Transformer: A New Paradigm for Building Data-Parallel Programming Models

Cloud computing drives the design and development of diverse programming models for massive data processing. the transformer programming framework aims to facilitate the building of diverse data-parallel programming models. transformer has two layers: a common runtime system and a model-specific sys...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE MICRO Ročník 30; číslo 4; s. 55 - 64
Hlavní autoři: Wang, Peng, Meng, Dan, Han, Jizhong, Zhan, Jianfeng, Tu, Bibo, Shi, Xiaofeng, Wan, Le
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos IEEE 01.07.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0272-1732, 1937-4143
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Cloud computing drives the design and development of diverse programming models for massive data processing. the transformer programming framework aims to facilitate the building of diverse data-parallel programming models. transformer has two layers: a common runtime system and a model-specific system. using transformer, the authors show how to implement three programming models: dryad-like data flow, MapReduce, and All-Pairs.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0272-1732
1937-4143
DOI:10.1109/MM.2010.75