Faulty elements diagnosis of phased array antennas using a generative adversarial learning-based stacked denoising sparse autoencoder

Diagnosis of faulty elements in a linear phased array antenna is of great importance in the wireless communication field which has been received increasing attention. As a result of element or elements failure in the linear phased array antennas, the whole radiation pattern will suffer from high sid...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electromagnetic waves and applications Vol. 33; no. 3; pp. 382 - 407
Main Authors: Lin, Da, Wan, Qi
Format: Journal Article
Language:English
Published: Taylor & Francis 11.02.2019
Subjects:
ISSN:0920-5071, 1569-3937
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diagnosis of faulty elements in a linear phased array antenna is of great importance in the wireless communication field which has been received increasing attention. As a result of element or elements failure in the linear phased array antennas, the whole radiation pattern will suffer from high side lobe levels, wide bandwidth and unexpected nulls. To this end, we suggest a novel approach by combining the generative adversarial learning and the stacked denoising sparse autoencoder to determine the location of the faulty elements in antennas. The suggested approach can learn discriminative features from radiation pattern images adaptively and automatically with less expert knowledge. Meanwhile, the suggested approach is able to overcome the strong noise, the high dimensional size of the radiation pattern and the small fault samples. In this regard, the suggested approach possesses superiority in discriminant capability in contrast to the existing related approaches.
AbstractList Diagnosis of faulty elements in a linear phased array antenna is of great importance in the wireless communication field which has been received increasing attention. As a result of element or elements failure in the linear phased array antennas, the whole radiation pattern will suffer from high side lobe levels, wide bandwidth and unexpected nulls. To this end, we suggest a novel approach by combining the generative adversarial learning and the stacked denoising sparse autoencoder to determine the location of the faulty elements in antennas. The suggested approach can learn discriminative features from radiation pattern images adaptively and automatically with less expert knowledge. Meanwhile, the suggested approach is able to overcome the strong noise, the high dimensional size of the radiation pattern and the small fault samples. In this regard, the suggested approach possesses superiority in discriminant capability in contrast to the existing related approaches.
Author Wan, Qi
Lin, Da
Author_xml – sequence: 1
  givenname: Da
  surname: Lin
  fullname: Lin, Da
  email: dlin8234@gmail.com
  organization: The 722 Research Institute of CSIC
– sequence: 2
  givenname: Qi
  surname: Wan
  fullname: Wan, Qi
  organization: Accelink Technologies Co. Ltd
BookMark eNqFkMtKAzEYhYMoWC-PIOQFpiZzywxulOINBDe6Hv5J_tToNCl_UqUP4Hs7rXXjQldnc74D5zti-z54ZOxMiqkUjTgXbS4qoeQ0F7KZyqoq6qbdYxNZ1W1WtIXaZ5NNJ9uUDtlRjK9CiKasygn7vIHVkNYcB1ygT5EbB3Mfoos8WL58gYiGAxGsOfiE3kPkq-j8nAOfo0eC5N6Rg3lHikAOBj4gkB8bWb-FYwL9NqZBH9yWjEugODKrFNDrYJBO2IGFIeLpLo_Z88310-wue3i8vZ9dPWS6kCJlCnWjjNa6L3KjoKplrcD2qmwLEEpA0yJa0L3KTY99Xtqmzqs8B2vHryVCccwuvnc1hRgJbaddGh8Enwjc0EnRbYx2P0a7jdFuZ3Skq1_0ktwCaP0vd_nNOW8DLeAj0GC6BOshkCXw2sWu-HviC19AlBM
CitedBy_id crossref_primary_10_1117_1_JRS_17_017502
crossref_primary_10_1109_TAP_2024_3387689
Cites_doi 10.1109/MAP.1982.27654
10.1016/j.neunet.2014.09.003
10.1002/aic.690410612
10.1049/ip-map:20010550
10.1109/JRPROC.1946.225956
10.1109/8.76322
10.1038/nature14539
10.1561/2200000006
10.1109/TAP.2007.891557
10.1016/j.inffus.2011.08.001
10.1109/TAP.1964.1138163
10.1109/TAP.1958.1144549
10.1109/TIE.2016.2519325
10.1016/j.inffus.2014.03.006
10.2528/PIERM09011204
10.1109/TIE.2016.2582729
10.1109/TPAMI.2013.50
10.1109/8.768787
10.1109/TAP.2013.2259455
10.1109/TAP.1961.1144961
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
DBID AAYXX
CITATION
DOI 10.1080/09205071.2018.1553689
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1569-3937
EndPage 407
ExternalDocumentID 10_1080_09205071_2018_1553689
1553689
Genre Article
GroupedDBID .QJ
0BK
0R~
29K
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABCQX
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
AEISY
AENEX
AEOZL
AEPSL
AEVUW
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMFWP
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D-I
DGEBU
DKSSO
DU5
EAP
EBS
EJD
EMK
EPL
EST
ESX
E~A
E~B
GCUZY
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
L7B
LJTGL
M4Z
NZ-
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEX
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
ZGOLN
~02
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-7ec87dcccb32d7a56167afb7493a070a89eefacb72dbeb24f862522aff4544ea3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455346700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5071
IngestDate Sat Nov 29 02:25:13 EST 2025
Tue Nov 18 22:35:10 EST 2025
Mon Oct 20 23:49:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-7ec87dcccb32d7a56167afb7493a070a89eefacb72dbeb24f862522aff4544ea3
PageCount 26
ParticipantIDs crossref_citationtrail_10_1080_09205071_2018_1553689
informaworld_taylorfrancis_310_1080_09205071_2018_1553689
crossref_primary_10_1080_09205071_2018_1553689
PublicationCentury 2000
PublicationDate 2/11/2019
2019-02-11
PublicationDateYYYYMMDD 2019-02-11
PublicationDate_xml – month: 02
  year: 2019
  text: 2/11/2019
  day: 11
PublicationDecade 2010
PublicationTitle Journal of electromagnetic waves and applications
PublicationYear 2019
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0010
Goodfellow IJ (CIT0025) 2014; 3
CIT0011
CIT0014
Bregains JC (CIT0009) 2006; 41
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Balanis CA. (CIT0005) 1982
Erhan D (CIT0027) 2010; 11
CIT0003
CIT0002
CIT0024
CIT0004
CIT0029
CIT0006
CIT0008
References_xml – ident: CIT0017
  doi: 10.1109/MAP.1982.27654
– ident: CIT0022
  doi: 10.1016/j.neunet.2014.09.003
– volume: 11
  start-page: 625
  issue: 3
  year: 2010
  ident: CIT0027
  publication-title: J Mach Learn Res
– ident: CIT0024
  doi: 10.1002/aic.690410612
– ident: CIT0008
  doi: 10.1049/ip-map:20010550
– volume: 41
  start-page: 1
  issue: 1
  year: 2006
  ident: CIT0009
  publication-title: Electron Lett
– ident: CIT0001
  doi: 10.1109/JRPROC.1946.225956
– ident: CIT0019
  doi: 10.1109/8.76322
– ident: CIT0021
  doi: 10.1038/nature14539
– ident: CIT0023
  doi: 10.1561/2200000006
– ident: CIT0011
  doi: 10.1109/TAP.2007.891557
– ident: CIT0029
– volume-title: Antenna theory: analysis and design
  year: 1982
  ident: CIT0005
– ident: CIT0014
  doi: 10.1016/j.inffus.2011.08.001
– ident: CIT0004
  doi: 10.1109/TAP.1964.1138163
– volume: 3
  start-page: 2672
  year: 2014
  ident: CIT0025
  publication-title: Adv Neural Inf Process Syst
– ident: CIT0006
  doi: 10.1109/TAP.1958.1144549
– ident: CIT0013
  doi: 10.1109/TIE.2016.2519325
– ident: CIT0015
  doi: 10.1016/j.inffus.2014.03.006
– ident: CIT0010
  doi: 10.2528/PIERM09011204
– ident: CIT0016
  doi: 10.1109/TIE.2016.2582729
– ident: CIT0020
  doi: 10.1109/TPAMI.2013.50
– ident: CIT0003
  doi: 10.1109/8.768787
– ident: CIT0018
  doi: 10.1109/TAP.2013.2259455
– ident: CIT0002
  doi: 10.1109/TAP.1961.1144961
SSID ssj0008454
Score 2.1855748
Snippet Diagnosis of faulty elements in a linear phased array antenna is of great importance in the wireless communication field which has been received increasing...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 382
SubjectTerms Faulty elements diagnosis
generative adversarial learning
phased array antennas
stacked denoising sparse autoencoder
Title Faulty elements diagnosis of phased array antennas using a generative adversarial learning-based stacked denoising sparse autoencoder
URI https://www.tandfonline.com/doi/abs/10.1080/09205071.2018.1553689
Volume 33
WOSCitedRecordID wos000455346700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1569-3937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008454
  issn: 0920-5071
  databaseCode: TFW
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECUCowHSoU3SFnXbBByyMrFEWSLHoqiRKciQINmEI0U6BgzZEOUC_gH9372jpMAemgztqOEJAo-6D-nxPcYuXK6kBSWFnnolMqNzYYz2IpPepR4LaA4QzSaKmxv1-KhvezZh6GmVNEP7Tigi5mp6ucGEgRF3NdHphNoYImapSzK-yRUd4cPST6_m3ezhORerLPqgEUIQZDjD87e77FWnPe3Snaoze_8fnveYvetbTv692yMn7MDVp-ztjhDhKTuMRFAbPrDfM9gs2y13Ha088Krj4i0CX3m-fsKiV3FoGthyikldQ-DEnZ9z4PMoYU35kwP5PAeg3c17Y4q5MBGM7ShmjopjwlstIhKTWhMQs2lXJKtZueYju5_9vPtxLXqrBmGxP2xF4awqKmutkWlVADZleQHeFJmWgEkFlHbOgzVFWhmc5TOPgxR2fuA9BihzID-xUb2q3WfGszwtgP4P5jga2gRAOmdN4t2kkmo6hTHLhhCVttcxJzuNZZkMcqf9epe03mW_3mN2-Qxbd0IerwH0bvzLNn5B8Z3dSSlfxH75B-xXdoSXmpjhSfKNjdpm487YG_urXYTmPG7vP-_X-P0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BCwIOLfRDlI_WB64umzib2EeEWBVR9rQVvUVjx96uVGWrJIvUH9D_zYyTrbYH4ADn6EWRPZmP5Pk9gA8-18qhVtKMg5aZNbm01gSZqeDTQAU0R4xmE8V0qi8vzeZZGKZV8gwdeqGImKv55eaP0WtK3MeRSUfcxzAzS5-y802uzWPYHlOtZf382eTHfTbWWXRCY4hkzPoUz-9u86A-PVAv3ag7k93_8cQvYWfoOsWnPkxewSNf78GLDS3CPXgauaCu3Ye7Ca6uu1vhe2Z5K6qejrdoxTKImyuqe5XApsFbwdtS19gKps_PBYp5VLHmFCqQrZ5b5AAXgzfFXNoIpo6UkkclKOctFxFJea1pCbPqlqysWfnmAC4mX2afz-Tg1iAdtYidLLzTReWcsyqtCqS-LC8w2CIzCimvoDbeB3S2SCtL43wWaJai5g9DoB3KPKpD2KqXtX8NIsvTAvkXYU7ToUsQlffOJsGPKqXHYzyCbL1HpRukzNlR47pM1oqnw3qXvN7lsN5HcHoPu-m1PP4GMJsBUHbxI0roHU9K9Ufsm3_AnsCzs9n38_L86_TbW3hOlwwTxZPkHWx1zcq_hyfuZ7dom-MY678Askf9Jw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB2VFqqyoNCHKI8yC7ZTYo9jzywrwCoCRV0U0Z1155VGqpzIdir1A_rf3Dt2qnQBLOg6OpE19_o-7ONzGPvocyUtKCn0OCiRGZ0LY3QQmQw-DdhAc4BoNlFMJuryUp8PbMJ2oFXSDh16oYhYq-nmXriwYsR9Gul0RGMMEbPUCRnf5Eo_YVs4OueU5Bflr_tirLJohEYQQZjVRzx_-psH7emBeOla2yl3H-GCX7IXw8zJT_skecU2fL3Hnq8pEe6xZ5EJatt9dlfC8rq75b7nlbfc9WS8WcvngS-usOs5Dk0Dt5yCUtfQciLPTznwadSwpgLKgYyeW6D05oMzxVSYCMZ5FEuH41jx5rOIxKrWtIhZdnPS1XS-OWA_y68Xn8_E4NUgLA6InSi8VYWz1hqZugJwKssLCKbItASsKqC09wGsKVJncJnPAm5SOPpBCBigzIM8ZJv1vPavGc_ytAB6QZjjbmgTAOm9NUnwIyfVeAxHLFuFqLKDkDn5aVxXyUrvdDjvis67Gs77iJ3cwxa9kse_AHo9_lUXH6GE3u-kkn_FvvkP7Ae2ff6lrH58m3x_y3bwF00s8SR5xza7Zunfs6f2ppu1zXHM9N-5RvvZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faulty+elements+diagnosis+of+phased+array+antennas+using+a+generative+adversarial+learning-based+stacked+denoising+sparse+autoencoder&rft.jtitle=Journal+of+electromagnetic+waves+and+applications&rft.au=Lin%2C+Da&rft.au=Wan%2C+Qi&rft.date=2019-02-11&rft.issn=0920-5071&rft.eissn=1569-3937&rft.volume=33&rft.issue=3&rft.spage=382&rft.epage=407&rft_id=info:doi/10.1080%2F09205071.2018.1553689&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_09205071_2018_1553689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5071&client=summon