On Smooth Rényi Entropies: A Novel Information Measure, One-Shot Coding Theorems, and Asymptotic Expansions

This study considers the unconditional smooth Rényi entropy proposed by Renner and Wolf [ASIACRYPT, 2005], the smooth conditional Rényi entropy proposed by Kuzuoka [IEEE Trans. Inf. Th., 66(3), 1674-1690, 2020], and a novel quantity which we term the conditional smooth -⋆ entropy. The latter two qua...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 68; číslo 3; s. 1496 - 1531
Hlavní autori: Sakai, Yuta, Tan, Vincent Y. F.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study considers the unconditional smooth Rényi entropy proposed by Renner and Wolf [ASIACRYPT, 2005], the smooth conditional Rényi entropy proposed by Kuzuoka [IEEE Trans. Inf. Th., 66(3), 1674-1690, 2020], and a novel quantity which we term the conditional smooth -⋆ entropy. The latter two quantities can be specialized to the first in the absence of side-information. We explore the operational roles of these smooth Rényi entropies by establishing one-shot coding theorems for several information-theoretic problems, including Campbell's source coding problem, the Arıkan-Massey guessing problem, and the Bunte-Lapidoth task encoding problem. We consider these problems in cases where the errors are non-vanishing and for each problem, we consider two error formalisms: the average and maximum error criteria, where the averaging and maximization are taken with respect to the side-information. Using the one-shot coding theorems, we conclude that Kuzuoka's smooth conditional Rényi entropy and the conditional smooth-⋆ entropy are the solutions to the problems involving the average and maximum error criteria, respectively. Furthermore, we examine asymptotic expansions of these entropies when the underlying source with its side-information is stationary and memoryless. Applying our asymptotic expansions to the one-shot coding theorems, we derive various fundamental limits for these problems. We show that, under non-degenerate settings, the first-order fundamental limits differ under the average and maximum error criteria. This is in contrast to a different but related setting considered by the present authors [IEEE Trans. Inf. Th., 66(12), 7565-7587, 2020], for variable-length conditional source coding allowing errors, in which the first-order terms are identical but the second-order terms are different under these error criteria.
AbstractList This study considers the unconditional smooth Rényi entropy proposed by Renner and Wolf [ASIACRYPT, 2005], the smooth conditional Rényi entropy proposed by Kuzuoka [IEEE Trans. Inf. Th., 66(3), 1674–1690, 2020], and a novel quantity which we term the conditional smooth -⋆ entropy. The latter two quantities can be specialized to the first in the absence of side-information. We explore the operational roles of these smooth Rényi entropies by establishing one-shot coding theorems for several information-theoretic problems, including Campbell’s source coding problem, the Arıkan–Massey guessing problem, and the Bunte–Lapidoth task encoding problem. We consider these problems in cases where the errors are non-vanishing and for each problem, we consider two error formalisms: the average and maximum error criteria, where the averaging and maximization are taken with respect to the side-information. Using the one-shot coding theorems, we conclude that Kuzuoka’s smooth conditional Rényi entropy and the conditional smooth-⋆ entropy are the solutions to the problems involving the average and maximum error criteria, respectively. Furthermore, we examine asymptotic expansions of these entropies when the underlying source with its side-information is stationary and memoryless. Applying our asymptotic expansions to the one-shot coding theorems, we derive various fundamental limits for these problems. We show that, under non-degenerate settings, the first-order fundamental limits differ under the average and maximum error criteria. This is in contrast to a different but related setting considered by the present authors [IEEE Trans. Inf. Th., 66(12), 7565–7587, 2020], for variable-length conditional source coding allowing errors, in which the first-order terms are identical but the second-order terms are different under these error criteria.
Author Sakai, Yuta
Tan, Vincent Y. F.
Author_xml – sequence: 1
  givenname: Yuta
  orcidid: 0000-0003-0183-6988
  surname: Sakai
  fullname: Sakai, Yuta
  email: yuta.sakai@eng.u-hyogo.ac.jp
  organization: Department of Electronics and Computer Science, Graduate School of Engineering, University of Hyogo, Himeji, Japan
– sequence: 2
  givenname: Vincent Y. F.
  orcidid: 0000-0002-5008-4527
  surname: Tan
  fullname: Tan, Vincent Y. F.
  email: vtan@nus.edu.sg
  organization: Department of Electrical and Computer Engineering and Department of Mathematics, National University of Singapore, Singapore
BookMark eNo9kF1LwzAUQINMcE7fBV8Cvq4zH23S-DbG1MF04OZzaZNb17EmNenE_SR_h3_Mjg2fLhfOuRfOJepZZwGhG0pGlBJ1v5qtRowwOuKUMyHJGerTJJGREkncQ31CaBqpOE4v0GUIm26NE8r6aLuweFk7167x2--P3Vd4alvvmgrCAx7jV_cFWzyzpfN13lbO4hfIw87DEC8sRMu1a_HEmcp-4NUanIc6DHFuDR6Hfd20rq00nn43uQ2dG67QeZlvA1yf5gC9P05Xk-dovniaTcbzSHNK2iiVgumCs4KmhaYyMSBLY-IiIWVesDI1XOpcKaMZxEbHBQijipglWkshdaH4AN0d7zbefe4gtNnG7bztXmZMcMIVE0x2FDlS2rsQPJRZ46s69_uMkuzQNOuaZoem2alpp9welQoA_nEleCJTwf8Atzt2EQ
CODEN IETTAW
Cites_doi 10.1109/TIT.2010.2054130
10.1109/ISIT.2004.1365269
10.1109/ISIT.2017.8006829
10.1109/TIT.2018.2803162
10.1109/TIT.2009.2032797
10.1561/0100000086
10.1587/transfun.E99.A.2286
10.1109/TIT.2019.2937318
10.1109/TIT.2020.3019062
10.1109/ISIT.1994.394764
10.1109/18.412679
10.1109/ISIT.2010.5513463
10.1109/ISIT.2016.7541398
10.1109/18.481781
10.1109/TIT.2005.844098
10.1109/TIT.2018.2792495
10.1109/TIT.2009.2025545
10.1109/TIT.2021.3117591
10.1109/TIT.2013.2291007
10.1109/ISIT.2014.6875283
10.1007/978-3-662-12066-8
10.1109/ITW.2013.6691332
10.1109/TIT.2015.2438831
10.1109/ITW.2013.6691336
10.1016/S0019-9958(65)90332-3
10.1587/transfun.E93.A.1868
10.1109/TIT.2010.2043769
10.1109/TIT.2014.2329490
10.1109/TIT.2020.2981573
10.1109/18.850664
10.1109/TIT.2012.2192713
10.1504/IJAMS.2010.029799
10.1007/11593447_11
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2021.3132670
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1531
ExternalDocumentID 10_1109_TIT_2021_3132670
9635786
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation (NRF) Fellowship
  grantid: R-263-000-D02-281
  funderid: 10.13039/501100003725
– fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI
  grantid: JP 21K21291
  funderid: 10.13039/501100001691
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c310t-8762cb32b18bc175de7fdd4b50fab2f8d37ca99dc2e4dc4be6d9b425cc767cb93
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757850700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 09 06:27:21 EST 2025
Sat Nov 29 03:31:47 EST 2025
Wed Aug 27 02:49:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-8762cb32b18bc175de7fdd4b50fab2f8d37ca99dc2e4dc4be6d9b425cc767cb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5008-4527
0000-0003-0183-6988
PQID 2630392627
PQPubID 36024
PageCount 36
ParticipantIDs proquest_journals_2630392627
crossref_primary_10_1109_TIT_2021_3132670
ieee_primary_9635786
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Cachin (ref36) 1997
Kumar (ref35) 2020
ref24
ref23
ref26
Kumar (ref20) 2019
ref25
ref22
Strassen (ref21)
Arimoto (ref12); 16
ref28
ref27
ref29
ref8
Feller (ref39) 1971; 2
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref26
  doi: 10.1109/TIT.2010.2054130
– ident: ref7
  doi: 10.1109/ISIT.2004.1365269
– ident: ref34
  doi: 10.1109/ISIT.2017.8006829
– ident: ref33
  doi: 10.1109/TIT.2018.2803162
– ident: ref25
  doi: 10.1109/TIT.2009.2032797
– ident: ref13
  doi: 10.1561/0100000086
– ident: ref30
  doi: 10.1587/transfun.E99.A.2286
– year: 1997
  ident: ref36
  article-title: Entropy measures and unconditional security in cryptography
– ident: ref11
  doi: 10.1109/TIT.2019.2937318
– ident: ref18
  doi: 10.1109/TIT.2020.3019062
– ident: ref4
  doi: 10.1109/ISIT.1994.394764
– ident: ref22
  doi: 10.1109/18.412679
– ident: ref28
  doi: 10.1109/ISIT.2010.5513463
– ident: ref32
  doi: 10.1109/ISIT.2016.7541398
– ident: ref5
  doi: 10.1109/18.481781
– ident: ref16
  doi: 10.1109/TIT.2005.844098
– ident: ref38
  doi: 10.1109/TIT.2018.2792495
– ident: ref9
  doi: 10.1109/TIT.2009.2025545
– ident: ref19
  doi: 10.1109/TIT.2021.3117591
– ident: ref24
  doi: 10.1109/TIT.2013.2291007
– ident: ref3
  doi: 10.1109/ISIT.2014.6875283
– ident: ref23
  doi: 10.1007/978-3-662-12066-8
– ident: ref10
  doi: 10.1109/ITW.2013.6691332
– ident: ref17
  doi: 10.1109/TIT.2015.2438831
– ident: ref29
  doi: 10.1109/ITW.2013.6691336
– ident: ref2
  doi: 10.1016/S0019-9958(65)90332-3
– ident: ref27
  doi: 10.1587/transfun.E93.A.1868
– ident: ref14
  doi: 10.1109/TIT.2010.2043769
– ident: ref6
  doi: 10.1109/TIT.2014.2329490
– volume-title: arXiv:2012.13707
  year: 2020
  ident: ref35
  article-title: Are guessing, source coding, and tasks partitioning birds of a feather?
– start-page: 689
  volume-title: Proc. Trans. 3rd Prague Conf. Inf. Theory
  ident: ref21
  article-title: Asymptotische abschätzungen in Shannon’s informationstheorie
– volume: 16
  start-page: 41
  volume-title: Proc. Topics Inf. Theory, 2nd Colloq. Math. Soc. J. Bolyai
  ident: ref12
  article-title: Information measures and capacity of order α for discrete memoryless channels
– volume-title: arXiv:1907.06889
  year: 2019
  ident: ref20
  article-title: A unified framework for problems on guessing, source coding and task partitioning
– ident: ref31
  doi: 10.1109/TIT.2020.2981573
– ident: ref15
  doi: 10.1109/18.850664
– ident: ref37
  doi: 10.1109/TIT.2012.2192713
– ident: ref1
  doi: 10.1504/IJAMS.2010.029799
– volume: 2
  volume-title: An Introduction to Probability Theory and Its Applications
  year: 1971
  ident: ref39
– ident: ref8
  doi: 10.1007/11593447_11
SSID ssj0014512
Score 2.4183118
Snippet This study considers the unconditional smooth Rényi entropy proposed by Renner and Wolf [ASIACRYPT, 2005], the smooth conditional Rényi entropy proposed by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1496
SubjectTerms Arıkan–Massey guessing problems
Asymptotic methods
Asymptotic series
Bunte–Lapidoth encoding tasks
Channel coding
Codes
Coding
Criteria
cumulant generating function of codeword lengths
Entropy
Information theory
Proposals
second-order asymptotics
Smooth Rényi entropy
Source coding
Task analysis
Theorems
Upper bound
Title On Smooth Rényi Entropies: A Novel Information Measure, One-Shot Coding Theorems, and Asymptotic Expansions
URI https://ieeexplore.ieee.org/document/9635786
https://www.proquest.com/docview/2630392627
Volume 68
WOSCitedRecordID wos000757850700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBt1hf7MGL0Gibbnez3opU9GAVreAtZHcnWLBJMVH0J_k7_GPObtIi6MVbIAks--08d-YbgCOuOQpuTSCitBVwtJ1AR4kOTJgazpFe82rYhBwMosdHdTsHzVkvDCL64jM8cY_-Lt_m5tWlyk6VI0-LxDzMSymqXq3ZjQHvtitm8DYJMMUc0yvJljodXg0pEAzbJ46mULixxD9MkJ-p8ksRe-tysfq_da3BSu1Fsl4F-zrMYbYBq9MJDawW2A1Y_kE3uAnPNxm7H-eEDbv7-sw-Rqzv6tQnFCyfsR4b5G_4zOr-JIcXu64SiE12k2Fw_5SX7Dx3to75jn4cF02WZJb1io_xpMxpLaz_TtrFJeCKLXi46A_PL4N62kJgyMUrvVo0uhPqdqQNORUWZWot191WmugwjWxHmkQpa0IkbLlGYZUmiTdGCmm06mzDQpZnuAOMQqQQhTCp9eSHQiVdqbkUFDwJ8hCTBhxPAYgnFalG7IORlooJrNiBFddgNWDTbfjsu3qvG7A_RSyupa6IQ0EG2REgyt2__9qDpdC1L_gasn1YKF9e8QAWzVs5Kl4O_YH6BpsFyqw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXrwLdbnHrwIjbbpdpP1VqSiqFW0greQ3Z2gYJNiouhP8nf4x5zdpEXQi7dAElj223nuzDcA-1xxFNxoT4RJw-NoWp4KY-VpP9GcI73m5bCJoNcLHx7kzQTUx70wiOiKz_DQPrq7fJPpV5sqO5KWPC0UkzBtJ2dV3VrjOwPebpbc4E0SYYo6RpeSDXnUP-9TKOg3Dy1RobCDiX8YITdV5ZcqdvbldPF_K1uChcqPZJ0S-GWYwHQFFkczGlglsisw_4NwcBWer1N2N8gIHXb79Zl-PLGurVQfUrh8zDqsl73hM6s6lCxi7KpMIdbZdYre3WNWsJPMWjvmevpxkNdZnBrWyT8GwyKjtbDuO-kXm4LL1-D-tNs_OfOqeQueJievcIpRq5avmqHS5FYYDBJjuGo3klj5SWhagY6lNNpHQpcrFEYqknmtAxFoJVvrMJVmKW4AoyDJRyF0Yhz9oZBxO1A8EBQ-CfIR4xocjACIhiWtRuTCkYaMCKzIghVVYNVg1W74-Ltqr2uwPUIsquQuj3xBJtlSIAabf_-1B7Nn_avL6PK8d7EFc75tZnAVZdswVby84g7M6LfiKX_ZdYfrG1N-zfU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Smooth+R%C3%A9nyi+Entropies%3A+A+Novel+Information+Measure%2C+One-Shot+Coding+Theorems%2C+and+Asymptotic+Expansions&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Sakai%2C+Yuta&rft.au=Tan%2C+Vincent+Y.+F.&rft.date=2022-03-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=68&rft.issue=3&rft.spage=1496&rft.epage=1531&rft_id=info:doi/10.1109%2FTIT.2021.3132670&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2021_3132670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon