2020.3031525 – reference: BaiJLZhangJLGuoHWDuSCaoYJBasic mathematical models in blast furnace expert systemJ. Wuhan Univ. Sci. Technol.2013365331 – reference: K. Jiang, Z.H. Jiang, Y.F. Xie, D. Pan, and W.H. Gui, Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network, IEEE Trans. Instrum. Meas., 71(2022), art. No. 2512114. – reference: XuJWYangYA survey of ensemble learning approachesJ. Yunnan Univ. Nat. Sci. Ed.20184061082 – reference: LiHYBuXPLiuXJEvaluation and prediction of blast furnace status based on big data platform of ironmaking and data miningISIJ Int.20216111081:CAS:528:DC%2BB3MXjt1ahurg%3D10.2355/isijinternational.ISIJINT-2020-249 – reference: LiJPHuaCCYangYNGuanXPA novel MIMO T–S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputsIEEE Trans. Fuzzy Syst.2021296165410.1109/TFUZZ.2020.2983667 – reference: DengYLyuQEstablishment of evaluation and prediction system of comprehensive state based on big data technology in a commercial blast furnaceISIJ Int.20206058981:CAS:528:DC%2BB3cXhvFSmtbfM10.2355/isijinternational.ISIJINT-2019-545 – reference: ZhangRHYangJState of the art in applications of machine learning in steelmaking process modelingInt. J. Miner. Metall. Mater.20233011205510.1007/s12613-023-2646-1 – reference: YinRYReview on the study of metallurgical process engineeringInt. J. Miner. Metall. Mater.2021288125310.1007/s12613-020-2220-z – reference: FengQLiQQuanWPeiXMOverview of multiobjective particle swarm optimization algorithmChin. J. Eng.2021436745 – reference: ZhouPYuanMWangHWangZChaiTYMultivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connectionsInf. Sci.201532523710.1016/j.ins.2015.07.002 – reference: LiuXZhangWJShiQZhouLOperation parameters optimization of blast furnaces based on data mining and cleaningJ. Northeastern Univ. Nat. Sci.20204181153 – reference: PanGFWangFYShangCLAdvances in machine learning- and artificial intelligence-assisted material design of steelsInt. J. Miner. Metall. Mater.2023306100310.1007/s12613-022-2595-0 – reference: Y.R. Li and C.J. Yang, Domain knowledge based explainable feature construction method and its application in ironmaking process, Eng. Appl. Artif. Intell., 100(2021), art. No. 104197. – reference: NiuXQYeQWZhouYWangXDAutoregressive model electroencephalogram signal identification based on feature selection of genetic algorithmComput. Eng.2016423283 – reference: Q. Shi, J. Tang, and M.S. Chu, Evaluation, prediction, and feedback of blast furnace hearth activity based on data-driven analysis and process metallurgy, Steel Res. Int., 95 (2024), art. No. 2300385. – reference: L. Wei, S.S. Yang, F. Zhang, and Q. Bai, A Mathematical model on prediction of hot metal silicon content and temperature using blast furnace hearth thermal state parameters, [in] Metallurgical Research Center 2005 Metallurgical Engineering Science Forum, Beijing, 2005, p. 62. – reference: LiZQDuJQNieBXiongWPHuangCYLiHSummary of feature selection methodsComput. Eng. Appl.2019552410 – reference: LiZNChuMSLiuZGLiBFPrediction and optimization of blast furnace parameters based on machine learning and genetic algorithmJ. Northeastern Univ. Nat. Sci. Ed.202041912621:CAS:528:DC%2BB3cXis1Siu7w%3D – reference: YuHBZhuQNKangLQiaoGZZengJCA Multi-operator collaborative particle swarm optimization algorithm with biased rouletteControl Decis.20243941167 – reference: LiJPHuaCCQianJLGuanXPLow-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnaceFuzzy Sets Syst.202142117810.1016/j.fss.2020.08.012 – volume: 40 start-page: 1082 issue: 6 year: 2018 ident: 2693_CR33 publication-title: J. Yunnan Univ. Nat. Sci. Ed. – volume: 11 start-page: 2343 issue: 14 year: 2017 ident: 2693_CR18 publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2016.1474 – ident: 2693_CR20 doi: 10.1109/TIM.2022.3185325 – volume: 41 start-page: 1153 issue: 8 year: 2020 ident: 2693_CR2 publication-title: J. Northeastern Univ. Nat. Sci. – volume: 41 start-page: 1262 issue: 9 year: 2020 ident: 2693_CR34 publication-title: J. Northeastern Univ. Nat. Sci. Ed. – volume: 43 start-page: 569 issue: 4 year: 2021 ident: 2693_CR15 publication-title: Chin. J. Eng. – volume: 55 start-page: 10 issue: 24 year: 2019 ident: 2693_CR31 publication-title: Comput. Eng. Appl. – volume: 28 start-page: 1253 issue: 8 year: 2021 ident: 2693_CR8 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-2220-z – volume: 30 start-page: 1651 issue: 9 year: 2023 ident: 2693_CR7 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-023-2636-3 – ident: 2693_CR29 – start-page: 36 volume-title: Modelling on Blast Furnace Process and Innovative Ironmaking Technologies year: 2006 ident: 2693_CR5 – volume: 42 start-page: 283 issue: 3 year: 2016 ident: 2693_CR30 publication-title: Comput. Eng. – volume: 35 start-page: 1131 issue: 9 year: 2013 ident: 2693_CR28 publication-title: Chin. J. Eng. – volume: 31 start-page: 10 issue: 2 year: 2021 ident: 2693_CR4 publication-title: China Metall. – volume: 421 start-page: 178 year: 2021 ident: 2693_CR23 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2020.08.012 – start-page: 27 volume-title: Prediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining year: 2020 ident: 2693_CR24 – volume: 68 start-page: 11309 issue: 11 year: 2021 ident: 2693_CR22 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3031525 – volume: 22 start-page: 487 issue: 6 year: 2015 ident: 2693_CR13 publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(15)30031-5 – volume: 30 start-page: 1003 issue: 6 year: 2023 ident: 2693_CR10 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-022-2595-0 – volume: 325 start-page: 237 year: 2015 ident: 2693_CR14 publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.07.002 – ident: 2693_CR16 doi: 10.1109/CAC.2017.8243432 – ident: 2693_CR9 doi: 10.1002/srin.202300385 – volume: 36 start-page: 331 issue: 5 year: 2013 ident: 2693_CR27 publication-title: J. Wuhan Univ. Sci. Technol. – volume: 43 start-page: 745 issue: 6 year: 2021 ident: 2693_CR35 publication-title: Chin. J. Eng. – volume: 29 start-page: 1654 issue: 6 year: 2021 ident: 2693_CR21 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2983667 – start-page: 90 volume-title: Blast Furnace Ironmaking Process Optimization and Intelligent Control system year: 2003 ident: 2693_CR6 – volume: 30 start-page: 2055 issue: 11 year: 2023 ident: 2693_CR11 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-023-2646-1 – volume: 60 start-page: 898 issue: 5 year: 2020 ident: 2693_CR17 publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2019-545 – ident: 2693_CR19 doi: 10.1016/j.engappai.2021.104197 – volume: 38 start-page: 884 year: 2019 ident: 2693_CR3 publication-title: High Temp. Mater. Process. doi: 10.1515/htmp-2019-0049 – ident: 2693_CR1 doi: 10.3390/s18113792 – volume: 39 start-page: 1167 issue: 4 year: 2024 ident: 2693_CR32 publication-title: Control Decis. – volume: 61 start-page: 108 issue: 1 year: 2021 ident: 2693_CR26 publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2020-249 – volume: 58 start-page: 30 year: 2023 ident: 2693_CR25 publication-title: Iron Steel – volume: 37 start-page: 398 issue: 2 year: 2020 ident: 2693_CR12 publication-title: Comput. Simul. |
| SSID | ssj0067707 |
| Score | 2.3918679 |
| Snippet | The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and... |
| SourceID | wanfang proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1228 |
| SubjectTerms | Algorithms Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Corrosion and Coatings Delay Dynamic models Extractive metallurgy Feedback Genetic algorithms Glass Heat Indicators Ironmaking Machine learning Materials Science Metallic Materials Metallurgy Natural Materials Prediction models Predictions Process metallurgy Research Article Slag Surfaces and Interfaces Thin Films Tribology |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7FaZQ89KYG0eUz2KGLxIEV8UfAQsi_xlZa0lfrvnUkTU0ELet4ns7sz3-y8GGta8KMwEeBQLjHHTwDfnAbydUV5bUNfqCSvWnIJ3W7U64mrIo57WHq7lybJnFNXwW4I9snm6DntUHgOLLIllHYRvcbrm_uS_YYAeYw0edfTt5EoTZk_TfFdGFUI88somofypDZJH2ekTmf9X_vdYGsFyOSn01uxyRZMusVWZ1IPbrOHIkKAvxmE36_j7PGDJ6nm5DHq6Ix4IB9kZMWhk8ubLAo6magX3rdcIugecUvrKMOJoXMyfitS4Yc77K5zfnt24RSFFhyF6G7kCCkhUbjdQAutrW6BATcSIJQP2vVb0otMCNYNtQiMjVBFU8rXoURlx2v5gfZ2WS3tp2aP8cBVgLO5ESiPsAEVmVWAapMMdaLbos7ckuKxKrKQUzGM17jKn0x0i5FuMdEthjo7_hoymKbgmNe5UR5jXLzGYYxqESIxhIbi12YQlGWozk7Ks6ya56zVLC5H1Vk-vzzryUTGpk3Z4xBOBvt_mvSArdDIqTdag9VG2dgcsmX1PnoaZkf5Vf8E_mX1yg priority: 102 providerName: Springer Nature |
| Title | Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators |
| URI | https://link.springer.com/article/10.1007/s12613-023-2693-7 https://www.proquest.com/docview/3060635149 https://www.proquest.com/docview/3060790431 https://d.wanfangdata.com.cn/periodical/bjkjdxxb-e202406005 |
| Volume | 31 |
| WOSCitedRecordID | wos001233409500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1869-103X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0067707 issn: 1674-4799 databaseCode: PCBAR dateStart: 20100201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1869-103X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0067707 issn: 1674-4799 databaseCode: KB. dateStart: 20100201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1869-103X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0067707 issn: 1674-4799 databaseCode: BENPR dateStart: 20100201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1869-103X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067707 issn: 1674-4799 databaseCode: RSV dateStart: 20100201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BwgEOLU8RaKs99ARacOLHeE-orVohgaKoPFSJg-V9VX3gBCep2n_fGWddlwO5cPFl115rZ3YeOzPfAOx6TPKsVCgZS0wmJdKZs8i5rqSvfZYoUzZdS77ieJyfnKhJuHCbh7TKViY2gtpODd-RfyTTlrQpqXf1afZHctcojq6GFhoPoc8oCdy64cv-h1YSZ4hNuTQn2vMNkmqjmk3pHLkOHMGM5ShTscS_9VJnbN7FR5uqnsqX1ek9BXS0-b-__hQ2gukp9la88gweuOo5PLkHSPgCfoW6AfHbkVF-uaxPb0RZWcF5pNLWLBnFrObYDtOzGfKk_nRpLsTUC02m-EJ4Xsc4wWJecEjcsGM_fwk_jg6_H3yWof2CNGTzLaTSGktD25RaZa23Q3QY5QqVSdBGyVDHucvQR5lVqfM5OW7GJDbT5ALFwyS18SvoVdPKvQaRRgbpa1GOJmaLgVvPGiRnSme2tCM1gKjd_MIEbHJukXFZdKjKTK-C6FUwvQocwLu7V2YrYI51k7dayhThjM6Ljiz_HEbF2EMDeN8yQTe8Zq3dwCfdZH1-cW6vr3XhRowpR0Zm-mb9L72Fxzx1lZS2Bb1FvXTb8MhcLc7m9Q709w_Hk-Odht3pefzt5y1D3gLg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKRJwYEcNFJhD4QCycLzM8xw4lELVqiGqUJEqcXA9W9UFJzgptH-K38h7jl2XA7n1wHlWe755y7wNYM1jkslCYcC5xIKkQLpzFtnXlfi1l4kyRV21ZIijUba_r3aX4HcbC8NulS1NrAm1HRt-I39Hoi1xU2LvqvGg3HEXv0g_m77f_kiH-SqKNj_tbWwFTQmBwJDcMguU1lgY0hJSq6z1doAOw0yhMgnaMBnoOHMSfSitSp3PSPkwJrFSkxgfD5LUxjTv68mPgKtUsTW3KdlxA5YzqdKkB8u7Gx_Wv7S0XyLWAdrs2s9vVqq1o9bBerQNtpnGQSRVHODfnLATby8tsnUcUemL8vAKy9u897_9rPtwtxGuxfr8NjyAJVc-hDtXUi4-gm9NZIT47kjtOD2rDi9EUVrBnrKBrZj2i0nF1itGbN3kicHrwpyIsRealI2Z8LyOcYIZmWCjv-Gni-lj-HotH_wEeuW4dCsg0tAgzRZmaGKWibi4rkFSF7W0hY1UH8L2sHPTZF_nIiCneZc3mvGREz5yxkeOfXhzOWQyTz2yqPNqi4S8oULTvIPBP5tRcXalPrxtQdc1L1hrrcFl11kfnxzb83Odu4iz5pEYnT5dvKWXcGtr7_MwH26Pdp7BbR42d8Fbhd6sOnPP4ab5OTuaVi-aSybg4LrR-wdNc14g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9aK0UfbNWKp1b3wSclmLt8TPZRbI-WyiG0FcGHJfslfjQeuSj63zuTS4xCFUqfdzO77Nf8JjPzG4Btj3GW5hID5hIL4hzpzlnkWFfS1z6NpcnrqiWHOBplJyfyqKlzOmmj3VuX5DSngVmaimpvbP1el_hGwJ_9j1EwSGUU4Ft4F3PNIDbXfx63T3GKWOdLc6Q9_0KSrVvzbyKeK6YObT46SOu0nsLnxdkTDTT88N9z_wgLDfgU-9PTsghvXLEE808oCZfhtMkcEH8cwfKrm_LsXuSFFRxJGtiS30YxLtm7wztaN3lSgDo3l-LaC01gvBKexzFO8EMv2Clu2LSffILfw6-_Dr4FTQGGwBDqqwKpNeaGpptYaa23fXQYZhKlidGGcV9HmUvRh6mVifMZmW7GxDbVZARF_Tix0QrMFNeFWwWRhAZJWpihiRgzcPFZg2RO6dTmdiB7ELarr0zDTs5FMq5Ux6vM66Zo3RSvm8Ie7Dx-Mp5Sc7zWeaPdUtXc0okic4kQGkFG-WIzSmYf6sFuu69d8ytjbTcHpeusLy4v7N2dVm7ArHIEM5O1fxK6Be-PvgzV4ffRj3WYYyHTgLUNmKnKG_cZZs1tdT4pN-sb8ACdtwGh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+metallurgy+and+data-driven+prediction+and+feedback+of+blast+furnace+heat+indicators&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Quan+Shi&rft.au=Jue+Tang&rft.au=Mansheng+Chu&rft.date=2024-06-01&rft.pub=Engineering+Research+Center+of+Frontier+Technologies+for+Low-carbon+Steelmaking+%28Ministry+of+Education%29%2CShenyang+110819%2CChina&rft.issn=1674-4799&rft.volume=31&rft.issue=6&rft.spage=1228&rft.epage=1240&rft_id=info:doi/10.1007%2Fs12613-023-2693-7&rft.externalDocID=bjkjdxxb_e202406005 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb-e%2Fbjkjdxxb-e.jpg |