Learning Dynamic Bayesian Networks structure based on a new hybrid K2-Bat learning algorithm
The temporal dimension makes it difficult and complex to learn the Dynamic Bayesian Networks structure for huge search space. We propose a new hybrid K2-Bat algorithm to learn the structure of Dynamic Bayesian Networks. This work contains two optimal strategies: an ordering-based algorithm INOK2 to...
Saved in:
| Published in: | Journal of the Chinese Institute of Engineers Vol. 44; no. 1; pp. 41 - 52 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
02.01.2021
|
| Subjects: | |
| ISSN: | 0253-3839, 2158-7299 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The temporal dimension makes it difficult and complex to learn the Dynamic Bayesian Networks structure for huge search space. We propose a new hybrid K2-Bat algorithm to learn the structure of Dynamic Bayesian Networks. This work contains two optimal strategies: an ordering-based algorithm INOK2 to learn initial network structure and an adaptive binary bat algorithm to learn transition network structure. Based on the requirement of K2 algorithm for prior knowledge, a fitness function is built to quantitatively score node order in INOK2. The initial population is generated by the node block sequence constructed by directional support tree. A dynamic learning factor, inverted mutation s`node sequence to improve the global searching ability and the convergence speed. Then, the optimal initial network structure can be obtained. In addition, an improved binary bat algorithm is proposed to improve the development behavior of bat algorithm by using dynamic selection strategy in transitional network learning. Finally, experiments on four well-known benchmark problems are performed. The results show that the proposed algorithm can successfully learn the structure of Dynamic Bayesian Networks without prior knowledge, and balance solutions quality and computational effort. |
|---|---|
| AbstractList | The temporal dimension makes it difficult and complex to learn the Dynamic Bayesian Networks structure for huge search space. We propose a new hybrid K2-Bat algorithm to learn the structure of Dynamic Bayesian Networks. This work contains two optimal strategies: an ordering-based algorithm INOK2 to learn initial network structure and an adaptive binary bat algorithm to learn transition network structure. Based on the requirement of K2 algorithm for prior knowledge, a fitness function is built to quantitatively score node order in INOK2. The initial population is generated by the node block sequence constructed by directional support tree. A dynamic learning factor, inverted mutation s`node sequence to improve the global searching ability and the convergence speed. Then, the optimal initial network structure can be obtained. In addition, an improved binary bat algorithm is proposed to improve the development behavior of bat algorithm by using dynamic selection strategy in transitional network learning. Finally, experiments on four well-known benchmark problems are performed. The results show that the proposed algorithm can successfully learn the structure of Dynamic Bayesian Networks without prior knowledge, and balance solutions quality and computational effort. |
| Author | Liu, Hao-Ran Liu, Bin Wang, Hai-Yu Deng, Yu-Jing |
| Author_xml | – sequence: 1 givenname: Yu-Jing surname: Deng fullname: Deng, Yu-Jing organization: Yanshan University – sequence: 2 givenname: Hao-Ran surname: Liu fullname: Liu, Hao-Ran email: dydyii@126.com organization: Yanshan University – sequence: 3 givenname: Hai-Yu surname: Wang fullname: Wang, Hai-Yu organization: Yanshan University – sequence: 4 givenname: Bin surname: Liu fullname: Liu, Bin organization: Yanshan University |
| BookMark | eNqFkMtKAzEUhoNUsFYfQcgLTM1lMhfcaOsVi250J4STTKaNTjOSpJR5e2dou3GhqwOH__sW3ykaudYZhC4omVJSkEvCBOcFL6eMsP5V8KJMyyM0ZlQUSc7KcoTGwyYZRifoNIRPQlgmGB2jj4UB76xb4tvOwdpqPIPOBAsOv5i4bf1XwCH6jY4bb7CCYCrcOgzYmS1edcrbCj-zZAYRNwcTNMvW27han6HjGppgzvd3gt7v797mj8ni9eFpfrNINKckJoIylSqigPM650KVPDeMqSLNc85SwTJtVEGzfkFNbYQBWvNcg-Y8qzRVgk_Q1c6rfRuCN7XUNkK0rYsebCMpkUMoeQglh1ByH6qnxS_629s1-O5f7nrHWVe3fg19rKaSEbqm9bUHp22Q_G_FD8vDghk |
| CitedBy_id | crossref_primary_10_1038_s41598_024_58806_0 crossref_primary_10_1109_ACCESS_2024_3384066 crossref_primary_10_1371_journal_pone_0321583 crossref_primary_10_3390_buildings14093022 |
| Cites_doi | 10.1007/BF00994110 10.3321/j.issn.0372-2112.2003.05.015 10.1016/j.patrec.2013.12.021 10.1890/09-0731.1 10.3969/j.issn.1000-1158.2019.04.19 10.1109/TBME.2017.2738035 10.3969/j.0254-3087.2017.01.019 10.1016/j.swevo.2012.09.002 10.1016/j.ress.2016.07.022 10.1016/j.jbi.2008.01.006 10.1007/s00521-012-1028-9 10.1287/opre.21.2.498 10.1093/icesjms/fsw231 10.1016/j.jeconom.2018.11.002 10.1016/j.ijar.2016.07.002 10.1016/j.compstruc.2018.01.006 10.1109/TKDE.2007.190732 10.1007/978-3-642-41398-8_34 10.1016/0169-2070(95)00664-8 10.1016/j.ress.2018.05.016 10.1360/jos182740 10.1007/s10462-018-9615-5 10.1016/j.knosys.2018.03.007 10.1016/j.ijar.2013.02.007 10.1093/bioinformatics/btn505 |
| ContentType | Journal Article |
| Copyright | 2020 The Chinese Institute of Engineers 2020 |
| Copyright_xml | – notice: 2020 The Chinese Institute of Engineers 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/02533839.2020.1838949 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2158-7299 |
| EndPage | 52 |
| ExternalDocumentID | 10_1080_02533839_2020_1838949 1838949 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG DGEBU DKSSO EBS E~A E~B FRP GTTXZ H13 HF~ HZ~ H~P J.P KYCEM LJTGL M4Z NA5 NX~ O9- RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ UT5 UU3 ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c310t-512b4b0ba33f735b937e22b8477324526ceb816b0b1efe5ea1f37cac336dc1b53 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590381500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0253-3839 |
| IngestDate | Sat Nov 29 05:10:26 EST 2025 Tue Nov 18 21:29:25 EST 2025 Mon Oct 20 23:48:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-512b4b0ba33f735b937e22b8477324526ceb816b0b1efe5ea1f37cac336dc1b53 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1080_02533839_2020_1838949 crossref_primary_10_1080_02533839_2020_1838949 informaworld_taylorfrancis_310_1080_02533839_2020_1838949 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-02 |
| PublicationDateYYYYMMDD | 2021-01-02 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of the Chinese Institute of Engineers |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | cit0012 cit0010 cit0030 Friedman N. (cit0006) 1998 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0022 cit0001 cit0023 cit0020 cit0021 Jia H. Y. (cit0011) 2005 cit0008 Heng X. C. (cit0009) 2007 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
| References_xml | – ident: cit0004 doi: 10.1007/BF00994110 – start-page: 85 volume-title: 2007 IEEE Symposium on Artificial Life year: 2007 ident: cit0009 – ident: cit0026 doi: 10.3321/j.issn.0372-2112.2003.05.015 – ident: cit0012 doi: 10.1016/j.patrec.2013.12.021 – ident: cit0017 doi: 10.1890/09-0731.1 – start-page: 2934 volume-title: 2005 International Conference on Machine Learning and Cybernetics year: 2005 ident: cit0011 – ident: cit0015 doi: 10.3969/j.issn.1000-1158.2019.04.19 – ident: cit0005 doi: 10.1109/TBME.2017.2738035 – ident: cit0014 doi: 10.3969/j.0254-3087.2017.01.019 – ident: cit0018 doi: 10.1016/j.swevo.2012.09.002 – ident: cit0021 doi: 10.1016/j.ress.2016.07.022 – ident: cit0025 doi: 10.1016/j.jbi.2008.01.006 – ident: cit0007 doi: 10.1007/s00521-012-1028-9 – ident: cit0013 doi: 10.1287/opre.21.2.498 – ident: cit0024 doi: 10.1093/icesjms/fsw231 – start-page: 139 volume-title: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98) year: 1998 ident: cit0006 – ident: cit0008 doi: 10.1016/j.jeconom.2018.11.002 – ident: cit0020 doi: 10.1016/j.ijar.2016.07.002 – ident: cit0030 doi: 10.1016/j.compstruc.2018.01.006 – ident: cit0002 doi: 10.1109/TKDE.2007.190732 – ident: cit0023 doi: 10.1007/978-3-642-41398-8_34 – ident: cit0001 doi: 10.1016/0169-2070(95)00664-8 – ident: cit0010 doi: 10.1016/j.ress.2018.05.016 – ident: cit0029 doi: 10.1360/jos182740 – ident: cit0003 doi: 10.1007/s10462-018-9615-5 – ident: cit0022 – ident: cit0027 doi: 10.1016/j.knosys.2018.03.007 – ident: cit0016 doi: 10.1016/j.ijar.2013.02.007 – ident: cit0019 – ident: cit0028 doi: 10.1093/bioinformatics/btn505 |
| SSID | ssj0026521 ssj0001654702 |
| Score | 2.2196302 |
| Snippet | The temporal dimension makes it difficult and complex to learn the Dynamic Bayesian Networks structure for huge search space. We propose a new hybrid K2-Bat... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 41 |
| SubjectTerms | adaptive binary bat algorithm Dynamic Bayesian Networks improved K2 algorithm structure learning |
| Title | Learning Dynamic Bayesian Networks structure based on a new hybrid K2-Bat learning algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02533839.2020.1838949 |
| Volume | 44 |
| WOSCitedRecordID | wos000590381500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 2158-7299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026521 issn: 0253-3839 databaseCode: TFW dateStart: 19780101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5yQOrIbHz6kiBCglUMRTogBTZrt1WKi1qAlL_PXeJU9oBGGCLotwpOj--O_vuO0LOhARQDnnEosBTLFDGY1Jrn5mCraoReLZoBvN0H7fbSbfbeHDZhJlLq8QY2pZEEcVejYtbqqzKiLsAmMbACstMOLxKAHMDLOED6Mel2Wk9f52yYG9db04oxaOwqMRCDQxVVDU932ldQqslLtMFFGpt_sP_b5EN54LSy3LObJMVM94h6wvEhLvkxdGu9ul12bGeNuXMYL0lbZd54xktmWffp4YiEvboZEwlBSedDmZYBUbvOGvKnI4qTXLUn0yH-eB1jzy2bjpXt8z1YWAanL-cgU-gAuUpKYSNRajAozGcK8C1WODFbaSNSvwIvvCNNaGRvhWxllqIqKd9FYp9UhtPxuaA0B6GgxacPIFPkYW9OE58YY1MlAca6iSo7J1qR1KOvTJGqV9xmTrjpWi81BmvTs7nYm8lS8dvAo3FwUzz4njElr1MUvGj7OEfZI_IGsekGDzD4cekBiNlTsiq_siH2fS0mLufTnDl_A |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojxzIFroE36PDJgGtroacAOSFWSJduk0aGtIO3fE_cxtgNwgFtV1ZbqpPls1_6M0AXjBpRd6hHPsQRxhLIIl9ImKmOrCh1LZ8Ngnlp-FAWdTjjfCwNllRBD65woIjur4eOGZHRZEndlcBoiK-gzoeZWYEDXCZfRimuwFvjz2_XnrzwLTNe1ZpRS1HOzXixQQUBH2dXzndoFvFpgM53DofrWf7zBNtosvFB8nW-bHbSkkl20McdNuIdeCubVHr7Nh9bjGp8qaLnEUV46PsE5-ez7WGEAwy4eJZhj46fj_hQawXCTkhpP8bDUxIe90XiQ9l_30WP9rn3TIMUoBiKN_5cS4xYIR1iCM6Z95gpjaEWpMNDmM_h360klAtszT9hKK1dxWzNfcsmY15W2cNkBqiSjRB0i3IWIUBs_j8GVp81x7Ac204oHwjIaqsgpDR7LgqccxmUMY7ukMy2MF4Px4sJ4VXQ5E3vLiTp-EwjnVzNOswyJzseZxOxH2aM_yJ6jtUb7oRW37qPmMVqnUCMDKR16gipm1dQpWpUf6WAyPss28if6Duom |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0R5emA1JHGeI6VEoFZRhwIdkCLbtdtKJa3agNR_jy-P0g7AAFsU5U7K2fH32bn7DqEryjQoO5ZLXNvgxObSIEwIk8hMrSqwDZU1g3luelHkdzpBq8gmnBZplbCHVrlQRLZWw8c97qoyI-5GwzRsrKDMxNK3fI25drCK1jR1dmGSt8OXr2MWaK5rzBWlLNfJSrHABQEfZVHPd26X4GpJzHQBhsKdf3iBXbRdcFB8m0-aPbQik320taBMeIBeC93VHq7nLetxjc0kFFziKE8cn-JcevZ9IjFAYRePEsywZum4P4MyMNywSI2leFh6YsPeaDJI-2-H6Cm8b989kKIRAxGa_aVEkwJuc4MzSpVHHa4pjbQsroHNo_Dn1hWS-6arnzClko5kpqKeYIJStytM7tAjVElGiTxGuAv7QaVZHoUrV-nF2PNNqiTzuaE9VJFdxjsWhUo5NMsYxmYpZloEL4bgxUXwquh6bjbOZTp-MwgWBzNOs_MRlTcziemPtid_sL1EG616GDcfo8Yp2rQgQQbOc6wzVNGDJs_RuvhIB9PJRTaNPwE7RujY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Dynamic+Bayesian+Networks+structure+based+on+a+new+hybrid+K2-Bat+learning+algorithm&rft.jtitle=Journal+of+the+Chinese+Institute+of+Engineers&rft.au=Deng%2C+Yu-Jing&rft.au=Liu%2C+Hao-Ran&rft.au=Wang%2C+Hai-Yu&rft.au=Liu%2C+Bin&rft.date=2021-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0253-3839&rft.eissn=2158-7299&rft.volume=44&rft.issue=1&rft.spage=41&rft.epage=52&rft_id=info:doi/10.1080%2F02533839.2020.1838949&rft.externalDocID=1838949 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-3839&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-3839&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-3839&client=summon |