On a Problem by Shapozenko on Johnson Graphs
The Johnson graph J ( n , m ) has the m -subsets of { 1 , 2 , … , n } as vertices and two subsets are adjacent in the graph if they share m - 1 elements. Shapozenko asked about the isoperimetric function μ n , m ( k ) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with...
Uloženo v:
| Vydáno v: | Graphs and combinatorics Ročník 34; číslo 5; s. 947 - 964 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Tokyo
Springer Japan
01.09.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0911-0119, 1435-5914 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Johnson graph
J
(
n
,
m
) has the
m
-subsets of
{
1
,
2
,
…
,
n
}
as vertices and two subsets are adjacent in the graph if they share
m
-
1
elements. Shapozenko asked about the isoperimetric function
μ
n
,
m
(
k
)
of Johnson graphs, that is, the cardinality of the smallest boundary of sets with
k
vertices in
J
(
n
,
m
) for each
1
≤
k
≤
n
m
. We give an upper bound for
μ
n
,
m
(
k
)
and show that, for each given
k
such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large
n
, the given upper bound is tight. We also show that the bound is tight for the small values of
k
≤
m
+
1
and for all values of
k
when
m
=
2
. |
|---|---|
| AbstractList | The Johnson graph J(n, m) has the m-subsets of {1,2,…,n} as vertices and two subsets are adjacent in the graph if they share m-1 elements. Shapozenko asked about the isoperimetric function μn,m(k) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with k vertices in J(n, m) for each 1≤k≤nm. We give an upper bound for μn,m(k) and show that, for each given k such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large n, the given upper bound is tight. We also show that the bound is tight for the small values of k≤m+1 and for all values of k when m=2. The Johnson graph J ( n , m ) has the m -subsets of { 1 , 2 , … , n } as vertices and two subsets are adjacent in the graph if they share m - 1 elements. Shapozenko asked about the isoperimetric function μ n , m ( k ) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with k vertices in J ( n , m ) for each 1 ≤ k ≤ n m . We give an upper bound for μ n , m ( k ) and show that, for each given k such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large n , the given upper bound is tight. We also show that the bound is tight for the small values of k ≤ m + 1 and for all values of k when m = 2 . The final publication is available at Springer via http://dx.doi.org/10.1007/s00373-018-1923-7 The Johnson graph J(n, m) has the m-subsets of {1,2,…,n} as vertices and two subsets are adjacent in the graph if they share m-1 elements. Shapozenko asked about the isoperimetric function µn,m(k) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with k vertices in J(n, m) for each 1=k=(nm) . We give an upper bound for µn,m(k) and show that, for each given k such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large n, the given upper bound is tight. We also show that the bound is tight for the small values of k=m+1 and for all values of k when m=2 . Peer Reviewed |
| Author | Serra, Oriol Diego, Víctor Vena, Lluís |
| Author_xml | – sequence: 1 givenname: Víctor surname: Diego fullname: Diego, Víctor email: victor.diego@upc.edu organization: Department of Mathematics, Universitat Politècnica de Catalunya – sequence: 2 givenname: Oriol surname: Serra fullname: Serra, Oriol organization: Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona Graduate School of Mathematics – sequence: 3 givenname: Lluís surname: Vena fullname: Vena, Lluís organization: Computer Science Institute of Charles University (IUUK and ITI), Korteweg-De Vries Institute for Mathematics, University of Amsterdam |
| BookMark | eNp1kE9LAzEQxYNUsK1-AG8LXl2d_Gs2RylalUIF9Ryy2cS2tsmabA_105uyQr14GB7DvN9jeCM08MFbhC4x3GAAcZsAqKAl4KrEktBSnKAhZpSXXGI2QEOQGOcrlmdolNIaADhmMETXC1_o4iWGemO3Rb0vXpe6Dd_Wf4Yi-OI5LH3KOou6XaZzdOr0JtmLXx2j94f7t-ljOV_MnqZ389JQDF0ptRCmqQgnkjsmjAbGCW3AGWyY1W7SCKlr5zi3wgI0vLFGcsE4bWrDJ5KOEe5zTdoZFa2x0ehOBb06LochIIiilFUVycxVz7QxfO1s6tQ67KLPb2abpDAhkv1NjiGlaJ1q42qr415hUIciVV-kykWqQ5FKZIb0TMpe_2HjMfl_6Afc83Vj |
| Cites_doi | 10.1016/j.jcta.2012.01.001 10.1016/0012-365X(81)90009-1 10.1017/S0963548304006078 10.1137/080715081 10.1093/qmath/12.1.313 10.1016/S0021-9800(66)80059-5 10.1016/S0012-365X(02)00431-4 10.1016/j.ejc.2013.10.008 10.1007/BF02582941 10.1137/S0895480194278234 10.1007/BF01902206 10.2478/ausi-2014-0004 10.1016/0012-365X(76)90058-3 10.1017/CBO9780511623677 10.1007/BF02579261 10.1007/11889342_62 10.1017/CBO9780511616679 10.1007/978-3-642-74341-2 10.1016/0097-3165(91)90021-8 10.1090/psapm/044/1141923 10.1525/9780520319875-014 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics Universitat Politècnica de Catalunya. Departament de Matemàtiques |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques – sequence: 2 fullname: Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics |
| Copyright | Springer Japan KK, part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: Springer Japan KK, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 – notice: info:eu-repo/semantics/openAccess |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D XX2 |
| DOI | 10.1007/s00373-018-1923-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Recercat |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1435-5914 |
| EndPage | 964 |
| ExternalDocumentID | oai_recercat_cat_2072_334882 10_1007_s00373_018_1923_7 |
| GrantInformation_xml | – fundername: Grantová Agentura České Republiky grantid: P202/12/G061 funderid: http://dx.doi.org/10.13039/501100001824 – fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación (ES) grantid: MTM2011-28800-C02-01 – fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación grantid: MTM2014-54745-P |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29I 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WIP WK8 YLTOR Z45 Z7U Z7X Z83 Z87 Z88 Z8O Z8R Z8W Z91 ZMTXR ZWQNP ~8M ~A9 ~EX 88I 8AO AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ABUWG ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D XX2 |
| ID | FETCH-LOGICAL-c310t-9a77cd825295f47ca04523d0fc1c4eaf6d79abff55e7e00d5dec957453dbc5693 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442695700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0911-0119 |
| IngestDate | Fri Nov 07 13:48:10 EST 2025 Thu Sep 18 00:00:52 EDT 2025 Sat Nov 29 03:58:07 EST 2025 Fri Feb 21 02:34:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Isoperimetric problem Johnson graph Shift compression |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-9a77cd825295f47ca04523d0fc1c4eaf6d79abff55e7e00d5dec957453dbc5693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://recercat.cat/handle/2072/334882 |
| PQID | 2093062949 |
| PQPubID | 30813 |
| PageCount | 18 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_334882 proquest_journals_2093062949 crossref_primary_10_1007_s00373_018_1923_7 springer_journals_10_1007_s00373_018_1923_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Graphs and combinatorics |
| PublicationTitleAbbrev | Graphs and Combinatorics |
| PublicationYear | 2018 |
| Publisher | Springer Japan Springer Nature B.V |
| Publisher_xml | – name: Springer Japan – name: Springer Nature B.V |
| References | Bollobás (CR8) 1986 Kruskal (CR26) 1963 Erdős, Ko, Rado (CR17) 1961; 12 Christofides, Ellis, Keevash (CR16) 2013; 20 Katona (CR25) 1968 Mörs (CR28) 1985; 1 Bezrukov, Leck (CR6) 2009; 23 Bezrukov (CR5) 1994; 3 Harper (CR22) 2004 Bey (CR3) 2006 Riordan (CR29) 1998; 11 CR4 Bezrukov, Serra (CR7) 2002; 257 Ahlswede, Katona (CR1) 1978; 32 Frankl, Füredi (CR18) 1981; 34 CR27 Cioabǎ, Koolen, Li (CR15) 2014; 38 Bollobás, Leader (CR10) 1991; 56 Karachanjan (CR24) 1982; LXXIV Bollobás, Leader (CR11) 2004; 13 Hart (CR23) 1976; 14 Cameron (CR13) 1999 Cioabǎ, Kim, Koolen (CR14) 2012; 119 Harper (CR21) 1966; 1 Füredi, Griggs (CR19) 1986; 6 Brouwer, Cohen, Neumaier (CR12) 1989 Godsil (CR20) 1993 Bashov (CR2) 2014; 5 Bollobás (CR9) 1990; 3 LH Harper (1923_CR22) 2004 O Riordan (1923_CR29) 1998; 11 LH Harper (1923_CR21) 1966; 1 GOH Katona (1923_CR25) 1968 SL Bezrukov (1923_CR7) 2002; 257 AE Brouwer (1923_CR12) 1989 D Christofides (1923_CR16) 2013; 20 P Erdős (1923_CR17) 1961; 12 P Frankl (1923_CR18) 1981; 34 SM Cioabǎ (1923_CR15) 2014; 38 JB Kruskal (1923_CR26) 1963 R Ahlswede (1923_CR1) 1978; 32 Michael Mörs (1923_CR28) 1985; 1 SM Cioabǎ (1923_CR14) 2012; 119 B Bollobás (1923_CR8) 1986 1923_CR27 1923_CR4 S Hart (1923_CR23) 1976; 14 VM Karachanjan (1923_CR24) 1982; LXXIV C Bey (1923_CR3) 2006 M Bashov (1923_CR2) 2014; 5 B Bollobás (1923_CR9) 1990; 3 B Bollobás (1923_CR10) 1991; 56 SL Bezrukov (1923_CR5) 1994; 3 PJ Cameron (1923_CR13) 1999 CD Godsil (1923_CR20) 1993 B Bollobás (1923_CR11) 2004; 13 Z Füredi (1923_CR19) 1986; 6 SL Bezrukov (1923_CR6) 2009; 23 |
| References_xml | – volume: 3 start-page: 59 year: 1994 end-page: 91 ident: CR5 article-title: Isoperimetric problems in discrete spaces Extremal problems for finite sets (Visegrád, 1991) publication-title: Bolyai Soc. Math. Stud. 3 János Bolyai Math. Soc. Bp. – volume: 119 start-page: 904 year: 2012 end-page: 922 ident: CR14 article-title: On a conjecture of Brouwer involving the connectivity of strongly regular graphs publication-title: J. Comb. Theory Ser. A doi: 10.1016/j.jcta.2012.01.001 – volume: 34 start-page: 311 issue: 3 year: 1981 end-page: 313 ident: CR18 article-title: A short proof for a theorem of Harper about Hamming-spheres publication-title: Discret. Math. doi: 10.1016/0012-365X(81)90009-1 – ident: CR4 – volume: 13 start-page: 277 year: 2004 end-page: 279 ident: CR11 article-title: Isoperimetric inequalities for r-sets publication-title: Combin. Prob. Comput. doi: 10.1017/S0963548304006078 – volume: 23 start-page: 1416 year: 2009 end-page: 1421 ident: CR6 article-title: A simple proof of the Karakhanyan–Riordan theorem on the even discrete torus publication-title: SIAM J. Discret. Math. doi: 10.1137/080715081 – volume: 12 start-page: 313 year: 1961 end-page: 320 ident: CR17 article-title: Intersection theorems for systems of finite sets publication-title: Quart. J. Math. Oxf. Ser. (2) doi: 10.1093/qmath/12.1.313 – volume: 1 start-page: 385 year: 1966 end-page: 393 ident: CR21 article-title: Optimal numberings and isoperimetric problems on graphs publication-title: J. Comb. Theory doi: 10.1016/S0021-9800(66)80059-5 – volume: 257 start-page: 285 year: 2002 end-page: 309 ident: CR7 article-title: A local–global principle for vertex-isoperimetric problems publication-title: Discret. Math. doi: 10.1016/S0012-365X(02)00431-4 – year: 1993 ident: CR20 publication-title: Algebraic Combinatorics. Chapman and Hall Mathematics Series I – start-page: 187 year: 1968 end-page: 207 ident: CR25 publication-title: A Theorem of Finite Sets. Theory of Graphs (Proc. Colloq., Tihany, 1966) – volume: 38 start-page: 1 year: 2014 end-page: 11 ident: CR15 article-title: Disconnecting strongly regular graphs publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2013.10.008 – volume: 20 start-page: Paper 15, 12 issue: 4 year: 2013 ident: CR16 article-title: An approximate isoperimetric inequality for r-sets publication-title: Electron. J. Comb. – volume: 1 start-page: 167 year: 1985 end-page: 183 ident: CR28 article-title: A generalization of a theorem of Kruskal publication-title: Gr. Comb. doi: 10.1007/BF02582941 – ident: CR27 – volume: 11 start-page: 1 year: 1998 ident: CR29 article-title: An ordering on the discrete even torus, 110–127 publication-title: SIAM J. Discret. Math. doi: 10.1137/S0895480194278234 – year: 1986 ident: CR8 publication-title: Combinatorics, Set Systems, Hypergraphs. Families of Vectors and Combinatorial Probability – volume: 32 start-page: 97 year: 1978 end-page: 120 ident: CR1 article-title: Graphs with maximal number of adjacent pairs of edges publication-title: Acta Math. Acad. Sci. Hungar. doi: 10.1007/BF01902206 – volume: 5 start-page: 53 year: 2014 end-page: 62 ident: CR2 article-title: Nonexistence of a Kruskal–Katona type theorem for double-sided shadow minimization in the Boolean cube layer publication-title: Acta Univ. Sapientiae Inform. doi: 10.2478/ausi-2014-0004 – volume: 14 start-page: 157 year: 1976 end-page: 163 ident: CR23 article-title: A note on the edges of the -cube publication-title: Discret. Math. doi: 10.1016/0012-365X(76)90058-3 – year: 1999 ident: CR13 publication-title: Permutation Groups. London Mathematical Society Student Texts doi: 10.1017/CBO9780511623677 – volume: 6 start-page: 355 year: 1986 end-page: 363 ident: CR19 article-title: Families of finite sets with minimum shadows publication-title: Combinatorica doi: 10.1007/BF02579261 – start-page: 251 year: 1963 end-page: 278 ident: CR26 publication-title: The Number of Simplices in a Complex. Mathematical Optimization Techniques – volume: LXXIV start-page: 61 issue: 2 year: 1982 end-page: 65 ident: CR24 article-title: A discrete isoperimetric problem on multidimensional torus (in Russian) publication-title: Doklady AN Arm. SSR – volume: 3 start-page: 32 year: 1990 end-page: 37 ident: CR9 article-title: An isoperimetric inequality on the discrete torus publication-title: SIAM J. Appl. Math. – start-page: 971 year: 2006 end-page: 978 ident: CR3 publication-title: Remarks on an Edge-Isoperimetric Problem, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science doi: 10.1007/11889342_62 – year: 2004 ident: CR22 publication-title: Global Methods for Combinatorial Isoperimetric Problems. Cambridge Studies in Advanced Mathematics, 90 doi: 10.1017/CBO9780511616679 – year: 1989 ident: CR12 publication-title: Distance-Regular Graphs doi: 10.1007/978-3-642-74341-2 – volume: 56 start-page: 47 issue: 1 year: 1991 end-page: 62 ident: CR10 article-title: Compressions and isoperimetric inequalities publication-title: J. Combin. Theory Ser. A doi: 10.1016/0097-3165(91)90021-8 – volume: 34 start-page: 311 issue: 3 year: 1981 ident: 1923_CR18 publication-title: Discret. Math. doi: 10.1016/0012-365X(81)90009-1 – volume-title: Permutation Groups. London Mathematical Society Student Texts year: 1999 ident: 1923_CR13 doi: 10.1017/CBO9780511623677 – volume: 5 start-page: 53 year: 2014 ident: 1923_CR2 publication-title: Acta Univ. Sapientiae Inform. doi: 10.2478/ausi-2014-0004 – ident: 1923_CR27 doi: 10.1090/psapm/044/1141923 – volume: 13 start-page: 277 year: 2004 ident: 1923_CR11 publication-title: Combin. Prob. Comput. doi: 10.1017/S0963548304006078 – volume: 119 start-page: 904 year: 2012 ident: 1923_CR14 publication-title: J. Comb. Theory Ser. A doi: 10.1016/j.jcta.2012.01.001 – volume-title: Global Methods for Combinatorial Isoperimetric Problems. Cambridge Studies in Advanced Mathematics, 90 year: 2004 ident: 1923_CR22 doi: 10.1017/CBO9780511616679 – volume: 3 start-page: 59 year: 1994 ident: 1923_CR5 publication-title: Bolyai Soc. Math. Stud. 3 János Bolyai Math. Soc. Bp. – volume: 56 start-page: 47 issue: 1 year: 1991 ident: 1923_CR10 publication-title: J. Combin. Theory Ser. A doi: 10.1016/0097-3165(91)90021-8 – volume: 38 start-page: 1 year: 2014 ident: 1923_CR15 publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2013.10.008 – volume: 3 start-page: 32 year: 1990 ident: 1923_CR9 publication-title: SIAM J. Appl. Math. – volume: 6 start-page: 355 year: 1986 ident: 1923_CR19 publication-title: Combinatorica doi: 10.1007/BF02579261 – volume: 32 start-page: 97 year: 1978 ident: 1923_CR1 publication-title: Acta Math. Acad. Sci. Hungar. doi: 10.1007/BF01902206 – volume-title: Algebraic Combinatorics. Chapman and Hall Mathematics Series I year: 1993 ident: 1923_CR20 – volume: 1 start-page: 167 year: 1985 ident: 1923_CR28 publication-title: Gr. Comb. doi: 10.1007/BF02582941 – volume: LXXIV start-page: 61 issue: 2 year: 1982 ident: 1923_CR24 publication-title: Doklady AN Arm. SSR – start-page: 971 volume-title: Remarks on an Edge-Isoperimetric Problem, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science year: 2006 ident: 1923_CR3 doi: 10.1007/11889342_62 – volume: 257 start-page: 285 year: 2002 ident: 1923_CR7 publication-title: Discret. Math. doi: 10.1016/S0012-365X(02)00431-4 – volume: 1 start-page: 385 year: 1966 ident: 1923_CR21 publication-title: J. Comb. Theory doi: 10.1016/S0021-9800(66)80059-5 – start-page: 251 volume-title: The Number of Simplices in a Complex. Mathematical Optimization Techniques year: 1963 ident: 1923_CR26 doi: 10.1525/9780520319875-014 – volume: 14 start-page: 157 year: 1976 ident: 1923_CR23 publication-title: Discret. Math. doi: 10.1016/0012-365X(76)90058-3 – volume: 20 start-page: Paper 15, 12 issue: 4 year: 2013 ident: 1923_CR16 publication-title: Electron. J. Comb. – volume: 23 start-page: 1416 year: 2009 ident: 1923_CR6 publication-title: SIAM J. Discret. Math. doi: 10.1137/080715081 – start-page: 187 volume-title: A Theorem of Finite Sets. Theory of Graphs (Proc. Colloq., Tihany, 1966) year: 1968 ident: 1923_CR25 – volume-title: Combinatorics, Set Systems, Hypergraphs. Families of Vectors and Combinatorial Probability year: 1986 ident: 1923_CR8 – volume-title: Distance-Regular Graphs year: 1989 ident: 1923_CR12 doi: 10.1007/978-3-642-74341-2 – volume: 12 start-page: 313 year: 1961 ident: 1923_CR17 publication-title: Quart. J. Math. Oxf. Ser. (2) doi: 10.1093/qmath/12.1.313 – ident: 1923_CR4 – volume: 11 start-page: 1 year: 1998 ident: 1923_CR29 publication-title: SIAM J. Discret. Math. doi: 10.1137/S0895480194278234 |
| SSID | ssj0005140 |
| Score | 2.1356797 |
| Snippet | The Johnson graph
J
(
n
,
m
) has the
m
-subsets of
{
1
,
2
,
…
,
n
}
as vertices and two subsets are adjacent in the graph if they share
m
-
1
elements.... The Johnson graph J(n, m) has the m-subsets of {1,2,…,n} as vertices and two subsets are adjacent in the graph if they share m-1 elements. Shapozenko asked... The final publication is available at Springer via http://dx.doi.org/10.1007/s00373-018-1923-7 The Johnson graph J(n, m) has the m-subsets of {1,2,…,n} as... |
| SourceID | csuc proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 947 |
| SubjectTerms | 05 Combinatorics 05C Graph theory Anàlisi numèrica Boolean algebra Classificació AMS Combinatorics Engineering Design Grafs, Teoria de Graph theory Graphs Isoperimetric problem Johnson graph Matemàtiques i estadística Mathematics Mathematics and Statistics Original Paper Shift compression Upper bounds Àrees temàtiques de la UPC |
| Title | On a Problem by Shapozenko on Johnson Graphs |
| URI | https://link.springer.com/article/10.1007/s00373-018-1923-7 https://www.proquest.com/docview/2093062949 https://recercat.cat/handle/2072/334882 |
| Volume | 34 |
| WOSCitedRecordID | wos000442695700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1435-5914 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005140 issn: 0911-0119 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMTECkPJ45HhCgslIoC6mbZZ0cgpKRqUiT49dh5VUUwwJAhsuVEnx_fnXz3HUKnYEggBj9yGAVwiKDEESA9R0vwlDGXJQtUWWyCDgbxeMyGdR533kS7N1eS5UndJrtZqRQb-2O8HmOVOHQZrRi2i229hofR8zyuo8qCNDxo_WSPNVeZPw2xQEYdyGewYGh-uxstKae_-a-f3UIbtYWJL6slsY2WdLqD1u9aedZ8F13cp1jgYVVLBssPPHoRk-xTp28ZzlJcV83CN1bMOt9DT_3rx6tbpy6b4ICx1QqHCUpBGc_PZ2FCKAirmh4oNwEPiBZJpCgTMknCUFPtuipUGlhISRgoCWHEgn3USbNUHyAcULPHY-lFoTRsZ9hd-iwmJAEZuYGORRedNfjxSaWOwVsd5BICbiDgFgJObWeDMDcnuZ6CKLhVtm5f7OO71Oc2NTj2u6jXzAOvd1Vu2pnxcHxGWBedN7jPm3_98uGfeh-hNd9OXBlI1kOdYjrTx2gV3ovXfHpSLrYvaM3L1w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1itugdPaiCPTTZ7FLEq1lp80duyO9mgCGlpWkF_vbtpUqnoQQ85hF024dvHN8POfANwiIYEYvQjhzNEh0pGHYnKc7RCLzHmsuJBUhSbYO123O3yTpnHnVfR7tWVZHFST5LdrFSKjf0xXo-xShw2C3PUEJYVzL-7f_qK6xhnQRoetH6yx6urzJ-GmCKjGuYjnDI0v92NFpTTXPnXz67CcmlhktPxkliDGZ2tw9LNRJ4134CT24xI0hnXkiHqndw_y37vQ2evPdLLSFk1i1xYMet8Ex6b5w9nl05ZNsFBY6sNHS4Zw8R4fj4PU8pQWtX0IHFT9JBqmUYJ41KlaRhqpl03CRONPGQ0DBKFYcSDLahlvUxvAwmY2eOx8qJQGbYz7K58HlOaoorcQMeyDkcVfqI_VscQEx3kAgJhIBAWAsFsZ4OwMCe5HqAcCqtsPXmxj-8yX9jU4NivQ6OaB1Huqty0c-Ph-JzyOhxXuH81__rlnT_1PoCFy4eblmhdta93YdG3k1gElTWgNhyM9B7M49vwJR_sFwvvEwBizrs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC7WUUQPvsVZXzl4Uhv7ke50jsuus4o6DvjAW0gqaRShZ5huBffXb9KPEUUP4qEPTUKnqUryVVFVXwHsoQWBFMPE4wzRo5JRT6IKPKMw0NZcVjzSVbMJ1u-nd3d80PQ5Ldps9zYkWdc0OJamvDwa6exoUvjmaFNcHpD1gKyF4rEpmKYuj96561e3rzkedUWkxUTnMwe8DWt-9Ik3wNTB4gnfGJ3v4qQV_PQWv_3jS7DQWJ7kV71VluGHyVdg_mJC21qswuFlTiQZ1D1miHohV_dyNPxn8schGeak6aZF_jqS62INbnrH179PvKadgofWhis9LhlDbT3CkMcZZSgdm3qk_QwDpEZmiWZcqiyLY8OM7-tYG-Qxo3GkFcYJj9ahkw9zswEkYvbspypIYmVR0KK-CnlKaYYq8SOTyi7st7IUo5o1Q0z4kSsRCCsC4UQgmJtspS3sDW_GKEvhGK8nL-4JfRYKVzKchl3YanUimtNW2HFuPZ-QU96Fg1YHr8OfrvzzS7N3YXbwpyfOT_tnmzAXOh1WuWZb0CnHT2YbZvC5fCjGO9Ue_A_KvNef |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+Problem+by+Shapozenko+on+Johnson+Graphs&rft.jtitle=Graphs+and+combinatorics&rft.au=Diego%2C+V%C3%ADctor&rft.au=Serra%2C+Oriol&rft.au=Vena%2C+Llu%C3%ADs&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0911-0119&rft.eissn=1435-5914&rft.volume=34&rft.issue=5&rft.spage=947&rft.epage=964&rft_id=info:doi/10.1007%2Fs00373-018-1923-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0911-0119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0911-0119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0911-0119&client=summon |