A Polynomial Time Algorithm for Calculating Fourier-Dedekind Sums

We solve an open problem proposed in the book "Computing the continuous discretely" written by Matthias Beck and Sinai Robins. That is, we provide a practical polynomial time algorithm for calculating Fourier-Dedekind sums. The algorithm is simple modular Barvinok's simplicial cone de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Experimental mathematics Ročník 34; číslo 3; s. 342 - 349
Hlavní autoři: Xin, Guoce, Xu, Xinyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 03.07.2025
Témata:
ISSN:1058-6458, 1944-950X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We solve an open problem proposed in the book "Computing the continuous discretely" written by Matthias Beck and Sinai Robins. That is, we provide a practical polynomial time algorithm for calculating Fourier-Dedekind sums. The algorithm is simple modular Barvinok's simplicial cone decomposition. It can be easily adapted into De Leora et al.'s LattE package, which gives a nice implementation of Barvinok's polynomial time algorithm.
AbstractList We solve an open problem proposed in the book "Computing the continuous discretely" written by Matthias Beck and Sinai Robins. That is, we provide a practical polynomial time algorithm for calculating Fourier-Dedekind sums. The algorithm is simple modular Barvinok's simplicial cone decomposition. It can be easily adapted into De Leora et al.'s LattE package, which gives a nice implementation of Barvinok's polynomial time algorithm.
Author Xin, Guoce
Xu, Xinyu
Author_xml – sequence: 1
  givenname: Guoce
  surname: Xin
  fullname: Xin, Guoce
  organization: School of Mathematical Sciences, Capital Normal University
– sequence: 2
  givenname: Xinyu
  orcidid: 0009-0009-8832-3050
  surname: Xu
  fullname: Xu, Xinyu
  organization: School of Mathematical Sciences, Capital Normal University
BookMark eNqFkNFKwzAUhoNMcJs-gtAX6MxpkzTBG8t0KgwUnOBdSNN0RtNE0o6xt7dj88YLvTr_xf_9cL4JGvngDUKXgGeAOb4CTDkjlM8ynJFZljOSMXKCxiAISQXFb6MhD510XzpDk677wBgIFXyMyjJ5Dm7nQ2uVS1a2NUnp1iHa_r1NmhCTuXJ641Rv_TpZhE20Jqa3pjaf1tfJy6btztFpo1xnLo53il4Xd6v5Q7p8un-cl8tU54D7tIBGV4yaSgtSUdCa1swAExXklHOtGecMTM0KI4ThBopCQ1U0maiMgVzl-RTRw66OoeuiaeRXtK2KOwlY7j3IHw9y70EePQzc9S9O2374J_g-Kuv-pW8OtPWDjVZtQ3S17NXOhdhE5bXtZP73xDdUT3ib
CitedBy_id crossref_primary_10_1007_s11139_024_01022_1
Cites_doi 10.1016/j.jcta.2014.11.006
10.1007/BF01351173
10.4064/aa109-2-1
10.37236/1811
10.1215/S0012-7094-03-11822-0
10.1287/moor.19.4.769
10.5948/UPO9781614440161
10.1016/j.jsc.2003.04.003
10.2307/2951842
10.1137/060664768
10.1017/CBO9780511805967
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
DBID AAYXX
CITATION
DOI 10.1080/10586458.2024.2364264
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1944-950X
EndPage 349
ExternalDocumentID 10_1080_10586458_2024_2364264
2364264
Genre Research Article
GrantInformation_xml – fundername: NSFC
  grantid: 12071311
GroupedDBID -~9
.7F
.QJ
0BK
0R~
30N
4.4
5GY
70C
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACIPV
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
E3Z
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
OK1
P2P
RBF
RIG
RNANH
ROSJB
RPE
RTWRZ
S-T
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UKR
UT5
UU3
WH7
ZCA
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-71fcb65ebc94b51cc5d6e169b13588cc68861ed67e99e8e177c1b7f29bee13a33
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001251332800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1058-6458
IngestDate Tue Nov 18 22:36:14 EST 2025
Sat Nov 29 07:34:12 EST 2025
Mon Oct 20 23:46:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-71fcb65ebc94b51cc5d6e169b13588cc68861ed67e99e8e177c1b7f29bee13a33
ORCID 0009-0009-8832-3050
PageCount 8
ParticipantIDs informaworld_taylorfrancis_310_1080_10586458_2024_2364264
crossref_primary_10_1080_10586458_2024_2364264
crossref_citationtrail_10_1080_10586458_2024_2364264
PublicationCentury 2000
PublicationDate 2025-07-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-03
  day: 03
PublicationDecade 2020
PublicationTitle Experimental mathematics
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Beck M. (e_1_3_1_6_1) 2001; 109
Knuth D. E. (e_1_3_1_11_1) 1997
e_1_3_1_10_1
Beck M. (e_1_3_1_7_1) 2007
e_1_3_1_9_1
e_1_3_1_14_1
e_1_3_1_8_1
e_1_3_1_13_1
e_1_3_1_12_1
e_1_3_1_5_1
e_1_3_1_18_1
e_1_3_1_17_1
e_1_3_1_16_1
e_1_3_1_15_1
e_1_3_1_3_1
Barvinok E. (e_1_3_1_4_1) 1999; 38
e_1_3_1_2_1
References_xml – volume-title: Computing the Continuous Discretely
  year: 2007
  ident: e_1_3_1_7_1
– ident: e_1_3_1_16_1
  doi: 10.1016/j.jcta.2014.11.006
– ident: e_1_3_1_18_1
  doi: 10.1007/BF01351173
– ident: e_1_3_1_17_1
– ident: e_1_3_1_5_1
  doi: 10.4064/aa109-2-1
– volume: 109
  start-page: 25
  issue: 2
  year: 2001
  ident: e_1_3_1_6_1
  article-title: Dedekind sums: a combinatorial-geometric viewpoint
  publication-title: Unusual Appl. Number Theory
– ident: e_1_3_1_15_1
  doi: 10.37236/1811
– ident: e_1_3_1_10_1
  doi: 10.1215/S0012-7094-03-11822-0
– ident: e_1_3_1_3_1
  doi: 10.1287/moor.19.4.769
– ident: e_1_3_1_13_1
  doi: 10.5948/UPO9781614440161
– ident: e_1_3_1_8_1
  doi: 10.1016/j.jsc.2003.04.003
– volume-title: The Art of Computer Programming
  year: 1997
  ident: e_1_3_1_11_1
– volume: 38
  start-page: 91
  year: 1999
  ident: e_1_3_1_4_1
  article-title: An algorithmic theory of lattice points in polyhedra
  publication-title: Louis J. Billera
– ident: e_1_3_1_9_1
  doi: 10.2307/2951842
– ident: e_1_3_1_12_1
  doi: 10.1137/060664768
– ident: e_1_3_1_2_1
– ident: e_1_3_1_14_1
  doi: 10.1017/CBO9780511805967
SSID ssj0014598
Score 2.3549912
Snippet We solve an open problem proposed in the book "Computing the continuous discretely" written by Matthias Beck and Sinai Robins. That is, we provide a practical...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 342
SubjectTerms Barvinok's algorithm
constant terms
Dedekind sum
Fourier-Dedekind sum
Primary: 11F20
Secondary: 11Y16
Title A Polynomial Time Algorithm for Calculating Fourier-Dedekind Sums
URI https://www.tandfonline.com/doi/abs/10.1080/10586458.2024.2364264
Volume 34
WOSCitedRecordID wos001251332800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1944-950X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014598
  issn: 1058-6458
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5KQOrq7p-j1WhYqGqRBHdoti-lIrSoiZF4t9jJ2nVDsAAU5Z8kXW5-O6cu-9D6EZYS6wjHPvCS2CmwWClwWHunGbKJo4krhCbkL2eGg51v-omzKq2ylBDpyVRRLFXh487MdmyI85fuRKMh8asFmsEBnQf1f0u7DP74OOD7vPqPwLjuhyG4woHyHKG57unbESnDe7StajT3f-H9R6gvSrljNqljxyiLZgeod2HFV9rdoza7ag_m3yGEWV_ZxgLidqT0Ww-zl_eIr-6qJNMbCH0NR1F3VLmDt-Cg1df0kePi7fsBD117wade1yJK2DrM7ocS5JaIzgYq5nhxFruBBChDaFcKWuFUoKAExK0BgVESkuMTFvaABCaUHqKatPZFM5QJIRjXFpqqEwZ0DQhTSdbInAJNlmaQB2xpVFjWzGPBwGMSUwqgtKlheJgobiyUB01VrD3knrjN4Bef2NxXpx5pKVASUx_xJ7_AXuBdlpBFTgc-tJLVMvnC7hC2_YjH2fz68IhvwDn1tqq
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4omqgH30Z89uB1Ccu-jwQlGIGYiJFb0-5OkcjDQDHx39ttC4GDetBTL_s1m-luZ2d25vsQuhHGEGMJx0ngJTDTEGKlwWJurWbKBJYENhWbkO226nb1ci-MK6t0MXSUEUWk_2q3uV0yel4Slzy5Eoy7yqwKKzkK9MStr6MNnvhaV9bXqb8sbhIY11k7HFfYYeZdPN-9ZsU_rbCXLvmd-t5_zHgf7eanTq-aLZMDtAajQ7TTWlC2To9Qteo9jgefrks5Gek6Q7zqoDee9OPXoZdMz6sFA5NqfY16Xj1TusO3YOEtieq9p9lweoye63edWgPn-grYJIe6GEsSmVBwCI1mISfGcCuACB0SypUyRiglCFghQWtQQKQ0JJRRRYcAhAaUnqDCaDyCU-QJYRmXhoZURgxoFJCylRXh6ATLLAqgiNjcqr7JycedBsbAJzlH6dxCvrOQn1uoiEoL2HvGvvEbQC9_Mj9O0x5RplHi0x-xZ3_AXqOtRqfV9Jv37YdztF1xIsEuB0wvUCGezOASbZqPuD-dXKWr8wvF897L
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4CcHAG_EmA6urun6PVUsEAqpKgOgWJfalIEJbNSkS_544SSs6AANMWfxF1uWc89l334fQhTCGGEs4zhMvgZmGCCsNFnNrNVMmtCS0hdiE7HRUr6e7VTVhWpVVuhw6Lokiin-1W9wjG08r4vInV4JxV5jVYDXHgJ5H9UW0XJBj5S794D_NLhIY12U3HFfYYaZNPN-9Zi48zZGXfgk7_uY_THgLbVR7Tq9ZOsk2WoDBDlq_mxG2pruo2fS6w-TD9SjnI11fiNdM-sPxS_b85uWz81phYgqlr0Hf80udO9wGC695Tu_dT97SPfToXz60rnClroBNvqXLsCSxiQSHyGgWcWIMtwKI0BGhXCljhFKCgBUStAYFREpDIhk3dARAaEjpPloaDAdwgDwhLOPS0IjKmAGNQ1K3siEcmWCdxSEcIjY1amAq6nGngJEEpGIonVoocBYKKgsdotoMNiq5N34D6K9fLMiKQ4-4VCgJ6I_Yoz9gz9Fqt-0Ht9edm2O01nAKwe4AmJ6gpWw8gVO0Yt6zl3R8VvjmJw9T3W8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Polynomial+Time+Algorithm+for+Calculating+Fourier-Dedekind+Sums&rft.jtitle=Experimental+mathematics&rft.au=Xin%2C+Guoce&rft.au=Xu%2C+Xinyu&rft.date=2025-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1058-6458&rft.eissn=1944-950X&rft.volume=34&rft.issue=3&rft.spage=342&rft.epage=349&rft_id=info:doi/10.1080%2F10586458.2024.2364264&rft.externalDocID=2364264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-6458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-6458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-6458&client=summon