A Parameter Dimension-Split Based Asymptotic Regression Estimation Theory for a Multinomial Panel Data Model

In this paper we revisit the so-called non-stationary regression models for repeated categorical/multinomial data collected from a large number of independent individuals. The main objective of the study is to obtain consistent and efficient regression estimates after taking the correlations of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sankhya. Series. A Ročník 80; číslo 2; s. 301 - 329
Hlavný autor: Sutradhar, Brajendra C
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New Delhi Springer Science + Business Media 01.08.2018
Springer India
Predmet:
ISSN:0976-836X, 0976-8378
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper we revisit the so-called non-stationary regression models for repeated categorical/multinomial data collected from a large number of independent individuals. The main objective of the study is to obtain consistent and efficient regression estimates after taking the correlations of the repeated multinomial data into account. The existing (1) ‘working’ odds ratios based GEE (generalized estimating equations) approach has both consistency and efficiency drawbacks. Specifically, the GEE-based regression estimates can be inconsistent which is a serious limitation. Some other existing studies use a MDL (multinomial dynamic logits) model among the repeated responses. As far as the estimation of the regression effects and dynamic dependence (i.e., correlation) parameters is concerned, they use either (2) a marginal or (3) a joint likelihood approach. In the marginal approach, the regression parameters are estimated for known correlation parameters by solving their respective marginal likelihood estimating equations, and similarly the correlation parameters are estimated by solving their likelihood equations for known regression estimates. Thus, this marginal approach is an iterative approach which may not provide quick convergence. In the joint likelihood approach, the regression and correlation parameters are estimated simultaneously by searching the maximum value of the likelihood function with regard to these parameters together. This approach may encounter computational drawback, specially when the number of correlation parameters gets large. In this paper, we propose a new estimation approach where the likelihood function for the regression parameters is developed from the joint likelihood function by replacing the correlation parameter with a consistent estimator involving unknown regression parameters. Thus the new approach relaxes the dimension issue, that is, the dimension of the correlation parameters does not affect the estimation of the main regression parameters. The asymptotic properties of the estimates of the main regression parameters (obtained based on consistent estimating functions for correlation parameters) are studied in detail.
AbstractList In this paper we revisit the so-called non-stationary regression models for repeated categorical/multinomial data collected from a large number of independent individuals. The main objective of the study is to obtain consistent and efficient regression estimates after taking the correlations of the repeated multinomial data into account. The existing (1) ‘working’ odds ratios based GEE (generalized estimating equations) approach has both consistency and efficiency drawbacks. Specifically, the GEE-based regression estimates can be inconsistent which is a serious limitation. Some other existing studies use a MDL (multinomial dynamic logits) model among the repeated responses. As far as the estimation of the regression effects and dynamic dependence (i.e., correlation) parameters is concerned, they use either (2) a marginal or (3) a joint likelihood approach. In the marginal approach, the regression parameters are estimated for known correlation parameters by solving their respective marginal likelihood estimating equations, and similarly the correlation parameters are estimated by solving their likelihood equations for known regression estimates. Thus, this marginal approach is an iterative approach which may not provide quick convergence. In the joint likelihood approach, the regression and correlation parameters are estimated simultaneously by searching the maximum value of the likelihood function with regard to these parameters together. This approach may encounter computational drawback, specially when the number of correlation parameters gets large. In this paper, we propose a new estimation approach where the likelihood function for the regression parameters is developed from the joint likelihood function by replacing the correlation parameter with a consistent estimator involving unknown regression parameters. Thus the new approach relaxes the dimension issue, that is, the dimension of the correlation parameters does not affect the estimation of the main regression parameters. The asymptotic properties of the estimates of the main regression parameters (obtained based on consistent estimating functions for correlation parameters) are studied in detail.
Author Sutradhar, Brajendra C
Author_xml – sequence: 1
  givenname: Brajendra C
  surname: Sutradhar
  fullname: Sutradhar, Brajendra C
BookMark eNp9kEtLw0AQxxepYK39AB6E_QLRfSTZzbG29QEVRSt4C5tkUrck2bK7PfTbuzHSg4cODDMM85vH_xKNOtMBQteU3FJCxJ2jnAoaESqCMxLJMzQmmUgjyYUcHfP06wJNnduSYDxjgrMxamb4TVnVggeLF7qFzmnTRR-7Rnt8rxxUeOYO7c4br0v8DhsLru_AS-d1q3yfrr_B2AOujcUKv-wbrzvTatWEyR00eKF8KJsKmit0XqvGwfQvTtDnw3I9f4pWr4_P89kqKjklPhKUx4xI4KxWrFSlKEks4iphcZEVEFesqOMkKURBIalBVAXIlAoAVqdlIeOMTxAd5pbWOGehznc2HGsPOSV5r1g-KJYHxfJesVwGRvxjSu1___NW6eYkyQbShS3dBmy-NXvbhQdPQjcDtHXe2ON9sRSMJzzjP_n7jLQ
CitedBy_id crossref_primary_10_1007_s13171_019_00168_1
crossref_primary_10_1007_s13171_020_00215_2
Cites_doi 10.1002/cjs.10014
10.1080/01621459.1995.10476649
10.1093/biomet/78.1.153
10.1198/jasa.2010.tm08551
10.1111/j.1751-5823.2001.tb00463.x
10.1002/sim.4780131106
10.1214/aos/1032894462
10.1007/978-1-4939-2137-9
10.1111/j.1467-9892.2012.00781.x
10.1214/aos/1176350254
10.1198/016214502388618889
10.1289/ehp.8563241
ContentType Journal Article
Copyright 2017, Indian Statistical Institute
Indian Statistical Institute 2017
Copyright_xml – notice: 2017, Indian Statistical Institute
– notice: Indian Statistical Institute 2017
DBID AAYXX
CITATION
DOI 10.1007/s13171-017-0120-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 0976-8378
EndPage 329
ExternalDocumentID 10_1007_s13171_017_0120_8
48723539
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID 06D
0R~
0VY
2JN
2KG
30V
4.4
406
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWIL
AAYIU
AAYQN
AAYZH
AAZMS
ABAKF
ABAWQ
ABBHK
ABBRH
ABDBE
ABDZT
ABECU
ABFAN
ABHLI
ABJNI
ABJOX
ABMQK
ABQBU
ABQDR
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ABYWD
ACAOD
ACDIW
ACGFS
ACHJO
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACTMH
ACYDH
ACZOJ
ADHIR
ADKPE
ADODI
ADTPH
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AELLO
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AFDZB
AFQWF
AFVYC
AFWTZ
AFZKB
AGAYW
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHFUP
AHYZX
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
ANMIH
AOCGG
AOOXX
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
CSCUP
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
EBLON
EBS
ECEWR
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
GNWQR
GQ7
HMJXF
HQ6
HRMNR
HZ~
I0C
IKXTQ
IPSME
ITM
IWAJR
J-C
J0Z
JAA
JBSCW
JENOY
JMS
JPL
JST
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O93
O9J
P9R
PQQKQ
PT4
RIG
RLLFE
ROL
RSV
S27
S3B
SA0
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Z45
ZMTXR
-EM
199
AAAVM
AAKYL
AARHV
AAYJJ
AAYTO
ACBXY
ADINQ
ADQRH
ADRFC
ADULT
AELPN
AFLOW
AHSBF
AJBLW
BAPOH
BHOJU
CAG
COF
FEDTE
GGRSB
GIFXF
H13
HVGLF
JAAYA
JBMMH
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
JSODD
O9-
OK1
RNS
SMT
AAYXX
ABRTQ
CITATION
ID FETCH-LOGICAL-c310t-7134208e32fa2cac7c0474d524b9be4d2bf455b7b1e5fe7dbe8617ee2f6cb8493
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456717600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0976-836X
IngestDate Sat Nov 29 05:01:46 EST 2025
Tue Nov 18 22:41:11 EST 2025
Fri Feb 21 02:33:14 EST 2025
Thu Jul 03 22:02:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Primary 62H12, 62F12
Partially estimated likelihood function
Asymptotic properties
Dynamic dependence parameters
Time-dependent covariates
Secondary 60650, 62F10
Lag 1 transitional multinomial probabilities
Regression parameters
Product multinomial for independent groups
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-7134208e32fa2cac7c0474d524b9be4d2bf455b7b1e5fe7dbe8617ee2f6cb8493
PageCount 29
ParticipantIDs crossref_primary_10_1007_s13171_017_0120_8
crossref_citationtrail_10_1007_s13171_017_0120_8
springer_journals_10_1007_s13171_017_0120_8
jstor_primary_48723539
PublicationCentury 2000
PublicationDate 20180801
20180800
2018-8-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 8
  year: 2018
  text: 20180801
  day: 1
PublicationDecade 2010
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationSubtitle The Indian Journal of Statistics
PublicationTitle Sankhya. Series. A
PublicationTitleAbbrev Sankhya A
PublicationYear 2018
Publisher Springer Science + Business Media
Springer India
Publisher_xml – name: Springer Science + Business Media
– name: Springer India
References Lipsitz, Kim, Zhao (CR9) 1994; 13
Lipsitz, Laird, Harrington (CR8) 1991; 78
Agresti, Natarajan (CR1) 2001; 69
Loredo-Osti, Sutradhar (CR10) 2012; 33
Sutradhar (CR12) 2014
Chen, Yi, Cook (CR3) 2009; 37
Lang (CR7) 1996; 24
Yi, Cook (CR14) 2002; 97
Williamson, Kim, Lipsitz (CR13) 1995; 90
Chen, Yi, Cook (CR4) 2010; 105
Fienberg, Bromet, Follmann, Lambert, May (CR5) 1985; 63
McDonald (CR11) 2005; 4
Amemiya (CR2) 1985
Kaufmann (CR6) 1987; 15
B Chen (120_CR4) 2010; 105
JC Loredo-Osti (120_CR10) 2012; 33
JB Lang (120_CR7) 1996; 24
B Chen (120_CR3) 2009; 37
SR Lipsitz (120_CR9) 1994; 13
JM Williamson (120_CR13) 1995; 90
H Kaufmann (120_CR6) 1987; 15
BC Sutradhar (120_CR12) 2014
GY Yi (120_CR14) 2002; 97
T Amemiya (120_CR2) 1985
SR Lipsitz (120_CR8) 1991; 78
SF Fienberg (120_CR5) 1985; 63
DR McDonald (120_CR11) 2005; 4
A Agresti (120_CR1) 2001; 69
References_xml – volume: 37
  start-page: 182
  year: 2009
  end-page: 205
  ident: CR3
  article-title: Likelihood analysis of joint marginal and conditional models for longitudinal categorical data
  publication-title: Canad. J. Statist.
  doi: 10.1002/cjs.10014
– volume: 90
  start-page: 1432
  year: 1995
  end-page: 1437
  ident: CR13
  article-title: Analyzing bivariate ordinal data using a global odds ratio
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1995.10476649
– volume: 78
  start-page: 53
  year: 1991
  end-page: 160
  ident: CR8
  article-title: Generalized estimating equations for correlated binary data: using the odds ratio as a measure of association
  publication-title: Biometrika
  doi: 10.1093/biomet/78.1.153
– volume: 105
  start-page: 336
  year: 2010
  end-page: 353
  ident: CR4
  article-title: Weighted generalized estimating functions for longitudinal response and covariate data that are missing at random
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/jasa.2010.tm08551
– volume: 69
  start-page: 345
  year: 2001
  end-page: 371
  ident: CR1
  article-title: Modeling clustered ordered categorical data: a survey
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2001.tb00463.x
– volume: 13
  start-page: 1149
  year: 1994
  end-page: 1163
  ident: CR9
  article-title: Analysis of repeated categorical data using generalized estimating equations
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780131106
– volume: 24
  start-page: 726
  year: 1996
  end-page: 752
  ident: CR7
  article-title: Maximum likelihood methods for a generalized class of log-linear models
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1032894462
– volume: 4
  start-page: 73
  year: 2005
  end-page: 86
  ident: CR11
  article-title: The local limit theorem: a historical perspective
  publication-title: J. Iran. Stat. Soc.
– year: 2014
  ident: CR12
  publication-title: Longitudinal categorical data analysis
  doi: 10.1007/978-1-4939-2137-9
– volume: 33
  start-page: 458
  year: 2012
  end-page: 467
  ident: CR10
  article-title: Estimation of regression and dynamic dependence parameters for non-stationary multinomial time series
  publication-title: J. Time Series Anal.
  doi: 10.1111/j.1467-9892.2012.00781.x
– year: 1985
  ident: CR2
  publication-title: Advanced econometrics
– volume: 15
  start-page: 79
  year: 1987
  end-page: 98
  ident: CR6
  article-title: Regression models for nonstationary categorical time series: asymptotic estimation theory
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176350254
– volume: 97
  start-page: 1071
  year: 2002
  end-page: 1080
  ident: CR14
  article-title: Marginal methods for incomplete longitudinal data arising in clusters
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214502388618889
– volume: 63
  start-page: 241
  year: 1985
  end-page: 248
  ident: CR5
  article-title: Longitudinal analysis of categorical epidemiological data: a study of three mile island
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.8563241
– volume: 78
  start-page: 53
  year: 1991
  ident: 120_CR8
  publication-title: Biometrika
  doi: 10.1093/biomet/78.1.153
– volume: 63
  start-page: 241
  year: 1985
  ident: 120_CR5
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.8563241
– volume: 90
  start-page: 1432
  year: 1995
  ident: 120_CR13
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1995.10476649
– volume: 105
  start-page: 336
  year: 2010
  ident: 120_CR4
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/jasa.2010.tm08551
– volume: 37
  start-page: 182
  year: 2009
  ident: 120_CR3
  publication-title: Canad. J. Statist.
  doi: 10.1002/cjs.10014
– volume: 69
  start-page: 345
  year: 2001
  ident: 120_CR1
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2001.tb00463.x
– volume: 24
  start-page: 726
  year: 1996
  ident: 120_CR7
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1032894462
– volume: 15
  start-page: 79
  year: 1987
  ident: 120_CR6
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176350254
– volume-title: Longitudinal categorical data analysis
  year: 2014
  ident: 120_CR12
  doi: 10.1007/978-1-4939-2137-9
– volume-title: Advanced econometrics
  year: 1985
  ident: 120_CR2
– volume: 13
  start-page: 1149
  year: 1994
  ident: 120_CR9
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780131106
– volume: 97
  start-page: 1071
  year: 2002
  ident: 120_CR14
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214502388618889
– volume: 33
  start-page: 458
  year: 2012
  ident: 120_CR10
  publication-title: J. Time Series Anal.
  doi: 10.1111/j.1467-9892.2012.00781.x
– volume: 4
  start-page: 73
  year: 2005
  ident: 120_CR11
  publication-title: J. Iran. Stat. Soc.
SSID ssj0000392732
Score 2.0505342
Snippet In this paper we revisit the so-called non-stationary regression models for repeated categorical/multinomial data collected from a large number of independent...
SourceID crossref
springer
jstor
SourceType Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms Mathematics and Statistics
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title A Parameter Dimension-Split Based Asymptotic Regression Estimation Theory for a Multinomial Panel Data Model
URI https://www.jstor.org/stable/48723539
https://link.springer.com/article/10.1007/s13171-017-0120-8
Volume 80
WOSCitedRecordID wos000456717600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0976-8378
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392732
  issn: 0976-836X
  databaseCode: RSV
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAY4AYL-XACRSpa9MkPQ62iQtoYoB2q5I05TIKYgWJf4_TtJsQDwmurRtFdlp_ru3PACeWa6lyYWicBYwypSxVOdc0Ux3OZZZow_ywCXF9LcfjZFj3cU-bavcmJVl9qefNbujqXOjrSiUx5pGLsBw7shkXoo_uZz9WAvT4ohpMhjc5lREfN9nM71b55I98SeKXpGjlawYb_9rlJqzX0JJ0_VnYggVbtGDtasbLOm3BqsOWnpp5GyZdMlSuNgtVS3qO5d_9OaMjhKUlOUfvlpHu9P3xuXxCeXJjH3zJbEH6uIDveCS-tZ8g8iWKVM28rs0ZdzFUhZ2Qnirxshu2swN3g_7txSWthy9Qg4ivpK7HNAykjcJchUYZYQImWBaHTCfasizUOYtjLXTHxrkVmbYSwZC1Yc6NliyJdmGpeCrsHhDNeWI7HaGjxLA85wpRiRFWx4j9XGKvDUFjgtTUzORuQMYknXMqO62mqNXUaTWVbTidPfLsaTl-E96t7DqTxCAtjOIoacNZY8S0fnWnPy-z_yfpA1hFbCV9reAhLJUvr_YIVswbWvnluDqyH5Vm5R8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PHDwpgW6bJulxfaGoy-KLvZUkTb2sVdwq-O-dNO2K-AC9lmkIM2nnm8x8MwC7lmupcmFonAWMMqUsVTnXNFNtzmWWaMP8sAnR7cp-P-nVPO5hU-3epCSrP_UH2Q1dnQt9XakkxjxyHCaZm7LjQvTru9HFSoAeX1SDyQJ0tVRGvN9kM79b5ZM_8iWJX5Kila85mf_XLhdgroaWpOPPwiKM2WIJZi9HfVmHSzDjsKVvzbwMgw7pKVebhaolR67Lv7s5o9cIS0tygN4tI53h28NT-Yjy5Mre-5LZghzjAp7xSDy1nyDyJYpUZF5Hc8Zd9FRhB-RIlfjYDdtZgduT45vDU1oPX6AGEV9JHcc0DKSNwlyFRhlhAiZYFodMJ9qyLNQ5i2MtdNvGuRWZthLBkLVhzo2WLIlWYaJ4LOwaEM15YtttoaPEsDznClGJEVbHiP1cYq8FQWOC1NSdyd2AjEH60VPZaTVFraZOq6lswd7olSffluM34dXKriNJDNLCKI6SFuw3RkzrT3f48zLrf5LegenTm8uL9OKse74BM4izpK8b3ISJ8vnFbsGUeUWLP29Xx_cdWtLoAw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4NNiF4YOOXKLDNDzwNWaSJYzuPhVJt2qgqGKhvke3YvJRQ0YDEf885TorQAAntNbpY1p2t-8733R3AvuVaKicMTYuIUaaUpcpxTQvV5VwWmTYsDJsQw6Ecj7NRM-d01rLd25RkqGnwXZrK6nBauMOnwjd0ez4M9rRJjH_kAnxkGMh4TtfZ-eX8kSVC7y_qIWURul0qEz5uM5svrfLMNwV64j8J0trvDD7_946_wGoDOUkvnJE1-GDLdVg5nfdrna3DssecoWXzBkx6ZKQ8ZwtVTvq--79_UaPnCFcrcoReryC92cP1tLpBeXJmrwKVtiQnuECohCSh5J8gIiaK1EW-vvwZdzFSpZ2Qvqrwsx_CswkXg5O_xz9pM5SBGkSCFfW1p3EkbRI7FRtlhImYYEUaM51py4pYO5amWuiuTZ0VhbYSQZK1seNGS5YlW7BY3pR2G4jmPLPdrtBJZphzXCFaMcLqFDGhT_h1IGrNkZumY7kfnDHJn3ote63mqNXcazWXHfgx_2Ua2nW8JbxV23guicFbnKRJ1oGD1qB5c6Vnry-z8y7p77A06g_yP7-Gv3dhGeGXDHTCPVisbu_sV_hk7tHgt9_qk_wIpQ3w5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Parameter+Dimension-Split+Based+Asymptotic+Regression+Estimation+Theory+for+a+Multinomial+Panel+Data+Model&rft.jtitle=Sankhya.+Series.+A&rft.au=Sutradhar%2C+Brajendra+C&rft.date=2018-08-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=0976-836X&rft.eissn=0976-8378&rft.volume=80&rft.issue=2&rft.spage=301&rft.epage=329&rft_id=info:doi/10.1007%2Fs13171-017-0120-8&rft.externalDocID=48723539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0976-836X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0976-836X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0976-836X&client=summon