A Parameter Dimension-Split Based Asymptotic Regression Estimation Theory for a Multinomial Panel Data Model
In this paper we revisit the so-called non-stationary regression models for repeated categorical/multinomial data collected from a large number of independent individuals. The main objective of the study is to obtain consistent and efficient regression estimates after taking the correlations of the...
Uložené v:
| Vydané v: | Sankhya. Series. A Ročník 80; číslo 2; s. 301 - 329 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New Delhi
Springer Science + Business Media
01.08.2018
Springer India |
| Predmet: | |
| ISSN: | 0976-836X, 0976-8378 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper we revisit the so-called non-stationary regression models for repeated categorical/multinomial data collected from a large number of independent individuals. The main objective of the study is to obtain consistent and efficient regression estimates after taking the correlations of the repeated multinomial data into account. The existing (1) ‘working’ odds ratios based GEE (generalized estimating equations) approach has both consistency and efficiency drawbacks. Specifically, the GEE-based regression estimates can be inconsistent which is a serious limitation. Some other existing studies use a MDL (multinomial dynamic logits) model among the repeated responses. As far as the estimation of the regression effects and dynamic dependence (i.e., correlation) parameters is concerned, they use either (2) a marginal or (3) a joint likelihood approach. In the marginal approach, the regression parameters are estimated for known correlation parameters by solving their respective marginal likelihood estimating equations, and similarly the correlation parameters are estimated by solving their likelihood equations for known regression estimates. Thus, this marginal approach is an iterative approach which may not provide quick convergence. In the joint likelihood approach, the regression and correlation parameters are estimated simultaneously by searching the maximum value of the likelihood function with regard to these parameters together. This approach may encounter computational drawback, specially when the number of correlation parameters gets large. In this paper, we propose a new estimation approach where the likelihood function for the regression parameters is developed from the joint likelihood function by replacing the correlation parameter with a consistent estimator involving unknown regression parameters. Thus the new approach relaxes the dimension issue, that is, the dimension of the correlation parameters does not affect the estimation of the main regression parameters. The asymptotic properties of the estimates of the main regression parameters (obtained based on consistent estimating functions for correlation parameters) are studied in detail. |
|---|---|
| AbstractList | In this paper we revisit the so-called non-stationary regression models for repeated categorical/multinomial data collected from a large number of independent individuals. The main objective of the study is to obtain consistent and efficient regression estimates after taking the correlations of the repeated multinomial data into account. The existing (1) ‘working’ odds ratios based GEE (generalized estimating equations) approach has both consistency and efficiency drawbacks. Specifically, the GEE-based regression estimates can be inconsistent which is a serious limitation. Some other existing studies use a MDL (multinomial dynamic logits) model among the repeated responses. As far as the estimation of the regression effects and dynamic dependence (i.e., correlation) parameters is concerned, they use either (2) a marginal or (3) a joint likelihood approach. In the marginal approach, the regression parameters are estimated for known correlation parameters by solving their respective marginal likelihood estimating equations, and similarly the correlation parameters are estimated by solving their likelihood equations for known regression estimates. Thus, this marginal approach is an iterative approach which may not provide quick convergence. In the joint likelihood approach, the regression and correlation parameters are estimated simultaneously by searching the maximum value of the likelihood function with regard to these parameters together. This approach may encounter computational drawback, specially when the number of correlation parameters gets large. In this paper, we propose a new estimation approach where the likelihood function for the regression parameters is developed from the joint likelihood function by replacing the correlation parameter with a consistent estimator involving unknown regression parameters. Thus the new approach relaxes the dimension issue, that is, the dimension of the correlation parameters does not affect the estimation of the main regression parameters. The asymptotic properties of the estimates of the main regression parameters (obtained based on consistent estimating functions for correlation parameters) are studied in detail. |
| Author | Sutradhar, Brajendra C |
| Author_xml | – sequence: 1 givenname: Brajendra C surname: Sutradhar fullname: Sutradhar, Brajendra C |
| BookMark | eNp9kEtLw0AQxxepYK39AB6E_QLRfSTZzbG29QEVRSt4C5tkUrck2bK7PfTbuzHSg4cODDMM85vH_xKNOtMBQteU3FJCxJ2jnAoaESqCMxLJMzQmmUgjyYUcHfP06wJNnduSYDxjgrMxamb4TVnVggeLF7qFzmnTRR-7Rnt8rxxUeOYO7c4br0v8DhsLru_AS-d1q3yfrr_B2AOujcUKv-wbrzvTatWEyR00eKF8KJsKmit0XqvGwfQvTtDnw3I9f4pWr4_P89kqKjklPhKUx4xI4KxWrFSlKEks4iphcZEVEFesqOMkKURBIalBVAXIlAoAVqdlIeOMTxAd5pbWOGehznc2HGsPOSV5r1g-KJYHxfJesVwGRvxjSu1___NW6eYkyQbShS3dBmy-NXvbhQdPQjcDtHXe2ON9sRSMJzzjP_n7jLQ |
| CitedBy_id | crossref_primary_10_1007_s13171_019_00168_1 crossref_primary_10_1007_s13171_020_00215_2 |
| Cites_doi | 10.1002/cjs.10014 10.1080/01621459.1995.10476649 10.1093/biomet/78.1.153 10.1198/jasa.2010.tm08551 10.1111/j.1751-5823.2001.tb00463.x 10.1002/sim.4780131106 10.1214/aos/1032894462 10.1007/978-1-4939-2137-9 10.1111/j.1467-9892.2012.00781.x 10.1214/aos/1176350254 10.1198/016214502388618889 10.1289/ehp.8563241 |
| ContentType | Journal Article |
| Copyright | 2017, Indian Statistical Institute Indian Statistical Institute 2017 |
| Copyright_xml | – notice: 2017, Indian Statistical Institute – notice: Indian Statistical Institute 2017 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13171-017-0120-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 0976-8378 |
| EndPage | 329 |
| ExternalDocumentID | 10_1007_s13171_017_0120_8 48723539 |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada funderid: https://doi.org/10.13039/501100000038 |
| GroupedDBID | 06D 0R~ 0VY 2JN 2KG 30V 4.4 406 AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWIL AAYIU AAYQN AAYZH AAZMS ABAKF ABAWQ ABBHK ABBRH ABDBE ABDZT ABECU ABFAN ABHLI ABJNI ABJOX ABMQK ABQBU ABQDR ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ABYWD ACAOD ACDIW ACGFS ACHJO ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACMTB ACOKC ACPIV ACTMH ACYDH ACZOJ ADHIR ADKPE ADODI ADTPH ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEKMD AELLO AEMSY AEOHA AEPYU AESKC AETCA AEUPB AEVLU AFDZB AFQWF AFVYC AFWTZ AFZKB AGAYW AGJBK AGLNM AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHFUP AHYZX AIAKS AIGIU AIHAF AIIXL AILAN AITGF AJRNO AJZVZ AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AMKLP AMXSW ANMIH AOCGG AOOXX ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN CSCUP DDRTE DNIVK DPUIP DQDLB DSRWC EBLON EBS ECEWR EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD GNWQR GQ7 HMJXF HQ6 HRMNR HZ~ I0C IKXTQ IPSME ITM IWAJR J-C J0Z JAA JBSCW JENOY JMS JPL JST JZLTJ KOV LLZTM NPVJJ NQJWS O93 O9J P9R PQQKQ PT4 RIG RLLFE ROL RSV S27 S3B SA0 SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 ZMTXR -EM 199 AAAVM AAKYL AARHV AAYJJ AAYTO ACBXY ADINQ ADQRH ADRFC ADULT AELPN AFLOW AHSBF AJBLW BAPOH BHOJU CAG COF FEDTE GGRSB GIFXF H13 HVGLF JAAYA JBMMH JBZCM JHFFW JKQEH JLEZI JLXEF JSODD O9- OK1 RNS SMT AAYXX ABRTQ CITATION |
| ID | FETCH-LOGICAL-c310t-7134208e32fa2cac7c0474d524b9be4d2bf455b7b1e5fe7dbe8617ee2f6cb8493 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456717600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0976-836X |
| IngestDate | Sat Nov 29 05:01:46 EST 2025 Tue Nov 18 22:41:11 EST 2025 Fri Feb 21 02:33:14 EST 2025 Thu Jul 03 22:02:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Primary 62H12, 62F12 Partially estimated likelihood function Asymptotic properties Dynamic dependence parameters Time-dependent covariates Secondary 60650, 62F10 Lag 1 transitional multinomial probabilities Regression parameters Product multinomial for independent groups |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-7134208e32fa2cac7c0474d524b9be4d2bf455b7b1e5fe7dbe8617ee2f6cb8493 |
| PageCount | 29 |
| ParticipantIDs | crossref_primary_10_1007_s13171_017_0120_8 crossref_citationtrail_10_1007_s13171_017_0120_8 springer_journals_10_1007_s13171_017_0120_8 jstor_primary_48723539 |
| PublicationCentury | 2000 |
| PublicationDate | 20180801 20180800 2018-8-00 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 8 year: 2018 text: 20180801 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi |
| PublicationSubtitle | The Indian Journal of Statistics |
| PublicationTitle | Sankhya. Series. A |
| PublicationTitleAbbrev | Sankhya A |
| PublicationYear | 2018 |
| Publisher | Springer Science + Business Media Springer India |
| Publisher_xml | – name: Springer Science + Business Media – name: Springer India |
| References | Lipsitz, Kim, Zhao (CR9) 1994; 13 Lipsitz, Laird, Harrington (CR8) 1991; 78 Agresti, Natarajan (CR1) 2001; 69 Loredo-Osti, Sutradhar (CR10) 2012; 33 Sutradhar (CR12) 2014 Chen, Yi, Cook (CR3) 2009; 37 Lang (CR7) 1996; 24 Yi, Cook (CR14) 2002; 97 Williamson, Kim, Lipsitz (CR13) 1995; 90 Chen, Yi, Cook (CR4) 2010; 105 Fienberg, Bromet, Follmann, Lambert, May (CR5) 1985; 63 McDonald (CR11) 2005; 4 Amemiya (CR2) 1985 Kaufmann (CR6) 1987; 15 B Chen (120_CR4) 2010; 105 JC Loredo-Osti (120_CR10) 2012; 33 JB Lang (120_CR7) 1996; 24 B Chen (120_CR3) 2009; 37 SR Lipsitz (120_CR9) 1994; 13 JM Williamson (120_CR13) 1995; 90 H Kaufmann (120_CR6) 1987; 15 BC Sutradhar (120_CR12) 2014 GY Yi (120_CR14) 2002; 97 T Amemiya (120_CR2) 1985 SR Lipsitz (120_CR8) 1991; 78 SF Fienberg (120_CR5) 1985; 63 DR McDonald (120_CR11) 2005; 4 A Agresti (120_CR1) 2001; 69 |
| References_xml | – volume: 37 start-page: 182 year: 2009 end-page: 205 ident: CR3 article-title: Likelihood analysis of joint marginal and conditional models for longitudinal categorical data publication-title: Canad. J. Statist. doi: 10.1002/cjs.10014 – volume: 90 start-page: 1432 year: 1995 end-page: 1437 ident: CR13 article-title: Analyzing bivariate ordinal data using a global odds ratio publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1995.10476649 – volume: 78 start-page: 53 year: 1991 end-page: 160 ident: CR8 article-title: Generalized estimating equations for correlated binary data: using the odds ratio as a measure of association publication-title: Biometrika doi: 10.1093/biomet/78.1.153 – volume: 105 start-page: 336 year: 2010 end-page: 353 ident: CR4 article-title: Weighted generalized estimating functions for longitudinal response and covariate data that are missing at random publication-title: J. Amer. Statist. Assoc. doi: 10.1198/jasa.2010.tm08551 – volume: 69 start-page: 345 year: 2001 end-page: 371 ident: CR1 article-title: Modeling clustered ordered categorical data: a survey publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2001.tb00463.x – volume: 13 start-page: 1149 year: 1994 end-page: 1163 ident: CR9 article-title: Analysis of repeated categorical data using generalized estimating equations publication-title: Stat. Med. doi: 10.1002/sim.4780131106 – volume: 24 start-page: 726 year: 1996 end-page: 752 ident: CR7 article-title: Maximum likelihood methods for a generalized class of log-linear models publication-title: Ann. Statist. doi: 10.1214/aos/1032894462 – volume: 4 start-page: 73 year: 2005 end-page: 86 ident: CR11 article-title: The local limit theorem: a historical perspective publication-title: J. Iran. Stat. Soc. – year: 2014 ident: CR12 publication-title: Longitudinal categorical data analysis doi: 10.1007/978-1-4939-2137-9 – volume: 33 start-page: 458 year: 2012 end-page: 467 ident: CR10 article-title: Estimation of regression and dynamic dependence parameters for non-stationary multinomial time series publication-title: J. Time Series Anal. doi: 10.1111/j.1467-9892.2012.00781.x – year: 1985 ident: CR2 publication-title: Advanced econometrics – volume: 15 start-page: 79 year: 1987 end-page: 98 ident: CR6 article-title: Regression models for nonstationary categorical time series: asymptotic estimation theory publication-title: Ann. Statist. doi: 10.1214/aos/1176350254 – volume: 97 start-page: 1071 year: 2002 end-page: 1080 ident: CR14 article-title: Marginal methods for incomplete longitudinal data arising in clusters publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214502388618889 – volume: 63 start-page: 241 year: 1985 end-page: 248 ident: CR5 article-title: Longitudinal analysis of categorical epidemiological data: a study of three mile island publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8563241 – volume: 78 start-page: 53 year: 1991 ident: 120_CR8 publication-title: Biometrika doi: 10.1093/biomet/78.1.153 – volume: 63 start-page: 241 year: 1985 ident: 120_CR5 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8563241 – volume: 90 start-page: 1432 year: 1995 ident: 120_CR13 publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1995.10476649 – volume: 105 start-page: 336 year: 2010 ident: 120_CR4 publication-title: J. Amer. Statist. Assoc. doi: 10.1198/jasa.2010.tm08551 – volume: 37 start-page: 182 year: 2009 ident: 120_CR3 publication-title: Canad. J. Statist. doi: 10.1002/cjs.10014 – volume: 69 start-page: 345 year: 2001 ident: 120_CR1 publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2001.tb00463.x – volume: 24 start-page: 726 year: 1996 ident: 120_CR7 publication-title: Ann. Statist. doi: 10.1214/aos/1032894462 – volume: 15 start-page: 79 year: 1987 ident: 120_CR6 publication-title: Ann. Statist. doi: 10.1214/aos/1176350254 – volume-title: Longitudinal categorical data analysis year: 2014 ident: 120_CR12 doi: 10.1007/978-1-4939-2137-9 – volume-title: Advanced econometrics year: 1985 ident: 120_CR2 – volume: 13 start-page: 1149 year: 1994 ident: 120_CR9 publication-title: Stat. Med. doi: 10.1002/sim.4780131106 – volume: 97 start-page: 1071 year: 2002 ident: 120_CR14 publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214502388618889 – volume: 33 start-page: 458 year: 2012 ident: 120_CR10 publication-title: J. Time Series Anal. doi: 10.1111/j.1467-9892.2012.00781.x – volume: 4 start-page: 73 year: 2005 ident: 120_CR11 publication-title: J. Iran. Stat. Soc. |
| SSID | ssj0000392732 |
| Score | 2.0505342 |
| Snippet | In this paper we revisit the so-called non-stationary regression models for repeated categorical/multinomial data collected from a large number of independent... |
| SourceID | crossref springer jstor |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 301 |
| SubjectTerms | Mathematics and Statistics Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
| Title | A Parameter Dimension-Split Based Asymptotic Regression Estimation Theory for a Multinomial Panel Data Model |
| URI | https://www.jstor.org/stable/48723539 https://link.springer.com/article/10.1007/s13171-017-0120-8 |
| Volume | 80 |
| WOSCitedRecordID | wos000456717600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0976-8378 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392732 issn: 0976-836X databaseCode: RSV dateStart: 20100201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAY4AYL-XACRSpa9MkPQ62iQtoYoB2q5I05TIKYgWJf4_TtJsQDwmurRtFdlp_ru3PACeWa6lyYWicBYwypSxVOdc0Ux3OZZZow_ywCXF9LcfjZFj3cU-bavcmJVl9qefNbujqXOjrSiUx5pGLsBw7shkXoo_uZz9WAvT4ohpMhjc5lREfN9nM71b55I98SeKXpGjlawYb_9rlJqzX0JJ0_VnYggVbtGDtasbLOm3BqsOWnpp5GyZdMlSuNgtVS3qO5d_9OaMjhKUlOUfvlpHu9P3xuXxCeXJjH3zJbEH6uIDveCS-tZ8g8iWKVM28rs0ZdzFUhZ2Qnirxshu2swN3g_7txSWthy9Qg4ivpK7HNAykjcJchUYZYQImWBaHTCfasizUOYtjLXTHxrkVmbYSwZC1Yc6NliyJdmGpeCrsHhDNeWI7HaGjxLA85wpRiRFWx4j9XGKvDUFjgtTUzORuQMYknXMqO62mqNXUaTWVbTidPfLsaTl-E96t7DqTxCAtjOIoacNZY8S0fnWnPy-z_yfpA1hFbCV9reAhLJUvr_YIVswbWvnluDqyH5Vm5R8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PHDwpgW6bJulxfaGoy-KLvZUkTb2sVdwq-O-dNO2K-AC9lmkIM2nnm8x8MwC7lmupcmFonAWMMqUsVTnXNFNtzmWWaMP8sAnR7cp-P-nVPO5hU-3epCSrP_UH2Q1dnQt9XakkxjxyHCaZm7LjQvTru9HFSoAeX1SDyQJ0tVRGvN9kM79b5ZM_8iWJX5Kila85mf_XLhdgroaWpOPPwiKM2WIJZi9HfVmHSzDjsKVvzbwMgw7pKVebhaolR67Lv7s5o9cIS0tygN4tI53h28NT-Yjy5Mre-5LZghzjAp7xSDy1nyDyJYpUZF5Hc8Zd9FRhB-RIlfjYDdtZgduT45vDU1oPX6AGEV9JHcc0DKSNwlyFRhlhAiZYFodMJ9qyLNQ5i2MtdNvGuRWZthLBkLVhzo2WLIlWYaJ4LOwaEM15YtttoaPEsDznClGJEVbHiP1cYq8FQWOC1NSdyd2AjEH60VPZaTVFraZOq6lswd7olSffluM34dXKriNJDNLCKI6SFuw3RkzrT3f48zLrf5LegenTm8uL9OKse74BM4izpK8b3ISJ8vnFbsGUeUWLP29Xx_cdWtLoAw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4NNiF4YOOXKLDNDzwNWaSJYzuPhVJt2qgqGKhvke3YvJRQ0YDEf885TorQAAntNbpY1p2t-8733R3AvuVaKicMTYuIUaaUpcpxTQvV5VwWmTYsDJsQw6Ecj7NRM-d01rLd25RkqGnwXZrK6nBauMOnwjd0ez4M9rRJjH_kAnxkGMh4TtfZ-eX8kSVC7y_qIWURul0qEz5uM5svrfLMNwV64j8J0trvDD7_946_wGoDOUkvnJE1-GDLdVg5nfdrna3DssecoWXzBkx6ZKQ8ZwtVTvq--79_UaPnCFcrcoReryC92cP1tLpBeXJmrwKVtiQnuECohCSh5J8gIiaK1EW-vvwZdzFSpZ2Qvqrwsx_CswkXg5O_xz9pM5SBGkSCFfW1p3EkbRI7FRtlhImYYEUaM51py4pYO5amWuiuTZ0VhbYSQZK1seNGS5YlW7BY3pR2G4jmPLPdrtBJZphzXCFaMcLqFDGhT_h1IGrNkZumY7kfnDHJn3ote63mqNXcazWXHfgx_2Ua2nW8JbxV23guicFbnKRJ1oGD1qB5c6Vnry-z8y7p77A06g_yP7-Gv3dhGeGXDHTCPVisbu_sV_hk7tHgt9_qk_wIpQ3w5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parameter+Dimension-Split+Based+Asymptotic+Regression+Estimation+Theory+for+a+Multinomial+Panel+Data+Model&rft.jtitle=Sankhya.+Series.+A&rft.au=Sutradhar%2C+Brajendra+C&rft.date=2018-08-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=0976-836X&rft.eissn=0976-8378&rft.volume=80&rft.issue=2&rft.spage=301&rft.epage=329&rft_id=info:doi/10.1007%2Fs13171-017-0120-8&rft.externalDocID=48723539 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0976-836X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0976-836X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0976-836X&client=summon |