Multimodal framework for phishing attack detection and mitigation through behavior analysis using EM-BERT and SPCA-BASED EAI-SC-LSTM

IntroductionThe rapid growth of advanced networking causes a significant increase in malicious threats to website data for accessing user information via phishing attacks. For the detection of phishing attacks, many works are developed based on a single data source. But, detecting the phishing attac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in communications and networks Ročník 6
Hlavní autoři: Murhej, Mahmoud, Nallasivan, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 08.07.2025
Témata:
ISSN:2673-530X, 2673-530X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract IntroductionThe rapid growth of advanced networking causes a significant increase in malicious threats to website data for accessing user information via phishing attacks. For the detection of phishing attacks, many works are developed based on a single data source. But, detecting the phishing attacks of different web sources was not concentrated in any of the existing works. Thus, multiple data sources, including SMS, E-Mail, and URL links, are used in this paper to detect and mitigate phishing attacks.MethodsInitially, the input data is collected from the SMS, E-Mail, and URL datasets. The contents and URLs are extracted from the datasets. Next, the textual analysis, including behavioral analysis and structural analysis, is carried out on the extracted URL. Moreover, by utilizing the Entropy Macqueen-based Bidirectional Encoder Representations from Transformers (EM-BERT) algorithm, the contents extracted from SMS and E-Mail datasets and the textually analyzed characters of the URL are transformed into vector form. Simultaneously, the CSS files and images are obtained from the URL dataset. Then, by utilizing Spherical Principal Component Analysis (SPCA), the features are extracted. Further, the optimal features are chosen by using the Cauchy distribution-based Seagull Optimization Algorithm (CSOA). Next, the phishing attack is detected using the Explainable AI SERF CoLU Long Short Term Memory (EAI-SC-LSTM) model. The recognized phishing data and URL are updated to the Blacklist; hence, any new URL, which is already on Blacklist, is reported to the user.ResultsAs per the experimental outcomes, the proposed EAI-SC-LSTM attains accuracies of 99.627% for SSC, 99.645% for PEC, and 99.541% for WPD in phishing attack detection, which are higher than the existing works. Moreover, the proposed technique detects the phishing attack within a training time of 24417 ms (PEC Dataset).DiscussionThus, cybersecurity is improved against the evolving phishing threats.
AbstractList IntroductionThe rapid growth of advanced networking causes a significant increase in malicious threats to website data for accessing user information via phishing attacks. For the detection of phishing attacks, many works are developed based on a single data source. But, detecting the phishing attacks of different web sources was not concentrated in any of the existing works. Thus, multiple data sources, including SMS, E-Mail, and URL links, are used in this paper to detect and mitigate phishing attacks.MethodsInitially, the input data is collected from the SMS, E-Mail, and URL datasets. The contents and URLs are extracted from the datasets. Next, the textual analysis, including behavioral analysis and structural analysis, is carried out on the extracted URL. Moreover, by utilizing the Entropy Macqueen-based Bidirectional Encoder Representations from Transformers (EM-BERT) algorithm, the contents extracted from SMS and E-Mail datasets and the textually analyzed characters of the URL are transformed into vector form. Simultaneously, the CSS files and images are obtained from the URL dataset. Then, by utilizing Spherical Principal Component Analysis (SPCA), the features are extracted. Further, the optimal features are chosen by using the Cauchy distribution-based Seagull Optimization Algorithm (CSOA). Next, the phishing attack is detected using the Explainable AI SERF CoLU Long Short Term Memory (EAI-SC-LSTM) model. The recognized phishing data and URL are updated to the Blacklist; hence, any new URL, which is already on Blacklist, is reported to the user.ResultsAs per the experimental outcomes, the proposed EAI-SC-LSTM attains accuracies of 99.627% for SSC, 99.645% for PEC, and 99.541% for WPD in phishing attack detection, which are higher than the existing works. Moreover, the proposed technique detects the phishing attack within a training time of 24417 ms (PEC Dataset).DiscussionThus, cybersecurity is improved against the evolving phishing threats.
Author Murhej, Mahmoud
Nallasivan, G.
Author_xml – sequence: 1
  givenname: Mahmoud
  surname: Murhej
  fullname: Murhej, Mahmoud
– sequence: 2
  givenname: G.
  surname: Nallasivan
  fullname: Nallasivan, G.
BookMark eNpNkctuEzEUQC1UJErpD7DyD0zwY_yYZRoGiJQIRILEzroztjNuZ8aV7YC658NJ0gqxug_pnM15i67mODuE3lOy4Fw3H3zqp3nBCBMLKrSSon6FrplUvBKc_Lz6b3-DbnO-J4QwpWvayGv0Z3scS5iihRH7BJP7HdMD9jHhxyHkIcwHDKVA_4CtK64vIc4YZounUMIBLmcZUjweBty5AX6FEwkzjE85ZHzMZ77dVnft9_0F231bLau75a79iNvlutqtqs1uv32HXnsYs7t9mTfox6d2v_pSbb5-Xq-Wm6rnlJRKWaqUkl5wDaRrNKkJNNpRDlYCBWuJ1op2tey190x5QWwnnHROCyY17fgNWj97bYR785jCBOnJRAjm8ojpYCCV0I_OeEpPSA1Sia5WVmvr64YK7xWTPQh2crFnV59izsn5fz5KzDmLuWQx5yzmJQv_C9_dguo
Cites_doi 10.1016/j.procs.2021.05.077
10.1109/ACCESS.2023.3237798
10.1016/j.heliyon.2021.e07437
10.1016/j.comcom.2021.04.023
10.1109/ACCESS.2023.3293063
10.3390/electronics12010042
10.1016/j.cose.2023.103387
10.1109/ACCESS.2022.3223111
10.1109/ACCESS.2022.3168235
10.1038/s41598-022-10841-5
10.1109/ACCESS.2024.3351946
10.1016/j.dsm.2024.08.004
10.1016/j.dss.2023.114102
10.3390/electronics12214545
10.1016/j.cose.2024.103736
10.1109/ACCESS.2022.3166474
10.1016/j.cose.2021.102421
10.1016/j.eswa.2022.118010
10.3390/make3030034
10.1007/s10207-024-00851-x
10.1109/ACCESS.2023.3252366
10.1109/ACCESS.2022.3183083
10.1109/ACCESS.2021.3137636
10.1016/j.engappai.2021.104347
10.1109/ACCESS.2024.3463871
10.1016/j.jksuci.2023.01.004
10.1007/s11235-020-00733-2
10.1016/j.eswa.2023.121183
10.1016/j.csa.2024.100036
10.3390/electronics11071090
10.1109/ACCESS.2024.3352629
10.1016/j.cose.2024.104129
10.1016/j.aej.2024.09.115
10.1109/ACCESS.2022.3196018
10.3390/sym16020248
10.1007/s10115-022-01672-x
10.1016/j.eswa.2020.113863
10.1007/s00521-020-05354-z
10.1016/j.aej.2024.06.070
10.1007/s12046024025820
10.1109/ACCESS.2025.3525998
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/frcmn.2025.1587654
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2673-530X
ExternalDocumentID oai_doaj_org_article_f116814a675b47d88df4915ff726ca52
10_3389_frcmn_2025_1587654
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c310t-7d17776f538a0b98040a98e13ad6a1add08871b46c8ff27f50db5e6ee852681b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001533300700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2673-530X
IngestDate Fri Oct 03 12:42:39 EDT 2025
Sat Nov 29 07:45:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-7d17776f538a0b98040a98e13ad6a1add08871b46c8ff27f50db5e6ee852681b3
OpenAccessLink https://doaj.org/article/f116814a675b47d88df4915ff726ca52
ParticipantIDs doaj_primary_oai_doaj_org_article_f116814a675b47d88df4915ff726ca52
crossref_primary_10_3389_frcmn_2025_1587654
PublicationCentury 2000
PublicationDate 2025-07-08
PublicationDateYYYYMMDD 2025-07-08
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-08
  day: 08
PublicationDecade 2020
PublicationTitle Frontiers in communications and networks
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Asiri (B9) 2023; 11
Gupta (B22) 2021; 175
Sturman (B42) 2024; 148
Alotaibi (B6) 2025; 110
Al-Ahmadi (B3) 2022; 10
Karim (B25) 2023; 11
Basit (B13) 2021; 76
Catal (B18) 2022; 64
Mehmood (B29) 2024; 12
Hannousse (B23) 2021; 104
Shombot (B41) 2024; 2
Sudar (B43) 2024; 49
Thakur (B46) 2023; 12
Akour (B2) 2021; 24
Aljabri (B4) 2024; 106
Elberri (B21) 2024; 23
Yang (B48) 2021; 165
Naqvi (B30) 2023; 132
Aljofey (B5) 2022; 12
Bhagwat (B14) 2021
Champa (B20)
Rashid (B34) 2023; 11
Salloum (B37) 2021; 189
Safi (B35) 2023; 35
Bu (B17) 2022; 11
Ariyadasa (B8) 2022; 10
Champa (B19)
Tang (B45) 2022; 10
Opara (B32) 2024; 236
Tang (B44) 2021; 3
Shafin (B40) 2024; 8
van Geest (B47) 2024; 139
Mahmoud (B28) 2013; 5
Rao (B33) 2021; 33
Sahingoz (B36) 2024; 12
Sanchez-Paniagua (B39) 2022; 207
Aslam (B10) 2024; 16
Biswas (B15) 2024; 177
Kara (B24) 2022; 10
Brezeanu (B16) 2025; 13
Atlam (B11) 2023; 12
Liu (B27) 2021; 110
Alsubaei (B7) 2024; 12
Odeh (B31) 2021
Salloum (B38) 2022; 10
Li (B26) 2023; 11
Abdillah (B1) 2022; 10
Balogun (B12) 2021; 7
References_xml – start-page: 1
  volume-title: 2024 12th international symposium on digital forensics and security (ISDFS)
  ident: B19
  article-title: Why phishing emails escape detection: a closer look at the failure points
– start-page: 1
  ident: B20
  article-title: Curated datasets and feature analysis for phishing email detection with machine learning
– volume: 189
  start-page: 19
  year: 2021
  ident: B37
  article-title: Phishing email detection using Natural Language Processing techniques: a literature survey
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.05.077
– volume: 11
  start-page: 6421
  year: 2023
  ident: B9
  article-title: A survey of intelligent detection designs of HTML URL phishing attacks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3237798
– volume: 7
  start-page: e07437
  year: 2021
  ident: B12
  article-title: Improving the phishing website detection using empirical analysis of Function Tree and its variants
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e07437
– volume: 175
  start-page: 47
  year: 2021
  ident: B22
  article-title: A novel approach for phishing URLs detection using lexical based machine learning in a real-time environment
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.04.023
– volume: 11
  start-page: 71925
  year: 2023
  ident: B26
  article-title: Uncovering the cloak: a systematic review of techniques used to conceal phishing websites
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3293063
– volume: 5
  start-page: 698
  year: 2013
  ident: B28
  article-title: A framework for an E-learning system based on semantic web
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 12
  start-page: 42
  year: 2023
  ident: B11
  article-title: Business email compromise phishing detection based on machine learning: a systematic literature review
  publication-title: Electron. Switz.
  doi: 10.3390/electronics12010042
– volume: 132
  start-page: 103387
  year: 2023
  ident: B30
  article-title: Mitigation strategies against the phishing attacks: a systematic literature review
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103387
– volume: 10
  start-page: 124420
  year: 2022
  ident: B24
  article-title: Characteristics of understanding URLs and domain names features: the detection of phishing websites with machine learning methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3223111
– volume: 10
  start-page: 42459
  year: 2022
  ident: B3
  article-title: PDGAN: phishing detection with generative adversarial networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3168235
– volume: 12
  start-page: 8842
  year: 2022
  ident: B5
  article-title: An effective detection approach for phishing websites using URL and HTML features
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-10841-5
– volume: 12
  start-page: 8373
  year: 2024
  ident: B7
  article-title: Enhancing phishing detection: a novel hybrid deep learning framework for cybercrime forensics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3351946
– volume: 8
  start-page: 127
  year: 2024
  ident: B40
  article-title: An explainable feature selection framework for web phishing detection with machine learning
  publication-title: Data Sci. Manag.
  doi: 10.1016/j.dsm.2024.08.004
– volume: 177
  start-page: 114102
  year: 2024
  ident: B15
  article-title: A hybrid framework using explainable AI (XAI) in cyber-risk management for defence and recovery against phishing attacks
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2023.114102
– volume: 12
  start-page: 4545
  year: 2023
  ident: B46
  article-title: A systematic review on deep-learning-based phishing email detection
  publication-title: Electron. Switz.
  doi: 10.3390/electronics12214545
– volume: 139
  start-page: 103736
  year: 2024
  ident: B47
  article-title: The applicability of a hybrid framework for automated phishing detection
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2024.103736
– volume: 10
  start-page: 41574
  year: 2022
  ident: B1
  article-title: Phishing classification techniques: a systematic literature review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166474
– volume: 110
  start-page: 102421
  year: 2021
  ident: B27
  article-title: An efficient multistage phishing website detection model based on the CASE feature framework: aiming at the real web environment
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102421
– volume: 207
  start-page: 118010
  year: 2022
  ident: B39
  article-title: Phishing websites detection using a novel multipurpose dataset and web technologies features
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118010
– volume: 3
  start-page: 672
  year: 2021
  ident: B44
  article-title: A survey of machine learning-based solutions for phishing website detection
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make3030034
– volume: 24
  start-page: 1
  year: 2021
  ident: B2
  article-title: Using Classical Machine Learning for phishing websites detection form URLS
  publication-title: J. Manag. Inf. Decis. Sci.
– volume: 23
  start-page: 2583
  year: 2024
  ident: B21
  article-title: A cyber defense system against phishing attacks with deep learning game theory and LSTM-CNN with African vulture optimization algorithm (AVOA)
  publication-title: Int. J. Inf. Secur.
  doi: 10.1007/s10207-024-00851-x
– volume: 11
  start-page: 36805
  year: 2023
  ident: B25
  article-title: Phishing detection system through hybrid machine learning based on URL
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3252366
– volume: 10
  start-page: 65703
  year: 2022
  ident: B38
  article-title: A systematic literature review on phishing email detection using Natural Language Processing techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3183083
– volume: 10
  start-page: 1509
  year: 2022
  ident: B45
  article-title: A deep learning-based framework for phishing website detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3137636
– volume: 104
  start-page: 104347
  year: 2021
  ident: B23
  article-title: Towards benchmark datasets for machine learning based website phishing detection: an experimental study
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104347
– volume: 12
  start-page: 137176
  year: 2024
  ident: B29
  article-title: Enhancing smishing detection: a deep learning approach for improved accuracy and reduced False positives
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3463871
– volume: 35
  start-page: 590
  year: 2023
  ident: B35
  article-title: A systematic literature review on phishing website detection techniques
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2023.01.004
– volume: 76
  start-page: 139
  year: 2021
  ident: B13
  article-title: A comprehensive survey of AI-enabled phishing attacks detection techniques
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-020-00733-2
– volume: 236
  start-page: 121183
  year: 2024
  ident: B32
  article-title: Look before you leap: detecting phishing web pages by exploiting raw URL and HTML characteristics
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121183
– volume: 2
  start-page: 100036
  year: 2024
  ident: B41
  article-title: An application for predicting phishing attacks: a case of implementing a support vector machine learning model
  publication-title: Cyber Secur. Appl.
  doi: 10.1016/j.csa.2024.100036
– volume: 11
  start-page: 1090
  year: 2022
  ident: B17
  article-title: Optimized URL feature selection based on genetic-algorithm-embedded deep learning for phishing website detection
  publication-title: Electron. Switz.
  doi: 10.3390/electronics11071090
– volume: 11
  start-page: 451
  year: 2023
  ident: B34
  article-title: Cloud-based machine learning approach for accurate detection of website phishing
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– volume: 12
  start-page: 8052
  year: 2024
  ident: B36
  article-title: Dephides: deep learning based phishing detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3352629
– volume: 148
  start-page: 104129
  year: 2024
  ident: B42
  article-title: Security awareness, decision style, knowledge, and phishing email detection: moderated mediation analyses
  publication-title: Comput. & Secur.
  doi: 10.1016/j.cose.2024.104129
– volume: 110
  start-page: 490
  year: 2025
  ident: B6
  article-title: Explainable artificial intelligence in web phishing classification on secure IoT with cloud-based cyber-physical systems
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2024.09.115
– volume: 10
  start-page: 82355
  year: 2022
  ident: B8
  article-title: Combining long-term recurrent convolutional and graph convolutional networks to detect phishing sites using URL and HTML
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196018
– volume: 16
  start-page: 248
  year: 2024
  ident: B10
  article-title: AntiPhishStack: LSTM-based stacked generalization model for optimized phishing URL detection
  publication-title: Symmetry
  doi: 10.3390/sym16020248
– volume: 64
  start-page: 1457
  year: 2022
  ident: B18
  article-title: Applications of deep learning for phishing detection: a systematic literature review
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-022-01672-x
– volume: 165
  start-page: 113863
  year: 2021
  ident: B48
  article-title: An improved ELM-based and data preprocessing integrated approach for phishing detection considering comprehensive features
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113863
– volume: 33
  start-page: 5733
  year: 2021
  ident: B33
  article-title: A heuristic technique to detect phishing websites using TWSVM classifier
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05354-z
– volume: 106
  start-page: 164
  year: 2024
  ident: B4
  article-title: Hybrid stacked autoencoder with dwarf mongoose optimization for Phishing attack detection in internet of things environment
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2024.06.070
– start-page: 0813
  year: 2021
  ident: B31
  article-title: Machine LearningTechniquesfor detection of website phishing: a review for promises and challenges
– volume: 49
  start-page: 232
  year: 2024
  ident: B43
  article-title: Detection of adversarial phishing attack using machine learning techniques
  publication-title: Sādhanā
  doi: 10.1007/s12046024025820
– start-page: 1505
  year: 2021
  ident: B14
  article-title: A methodical overview on detection identification and proactive prevention of phishing websites
– volume: 13
  start-page: 4460
  year: 2025
  ident: B16
  article-title: Phish fighter: self updating machine learning shield against phishing kits based on HTML code analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3525998
SSID ssj0002784196
Score 2.296695
Snippet IntroductionThe rapid growth of advanced networking causes a significant increase in malicious threats to website data for accessing user information via...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms cascading style sheets (CSS)
electronic mail (e-mail)
java script
short message service (SMS)
uniform resource locator (URL)
user behavior
Title Multimodal framework for phishing attack detection and mitigation through behavior analysis using EM-BERT and SPCA-BASED EAI-SC-LSTM
URI https://doaj.org/article/f116814a675b47d88df4915ff726ca52
Volume 6
WOSCitedRecordID wos001533300700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2673-530X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002784196
  issn: 2673-530X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2673-530X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002784196
  issn: 2673-530X
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQYoABcYpbHtiQIU59jm0JAokiRIvEFvnkUgMqgZGJH47tpKhMLCyRkjiR9b3kHfZ73wPgUBPrqTMWeUMUIjnRSMWFfMKYtJkhmSOpUPiSX12Juzt5PdPqK-aENfTADXAnHmMmMFHBsdWEWyGsJxJT73nOjKJJ-wavZyaYeppup0nWVMmEKEye-IkZR77TnB5jGlQAJb8s0Qxhf7IsZytguXUJYbeZyiqYc9UaWJohClwHX6lOdvxiwzg_TaeCwd-Erw_NIhJUda3MM7SuTslVFVSVhePHhkIjnLYNeeC0Lj_cb-hIYEx9v4fFAPWKm1F6bHjd76Jed1icwqJ7gYZ9dDkcDTbA7Vkx6p-jtn8CMsFpqxG3mHPOfNBpKtNShP9VSeFwR1mmcFBsUcNgTZgR3ufc08xq6phzInLAYN3ZBPPVS-W2ANRaKsozZjrckDyaMG-ttMF3y30ny_02OJpiWb42NBllCC8i8mVCvozIly3y26AX4f4ZGSmu04Ug-LIVfPmX4Hf-4yW7YDFOLOXfij0wX0_e3T5YMB_149vkIH1T4Tj4LL4BlrnRgw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+framework+for+phishing+attack+detection+and+mitigation+through+behavior+analysis+using+EM-BERT+and+SPCA-BASED+EAI-SC-LSTM&rft.jtitle=Frontiers+in+communications+and+networks&rft.au=Mahmoud+Murhej&rft.au=G.+Nallasivan&rft.date=2025-07-08&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-530X&rft.volume=6&rft_id=info:doi/10.3389%2Ffrcmn.2025.1587654&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f116814a675b47d88df4915ff726ca52
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-530X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-530X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-530X&client=summon