On a Problem by Shapozenko on Johnson Graphs

The Johnson graph J ( n ,  m ) has the m -subsets of { 1 , 2 , … , n } as vertices and two subsets are adjacent in the graph if they share m - 1 elements. Shapozenko asked about the isoperimetric function μ n , m ( k ) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Graphs and combinatorics Ročník 34; číslo 5; s. 947 - 964
Hlavní autoři: Diego, Víctor, Serra, Oriol, Vena, Lluís
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.09.2018
Springer Nature B.V
Témata:
ISSN:0911-0119, 1435-5914
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Johnson graph J ( n ,  m ) has the m -subsets of { 1 , 2 , … , n } as vertices and two subsets are adjacent in the graph if they share m - 1 elements. Shapozenko asked about the isoperimetric function μ n , m ( k ) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with k vertices in J ( n ,  m ) for each 1 ≤ k ≤ n m . We give an upper bound for μ n , m ( k ) and show that, for each given k such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large n , the given upper bound is tight. We also show that the bound is tight for the small values of k ≤ m + 1 and for all values of k when m = 2 .
AbstractList The Johnson graph J(n, m) has the m-subsets of {1,2,…,n} as vertices and two subsets are adjacent in the graph if they share m-1 elements. Shapozenko asked about the isoperimetric function μn,m(k) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with k vertices in J(n, m) for each 1≤k≤nm. We give an upper bound for μn,m(k) and show that, for each given k such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large n, the given upper bound is tight. We also show that the bound is tight for the small values of k≤m+1 and for all values of k when m=2.
The Johnson graph J ( n ,  m ) has the m -subsets of { 1 , 2 , … , n } as vertices and two subsets are adjacent in the graph if they share m - 1 elements. Shapozenko asked about the isoperimetric function μ n , m ( k ) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with k vertices in J ( n ,  m ) for each 1 ≤ k ≤ n m . We give an upper bound for μ n , m ( k ) and show that, for each given k such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large n , the given upper bound is tight. We also show that the bound is tight for the small values of k ≤ m + 1 and for all values of k when m = 2 .
The final publication is available at Springer via http://dx.doi.org/10.1007/s00373-018-1923-7 The Johnson graph J(n, m) has the m-subsets of {1,2,…,n} as vertices and two subsets are adjacent in the graph if they share m-1 elements. Shapozenko asked about the isoperimetric function µn,m(k) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with k vertices in J(n, m) for each 1=k=(nm) . We give an upper bound for µn,m(k) and show that, for each given k such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large n, the given upper bound is tight. We also show that the bound is tight for the small values of k=m+1 and for all values of k when m=2 . Peer Reviewed
Author Serra, Oriol
Diego, Víctor
Vena, Lluís
Author_xml – sequence: 1
  givenname: Víctor
  surname: Diego
  fullname: Diego, Víctor
  email: victor.diego@upc.edu
  organization: Department of Mathematics, Universitat Politècnica de Catalunya
– sequence: 2
  givenname: Oriol
  surname: Serra
  fullname: Serra, Oriol
  organization: Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona Graduate School of Mathematics
– sequence: 3
  givenname: Lluís
  surname: Vena
  fullname: Vena, Lluís
  organization: Computer Science Institute of Charles University (IUUK and ITI), Korteweg-De Vries Institute for Mathematics, University of Amsterdam
BookMark eNp1kE9LAzEQxYNUsK1-AG8LXl2d_Gs2RylalUIF9Ryy2cS2tsmabA_105uyQr14GB7DvN9jeCM08MFbhC4x3GAAcZsAqKAl4KrEktBSnKAhZpSXXGI2QEOQGOcrlmdolNIaADhmMETXC1_o4iWGemO3Rb0vXpe6Dd_Wf4Yi-OI5LH3KOou6XaZzdOr0JtmLXx2j94f7t-ljOV_MnqZ389JQDF0ptRCmqQgnkjsmjAbGCW3AGWyY1W7SCKlr5zi3wgI0vLFGcsE4bWrDJ5KOEe5zTdoZFa2x0ehOBb06LochIIiilFUVycxVz7QxfO1s6tQ67KLPb2abpDAhkv1NjiGlaJ1q42qr415hUIciVV-kykWqQ5FKZIb0TMpe_2HjMfl_6Afc83Vj
Cites_doi 10.1016/j.jcta.2012.01.001
10.1016/0012-365X(81)90009-1
10.1017/S0963548304006078
10.1137/080715081
10.1093/qmath/12.1.313
10.1016/S0021-9800(66)80059-5
10.1016/S0012-365X(02)00431-4
10.1016/j.ejc.2013.10.008
10.1007/BF02582941
10.1137/S0895480194278234
10.1007/BF01902206
10.2478/ausi-2014-0004
10.1016/0012-365X(76)90058-3
10.1017/CBO9780511623677
10.1007/BF02579261
10.1007/11889342_62
10.1017/CBO9780511616679
10.1007/978-3-642-74341-2
10.1016/0097-3165(91)90021-8
10.1090/psapm/044/1141923
10.1525/9780520319875-014
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
Copyright Springer Japan KK, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Springer Japan KK, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
XX2
DOI 10.1007/s00373-018-1923-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1435-5914
EndPage 964
ExternalDocumentID oai_recercat_cat_2072_334882
10_1007_s00373_018_1923_7
GrantInformation_xml – fundername: Grantová Agentura České Republiky
  grantid: P202/12/G061
  funderid: http://dx.doi.org/10.13039/501100001824
– fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación (ES)
  grantid: MTM2011-28800-C02-01
– fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación
  grantid: MTM2014-54745-P
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29I
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WIP
WK8
YLTOR
Z45
Z7U
Z7X
Z83
Z87
Z88
Z8O
Z8R
Z8W
Z91
ZMTXR
ZWQNP
~8M
~A9
~EX
88I
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
XX2
ID FETCH-LOGICAL-c310t-9a77cd825295f47ca04523d0fc1c4eaf6d79abff55e7e00d5dec957453dbc5693
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442695700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0911-0119
IngestDate Fri Nov 07 13:48:10 EST 2025
Thu Sep 18 00:00:52 EDT 2025
Sat Nov 29 03:58:07 EST 2025
Fri Feb 21 02:34:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Isoperimetric problem
Johnson graph
Shift compression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-9a77cd825295f47ca04523d0fc1c4eaf6d79abff55e7e00d5dec957453dbc5693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://recercat.cat/handle/2072/334882
PQID 2093062949
PQPubID 30813
PageCount 18
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_334882
proquest_journals_2093062949
crossref_primary_10_1007_s00373_018_1923_7
springer_journals_10_1007_s00373_018_1923_7
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Graphs and combinatorics
PublicationTitleAbbrev Graphs and Combinatorics
PublicationYear 2018
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References Bollobás (CR8) 1986
Kruskal (CR26) 1963
Erdős, Ko, Rado (CR17) 1961; 12
Christofides, Ellis, Keevash (CR16) 2013; 20
Katona (CR25) 1968
Mörs (CR28) 1985; 1
Bezrukov, Leck (CR6) 2009; 23
Bezrukov (CR5) 1994; 3
Harper (CR22) 2004
Bey (CR3) 2006
Riordan (CR29) 1998; 11
CR4
Bezrukov, Serra (CR7) 2002; 257
Ahlswede, Katona (CR1) 1978; 32
Frankl, Füredi (CR18) 1981; 34
CR27
Cioabǎ, Koolen, Li (CR15) 2014; 38
Bollobás, Leader (CR10) 1991; 56
Karachanjan (CR24) 1982; LXXIV
Bollobás, Leader (CR11) 2004; 13
Hart (CR23) 1976; 14
Cameron (CR13) 1999
Cioabǎ, Kim, Koolen (CR14) 2012; 119
Harper (CR21) 1966; 1
Füredi, Griggs (CR19) 1986; 6
Brouwer, Cohen, Neumaier (CR12) 1989
Godsil (CR20) 1993
Bashov (CR2) 2014; 5
Bollobás (CR9) 1990; 3
LH Harper (1923_CR22) 2004
O Riordan (1923_CR29) 1998; 11
LH Harper (1923_CR21) 1966; 1
GOH Katona (1923_CR25) 1968
SL Bezrukov (1923_CR7) 2002; 257
AE Brouwer (1923_CR12) 1989
D Christofides (1923_CR16) 2013; 20
P Erdős (1923_CR17) 1961; 12
P Frankl (1923_CR18) 1981; 34
SM Cioabǎ (1923_CR15) 2014; 38
JB Kruskal (1923_CR26) 1963
R Ahlswede (1923_CR1) 1978; 32
Michael Mörs (1923_CR28) 1985; 1
SM Cioabǎ (1923_CR14) 2012; 119
B Bollobás (1923_CR8) 1986
1923_CR27
1923_CR4
S Hart (1923_CR23) 1976; 14
VM Karachanjan (1923_CR24) 1982; LXXIV
C Bey (1923_CR3) 2006
M Bashov (1923_CR2) 2014; 5
B Bollobás (1923_CR9) 1990; 3
B Bollobás (1923_CR10) 1991; 56
SL Bezrukov (1923_CR5) 1994; 3
PJ Cameron (1923_CR13) 1999
CD Godsil (1923_CR20) 1993
B Bollobás (1923_CR11) 2004; 13
Z Füredi (1923_CR19) 1986; 6
SL Bezrukov (1923_CR6) 2009; 23
References_xml – volume: 3
  start-page: 59
  year: 1994
  end-page: 91
  ident: CR5
  article-title: Isoperimetric problems in discrete spaces Extremal problems for finite sets (Visegrád, 1991)
  publication-title: Bolyai Soc. Math. Stud. 3 János Bolyai Math. Soc. Bp.
– volume: 119
  start-page: 904
  year: 2012
  end-page: 922
  ident: CR14
  article-title: On a conjecture of Brouwer involving the connectivity of strongly regular graphs
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/j.jcta.2012.01.001
– volume: 34
  start-page: 311
  issue: 3
  year: 1981
  end-page: 313
  ident: CR18
  article-title: A short proof for a theorem of Harper about Hamming-spheres
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(81)90009-1
– ident: CR4
– volume: 13
  start-page: 277
  year: 2004
  end-page: 279
  ident: CR11
  article-title: Isoperimetric inequalities for r-sets
  publication-title: Combin. Prob. Comput.
  doi: 10.1017/S0963548304006078
– volume: 23
  start-page: 1416
  year: 2009
  end-page: 1421
  ident: CR6
  article-title: A simple proof of the Karakhanyan–Riordan theorem on the even discrete torus
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/080715081
– volume: 12
  start-page: 313
  year: 1961
  end-page: 320
  ident: CR17
  article-title: Intersection theorems for systems of finite sets
  publication-title: Quart. J. Math. Oxf. Ser. (2)
  doi: 10.1093/qmath/12.1.313
– volume: 1
  start-page: 385
  year: 1966
  end-page: 393
  ident: CR21
  article-title: Optimal numberings and isoperimetric problems on graphs
  publication-title: J. Comb. Theory
  doi: 10.1016/S0021-9800(66)80059-5
– volume: 257
  start-page: 285
  year: 2002
  end-page: 309
  ident: CR7
  article-title: A local–global principle for vertex-isoperimetric problems
  publication-title: Discret. Math.
  doi: 10.1016/S0012-365X(02)00431-4
– year: 1993
  ident: CR20
  publication-title: Algebraic Combinatorics. Chapman and Hall Mathematics Series I
– start-page: 187
  year: 1968
  end-page: 207
  ident: CR25
  publication-title: A Theorem of Finite Sets. Theory of Graphs (Proc. Colloq., Tihany, 1966)
– volume: 38
  start-page: 1
  year: 2014
  end-page: 11
  ident: CR15
  article-title: Disconnecting strongly regular graphs
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2013.10.008
– volume: 20
  start-page: Paper 15, 12
  issue: 4
  year: 2013
  ident: CR16
  article-title: An approximate isoperimetric inequality for r-sets
  publication-title: Electron. J. Comb.
– volume: 1
  start-page: 167
  year: 1985
  end-page: 183
  ident: CR28
  article-title: A generalization of a theorem of Kruskal
  publication-title: Gr. Comb.
  doi: 10.1007/BF02582941
– ident: CR27
– volume: 11
  start-page: 1
  year: 1998
  ident: CR29
  article-title: An ordering on the discrete even torus, 110–127
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/S0895480194278234
– year: 1986
  ident: CR8
  publication-title: Combinatorics, Set Systems, Hypergraphs. Families of Vectors and Combinatorial Probability
– volume: 32
  start-page: 97
  year: 1978
  end-page: 120
  ident: CR1
  article-title: Graphs with maximal number of adjacent pairs of edges
  publication-title: Acta Math. Acad. Sci. Hungar.
  doi: 10.1007/BF01902206
– volume: 5
  start-page: 53
  year: 2014
  end-page: 62
  ident: CR2
  article-title: Nonexistence of a Kruskal–Katona type theorem for double-sided shadow minimization in the Boolean cube layer
  publication-title: Acta Univ. Sapientiae Inform.
  doi: 10.2478/ausi-2014-0004
– volume: 14
  start-page: 157
  year: 1976
  end-page: 163
  ident: CR23
  article-title: A note on the edges of the -cube
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(76)90058-3
– year: 1999
  ident: CR13
  publication-title: Permutation Groups. London Mathematical Society Student Texts
  doi: 10.1017/CBO9780511623677
– volume: 6
  start-page: 355
  year: 1986
  end-page: 363
  ident: CR19
  article-title: Families of finite sets with minimum shadows
  publication-title: Combinatorica
  doi: 10.1007/BF02579261
– start-page: 251
  year: 1963
  end-page: 278
  ident: CR26
  publication-title: The Number of Simplices in a Complex. Mathematical Optimization Techniques
– volume: LXXIV
  start-page: 61
  issue: 2
  year: 1982
  end-page: 65
  ident: CR24
  article-title: A discrete isoperimetric problem on multidimensional torus (in Russian)
  publication-title: Doklady AN Arm. SSR
– volume: 3
  start-page: 32
  year: 1990
  end-page: 37
  ident: CR9
  article-title: An isoperimetric inequality on the discrete torus
  publication-title: SIAM J. Appl. Math.
– start-page: 971
  year: 2006
  end-page: 978
  ident: CR3
  publication-title: Remarks on an Edge-Isoperimetric Problem, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science
  doi: 10.1007/11889342_62
– year: 2004
  ident: CR22
  publication-title: Global Methods for Combinatorial Isoperimetric Problems. Cambridge Studies in Advanced Mathematics, 90
  doi: 10.1017/CBO9780511616679
– year: 1989
  ident: CR12
  publication-title: Distance-Regular Graphs
  doi: 10.1007/978-3-642-74341-2
– volume: 56
  start-page: 47
  issue: 1
  year: 1991
  end-page: 62
  ident: CR10
  article-title: Compressions and isoperimetric inequalities
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(91)90021-8
– volume: 34
  start-page: 311
  issue: 3
  year: 1981
  ident: 1923_CR18
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(81)90009-1
– volume-title: Permutation Groups. London Mathematical Society Student Texts
  year: 1999
  ident: 1923_CR13
  doi: 10.1017/CBO9780511623677
– volume: 5
  start-page: 53
  year: 2014
  ident: 1923_CR2
  publication-title: Acta Univ. Sapientiae Inform.
  doi: 10.2478/ausi-2014-0004
– ident: 1923_CR27
  doi: 10.1090/psapm/044/1141923
– volume: 13
  start-page: 277
  year: 2004
  ident: 1923_CR11
  publication-title: Combin. Prob. Comput.
  doi: 10.1017/S0963548304006078
– volume: 119
  start-page: 904
  year: 2012
  ident: 1923_CR14
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/j.jcta.2012.01.001
– volume-title: Global Methods for Combinatorial Isoperimetric Problems. Cambridge Studies in Advanced Mathematics, 90
  year: 2004
  ident: 1923_CR22
  doi: 10.1017/CBO9780511616679
– volume: 3
  start-page: 59
  year: 1994
  ident: 1923_CR5
  publication-title: Bolyai Soc. Math. Stud. 3 János Bolyai Math. Soc. Bp.
– volume: 56
  start-page: 47
  issue: 1
  year: 1991
  ident: 1923_CR10
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(91)90021-8
– volume: 38
  start-page: 1
  year: 2014
  ident: 1923_CR15
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2013.10.008
– volume: 3
  start-page: 32
  year: 1990
  ident: 1923_CR9
  publication-title: SIAM J. Appl. Math.
– volume: 6
  start-page: 355
  year: 1986
  ident: 1923_CR19
  publication-title: Combinatorica
  doi: 10.1007/BF02579261
– volume: 32
  start-page: 97
  year: 1978
  ident: 1923_CR1
  publication-title: Acta Math. Acad. Sci. Hungar.
  doi: 10.1007/BF01902206
– volume-title: Algebraic Combinatorics. Chapman and Hall Mathematics Series I
  year: 1993
  ident: 1923_CR20
– volume: 1
  start-page: 167
  year: 1985
  ident: 1923_CR28
  publication-title: Gr. Comb.
  doi: 10.1007/BF02582941
– volume: LXXIV
  start-page: 61
  issue: 2
  year: 1982
  ident: 1923_CR24
  publication-title: Doklady AN Arm. SSR
– start-page: 971
  volume-title: Remarks on an Edge-Isoperimetric Problem, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science
  year: 2006
  ident: 1923_CR3
  doi: 10.1007/11889342_62
– volume: 257
  start-page: 285
  year: 2002
  ident: 1923_CR7
  publication-title: Discret. Math.
  doi: 10.1016/S0012-365X(02)00431-4
– volume: 1
  start-page: 385
  year: 1966
  ident: 1923_CR21
  publication-title: J. Comb. Theory
  doi: 10.1016/S0021-9800(66)80059-5
– start-page: 251
  volume-title: The Number of Simplices in a Complex. Mathematical Optimization Techniques
  year: 1963
  ident: 1923_CR26
  doi: 10.1525/9780520319875-014
– volume: 14
  start-page: 157
  year: 1976
  ident: 1923_CR23
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(76)90058-3
– volume: 20
  start-page: Paper 15, 12
  issue: 4
  year: 2013
  ident: 1923_CR16
  publication-title: Electron. J. Comb.
– volume: 23
  start-page: 1416
  year: 2009
  ident: 1923_CR6
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/080715081
– start-page: 187
  volume-title: A Theorem of Finite Sets. Theory of Graphs (Proc. Colloq., Tihany, 1966)
  year: 1968
  ident: 1923_CR25
– volume-title: Combinatorics, Set Systems, Hypergraphs. Families of Vectors and Combinatorial Probability
  year: 1986
  ident: 1923_CR8
– volume-title: Distance-Regular Graphs
  year: 1989
  ident: 1923_CR12
  doi: 10.1007/978-3-642-74341-2
– volume: 12
  start-page: 313
  year: 1961
  ident: 1923_CR17
  publication-title: Quart. J. Math. Oxf. Ser. (2)
  doi: 10.1093/qmath/12.1.313
– ident: 1923_CR4
– volume: 11
  start-page: 1
  year: 1998
  ident: 1923_CR29
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/S0895480194278234
SSID ssj0005140
Score 2.1356797
Snippet The Johnson graph J ( n ,  m ) has the m -subsets of { 1 , 2 , … , n } as vertices and two subsets are adjacent in the graph if they share m - 1 elements....
The Johnson graph J(n, m) has the m-subsets of {1,2,…,n} as vertices and two subsets are adjacent in the graph if they share m-1 elements. Shapozenko asked...
The final publication is available at Springer via http://dx.doi.org/10.1007/s00373-018-1923-7 The Johnson graph J(n, m) has the m-subsets of {1,2,…,n} as...
SourceID csuc
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 947
SubjectTerms 05 Combinatorics
05C Graph theory
Anàlisi numèrica
Boolean algebra
Classificació AMS
Combinatorics
Engineering Design
Grafs, Teoria de
Graph theory
Graphs
Isoperimetric problem
Johnson graph
Matemàtiques i estadística
Mathematics
Mathematics and Statistics
Original Paper
Shift compression
Upper bounds
Àrees temàtiques de la UPC
Title On a Problem by Shapozenko on Johnson Graphs
URI https://link.springer.com/article/10.1007/s00373-018-1923-7
https://www.proquest.com/docview/2093062949
https://recercat.cat/handle/2072/334882
Volume 34
WOSCitedRecordID wos000442695700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1435-5914
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005140
  issn: 0911-0119
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMTECkPJ45HhCgslIoC6mbZZ0cgpKRqUiT49dh5VUUwwJAhsuVEnx_fnXz3HUKnYEggBj9yGAVwiKDEESA9R0vwlDGXJQtUWWyCDgbxeMyGdR533kS7N1eS5UndJrtZqRQb-2O8HmOVOHQZrRi2i229hofR8zyuo8qCNDxo_WSPNVeZPw2xQEYdyGewYGh-uxstKae_-a-f3UIbtYWJL6slsY2WdLqD1u9aedZ8F13cp1jgYVVLBssPPHoRk-xTp28ZzlJcV83CN1bMOt9DT_3rx6tbpy6b4ICx1QqHCUpBGc_PZ2FCKAirmh4oNwEPiBZJpCgTMknCUFPtuipUGlhISRgoCWHEgn3USbNUHyAcULPHY-lFoTRsZ9hd-iwmJAEZuYGORRedNfjxSaWOwVsd5BICbiDgFgJObWeDMDcnuZ6CKLhVtm5f7OO71Oc2NTj2u6jXzAOvd1Vu2pnxcHxGWBedN7jPm3_98uGfeh-hNd9OXBlI1kOdYjrTx2gV3ovXfHpSLrYvaM3L1w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1itugdPaiCPTTZ7FLEq1lp80duyO9mgCGlpWkF_vbtpUqnoQQ85hF024dvHN8POfANwiIYEYvQjhzNEh0pGHYnKc7RCLzHmsuJBUhSbYO123O3yTpnHnVfR7tWVZHFST5LdrFSKjf0xXo-xShw2C3PUEJYVzL-7f_qK6xhnQRoetH6yx6urzJ-GmCKjGuYjnDI0v92NFpTTXPnXz67CcmlhktPxkliDGZ2tw9LNRJ4134CT24xI0hnXkiHqndw_y37vQ2evPdLLSFk1i1xYMet8Ex6b5w9nl05ZNsFBY6sNHS4Zw8R4fj4PU8pQWtX0IHFT9JBqmUYJ41KlaRhqpl03CRONPGQ0DBKFYcSDLahlvUxvAwmY2eOx8qJQGbYz7K58HlOaoorcQMeyDkcVfqI_VscQEx3kAgJhIBAWAsFsZ4OwMCe5HqAcCqtsPXmxj-8yX9jU4NivQ6OaB1Huqty0c-Ph-JzyOhxXuH81__rlnT_1PoCFy4eblmhdta93YdG3k1gElTWgNhyM9B7M49vwJR_sFwvvEwBizrs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC7WUUQPvsVZXzl4Uhv7ke50jsuus4o6DvjAW0gqaRShZ5huBffXb9KPEUUP4qEPTUKnqUryVVFVXwHsoQWBFMPE4wzRo5JRT6IKPKMw0NZcVjzSVbMJ1u-nd3d80PQ5Ldps9zYkWdc0OJamvDwa6exoUvjmaFNcHpD1gKyF4rEpmKYuj96561e3rzkedUWkxUTnMwe8DWt-9Ik3wNTB4gnfGJ3v4qQV_PQWv_3jS7DQWJ7kV71VluGHyVdg_mJC21qswuFlTiQZ1D1miHohV_dyNPxn8schGeak6aZF_jqS62INbnrH179PvKadgofWhis9LhlDbT3CkMcZZSgdm3qk_QwDpEZmiWZcqiyLY8OM7-tYG-Qxo3GkFcYJj9ahkw9zswEkYvbspypIYmVR0KK-CnlKaYYq8SOTyi7st7IUo5o1Q0z4kSsRCCsC4UQgmJtspS3sDW_GKEvhGK8nL-4JfRYKVzKchl3YanUimtNW2HFuPZ-QU96Fg1YHr8OfrvzzS7N3YXbwpyfOT_tnmzAXOh1WuWZb0CnHT2YbZvC5fCjGO9Ue_A_KvNef
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+Problem+by+Shapozenko+on+Johnson+Graphs&rft.jtitle=Graphs+and+combinatorics&rft.au=Diego%2C+V%C3%ADctor&rft.au=Serra%2C+Oriol&rft.au=Vena%2C+Llu%C3%ADs&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0911-0119&rft.eissn=1435-5914&rft.volume=34&rft.issue=5&rft.spage=947&rft.epage=964&rft_id=info:doi/10.1007%2Fs00373-018-1923-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0911-0119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0911-0119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0911-0119&client=summon