Learning Dynamic Bayesian Networks structure based on a new hybrid K2-Bat learning algorithm

The temporal dimension makes it difficult and complex to learn the Dynamic Bayesian Networks structure for huge search space. We propose a new hybrid K2-Bat algorithm to learn the structure of Dynamic Bayesian Networks. This work contains two optimal strategies: an ordering-based algorithm INOK2 to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Chinese Institute of Engineers Vol. 44; no. 1; pp. 41 - 52
Main Authors: Deng, Yu-Jing, Liu, Hao-Ran, Wang, Hai-Yu, Liu, Bin
Format: Journal Article
Language:English
Published: Taylor & Francis 02.01.2021
Subjects:
ISSN:0253-3839, 2158-7299
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The temporal dimension makes it difficult and complex to learn the Dynamic Bayesian Networks structure for huge search space. We propose a new hybrid K2-Bat algorithm to learn the structure of Dynamic Bayesian Networks. This work contains two optimal strategies: an ordering-based algorithm INOK2 to learn initial network structure and an adaptive binary bat algorithm to learn transition network structure. Based on the requirement of K2 algorithm for prior knowledge, a fitness function is built to quantitatively score node order in INOK2. The initial population is generated by the node block sequence constructed by directional support tree. A dynamic learning factor, inverted mutation s`node sequence to improve the global searching ability and the convergence speed. Then, the optimal initial network structure can be obtained. In addition, an improved binary bat algorithm is proposed to improve the development behavior of bat algorithm by using dynamic selection strategy in transitional network learning. Finally, experiments on four well-known benchmark problems are performed. The results show that the proposed algorithm can successfully learn the structure of Dynamic Bayesian Networks without prior knowledge, and balance solutions quality and computational effort.
AbstractList The temporal dimension makes it difficult and complex to learn the Dynamic Bayesian Networks structure for huge search space. We propose a new hybrid K2-Bat algorithm to learn the structure of Dynamic Bayesian Networks. This work contains two optimal strategies: an ordering-based algorithm INOK2 to learn initial network structure and an adaptive binary bat algorithm to learn transition network structure. Based on the requirement of K2 algorithm for prior knowledge, a fitness function is built to quantitatively score node order in INOK2. The initial population is generated by the node block sequence constructed by directional support tree. A dynamic learning factor, inverted mutation s`node sequence to improve the global searching ability and the convergence speed. Then, the optimal initial network structure can be obtained. In addition, an improved binary bat algorithm is proposed to improve the development behavior of bat algorithm by using dynamic selection strategy in transitional network learning. Finally, experiments on four well-known benchmark problems are performed. The results show that the proposed algorithm can successfully learn the structure of Dynamic Bayesian Networks without prior knowledge, and balance solutions quality and computational effort.
Author Liu, Hao-Ran
Liu, Bin
Wang, Hai-Yu
Deng, Yu-Jing
Author_xml – sequence: 1
  givenname: Yu-Jing
  surname: Deng
  fullname: Deng, Yu-Jing
  organization: Yanshan University
– sequence: 2
  givenname: Hao-Ran
  surname: Liu
  fullname: Liu, Hao-Ran
  email: dydyii@126.com
  organization: Yanshan University
– sequence: 3
  givenname: Hai-Yu
  surname: Wang
  fullname: Wang, Hai-Yu
  organization: Yanshan University
– sequence: 4
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: Yanshan University
BookMark eNqFkMtKAzEUhoNUsFYfQcgLTM1lMhfcaOsVi250J4STTKaNTjOSpJR5e2dou3GhqwOH__sW3ykaudYZhC4omVJSkEvCBOcFL6eMsP5V8KJMyyM0ZlQUSc7KcoTGwyYZRifoNIRPQlgmGB2jj4UB76xb4tvOwdpqPIPOBAsOv5i4bf1XwCH6jY4bb7CCYCrcOgzYmS1edcrbCj-zZAYRNwcTNMvW27han6HjGppgzvd3gt7v797mj8ni9eFpfrNINKckJoIylSqigPM650KVPDeMqSLNc85SwTJtVEGzfkFNbYQBWvNcg-Y8qzRVgk_Q1c6rfRuCN7XUNkK0rYsebCMpkUMoeQglh1ByH6qnxS_629s1-O5f7nrHWVe3fg19rKaSEbqm9bUHp22Q_G_FD8vDghk
CitedBy_id crossref_primary_10_1038_s41598_024_58806_0
crossref_primary_10_1109_ACCESS_2024_3384066
crossref_primary_10_1371_journal_pone_0321583
crossref_primary_10_3390_buildings14093022
Cites_doi 10.1007/BF00994110
10.3321/j.issn.0372-2112.2003.05.015
10.1016/j.patrec.2013.12.021
10.1890/09-0731.1
10.3969/j.issn.1000-1158.2019.04.19
10.1109/TBME.2017.2738035
10.3969/j.0254-3087.2017.01.019
10.1016/j.swevo.2012.09.002
10.1016/j.ress.2016.07.022
10.1016/j.jbi.2008.01.006
10.1007/s00521-012-1028-9
10.1287/opre.21.2.498
10.1093/icesjms/fsw231
10.1016/j.jeconom.2018.11.002
10.1016/j.ijar.2016.07.002
10.1016/j.compstruc.2018.01.006
10.1109/TKDE.2007.190732
10.1007/978-3-642-41398-8_34
10.1016/0169-2070(95)00664-8
10.1016/j.ress.2018.05.016
10.1360/jos182740
10.1007/s10462-018-9615-5
10.1016/j.knosys.2018.03.007
10.1016/j.ijar.2013.02.007
10.1093/bioinformatics/btn505
ContentType Journal Article
Copyright 2020 The Chinese Institute of Engineers 2020
Copyright_xml – notice: 2020 The Chinese Institute of Engineers 2020
DBID AAYXX
CITATION
DOI 10.1080/02533839.2020.1838949
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2158-7299
EndPage 52
ExternalDocumentID 10_1080_02533839_2020_1838949
1838949
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
DGEBU
DKSSO
EBS
E~A
E~B
FRP
GTTXZ
H13
HF~
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-512b4b0ba33f735b937e22b8477324526ceb816b0b1efe5ea1f37cac336dc1b53
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590381500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0253-3839
IngestDate Sat Nov 29 05:10:26 EST 2025
Tue Nov 18 21:29:25 EST 2025
Mon Oct 20 23:48:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-512b4b0ba33f735b937e22b8477324526ceb816b0b1efe5ea1f37cac336dc1b53
PageCount 12
ParticipantIDs crossref_citationtrail_10_1080_02533839_2020_1838949
crossref_primary_10_1080_02533839_2020_1838949
informaworld_taylorfrancis_310_1080_02533839_2020_1838949
PublicationCentury 2000
PublicationDate 2021-01-02
PublicationDateYYYYMMDD 2021-01-02
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-02
  day: 02
PublicationDecade 2020
PublicationTitle Journal of the Chinese Institute of Engineers
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0012
cit0010
cit0030
Friedman N. (cit0006) 1998
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
Jia H. Y. (cit0011) 2005
cit0008
Heng X. C. (cit0009) 2007
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0004
  doi: 10.1007/BF00994110
– start-page: 85
  volume-title: 2007 IEEE Symposium on Artificial Life
  year: 2007
  ident: cit0009
– ident: cit0026
  doi: 10.3321/j.issn.0372-2112.2003.05.015
– ident: cit0012
  doi: 10.1016/j.patrec.2013.12.021
– ident: cit0017
  doi: 10.1890/09-0731.1
– start-page: 2934
  volume-title: 2005 International Conference on Machine Learning and Cybernetics
  year: 2005
  ident: cit0011
– ident: cit0015
  doi: 10.3969/j.issn.1000-1158.2019.04.19
– ident: cit0005
  doi: 10.1109/TBME.2017.2738035
– ident: cit0014
  doi: 10.3969/j.0254-3087.2017.01.019
– ident: cit0018
  doi: 10.1016/j.swevo.2012.09.002
– ident: cit0021
  doi: 10.1016/j.ress.2016.07.022
– ident: cit0025
  doi: 10.1016/j.jbi.2008.01.006
– ident: cit0007
  doi: 10.1007/s00521-012-1028-9
– ident: cit0013
  doi: 10.1287/opre.21.2.498
– ident: cit0024
  doi: 10.1093/icesjms/fsw231
– start-page: 139
  volume-title: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98)
  year: 1998
  ident: cit0006
– ident: cit0008
  doi: 10.1016/j.jeconom.2018.11.002
– ident: cit0020
  doi: 10.1016/j.ijar.2016.07.002
– ident: cit0030
  doi: 10.1016/j.compstruc.2018.01.006
– ident: cit0002
  doi: 10.1109/TKDE.2007.190732
– ident: cit0023
  doi: 10.1007/978-3-642-41398-8_34
– ident: cit0001
  doi: 10.1016/0169-2070(95)00664-8
– ident: cit0010
  doi: 10.1016/j.ress.2018.05.016
– ident: cit0029
  doi: 10.1360/jos182740
– ident: cit0003
  doi: 10.1007/s10462-018-9615-5
– ident: cit0022
– ident: cit0027
  doi: 10.1016/j.knosys.2018.03.007
– ident: cit0016
  doi: 10.1016/j.ijar.2013.02.007
– ident: cit0019
– ident: cit0028
  doi: 10.1093/bioinformatics/btn505
SSID ssj0026521
ssj0001654702
Score 2.2196302
Snippet The temporal dimension makes it difficult and complex to learn the Dynamic Bayesian Networks structure for huge search space. We propose a new hybrid K2-Bat...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms adaptive binary bat algorithm
Dynamic Bayesian Networks
improved K2 algorithm
structure learning
Title Learning Dynamic Bayesian Networks structure based on a new hybrid K2-Bat learning algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/02533839.2020.1838949
Volume 44
WOSCitedRecordID wos000590381500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2158-7299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026521
  issn: 0253-3839
  databaseCode: TFW
  dateStart: 19780101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5yQOrIbHz6kiBCglUMRTogBTZrt1WKi1qAlL_PXeJU9oBGGCLotwpOj--O_vuO0LOhARQDnnEosBTLFDGY1Jrn5mCraoReLZoBvN0H7fbSbfbeHDZhJlLq8QY2pZEEcVejYtbqqzKiLsAmMbACstMOLxKAHMDLOED6Mel2Wk9f52yYG9db04oxaOwqMRCDQxVVDU932ldQqslLtMFFGpt_sP_b5EN54LSy3LObJMVM94h6wvEhLvkxdGu9ul12bGeNuXMYL0lbZd54xktmWffp4YiEvboZEwlBSedDmZYBUbvOGvKnI4qTXLUn0yH-eB1jzy2bjpXt8z1YWAanL-cgU-gAuUpKYSNRajAozGcK8C1WODFbaSNSvwIvvCNNaGRvhWxllqIqKd9FYp9UhtPxuaA0B6GgxacPIFPkYW9OE58YY1MlAca6iSo7J1qR1KOvTJGqV9xmTrjpWi81BmvTs7nYm8lS8dvAo3FwUzz4njElr1MUvGj7OEfZI_IGsekGDzD4cekBiNlTsiq_siH2fS0mLufTnDl_A
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojxzIFroE36PDJgGtroacAOSFWSJduk0aGtIO3fE_cxtgNwgFtV1ZbqpPls1_6M0AXjBpRd6hHPsQRxhLIIl9ImKmOrCh1LZ8Ngnlp-FAWdTjjfCwNllRBD65woIjur4eOGZHRZEndlcBoiK-gzoeZWYEDXCZfRimuwFvjz2_XnrzwLTNe1ZpRS1HOzXixQQUBH2dXzndoFvFpgM53DofrWf7zBNtosvFB8nW-bHbSkkl20McdNuIdeCubVHr7Nh9bjGp8qaLnEUV46PsE5-ez7WGEAwy4eJZhj46fj_hQawXCTkhpP8bDUxIe90XiQ9l_30WP9rn3TIMUoBiKN_5cS4xYIR1iCM6Z95gpjaEWpMNDmM_h360klAtszT9hKK1dxWzNfcsmY15W2cNkBqiSjRB0i3IWIUBs_j8GVp81x7Ac204oHwjIaqsgpDR7LgqccxmUMY7ukMy2MF4Px4sJ4VXQ5E3vLiTp-EwjnVzNOswyJzseZxOxH2aM_yJ6jtUb7oRW37qPmMVqnUCMDKR16gipm1dQpWpUf6WAyPss28if6Duom
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0R5emA1JHGeI6VEoFZRhwIdkCLbtdtKJa3agNR_jy-P0g7AAFsU5U7K2fH32bn7DqEryjQoO5ZLXNvgxObSIEwIk8hMrSqwDZU1g3luelHkdzpBq8gmnBZplbCHVrlQRLZWw8c97qoyI-5GwzRsrKDMxNK3fI25drCK1jR1dmGSt8OXr2MWaK5rzBWlLNfJSrHABQEfZVHPd26X4GpJzHQBhsKdf3iBXbRdcFB8m0-aPbQik320taBMeIBeC93VHq7nLetxjc0kFFziKE8cn-JcevZ9IjFAYRePEsywZum4P4MyMNywSI2leFh6YsPeaDJI-2-H6Cm8b989kKIRAxGa_aVEkwJuc4MzSpVHHa4pjbQsroHNo_Dn1hWS-6arnzClko5kpqKeYIJStytM7tAjVElGiTxGuAv7QaVZHoUrV-nF2PNNqiTzuaE9VJFdxjsWhUo5NMsYxmYpZloEL4bgxUXwquh6bjbOZTp-MwgWBzNOs_MRlTcziemPtid_sL1EG616GDcfo8Yp2rQgQQbOc6wzVNGDJs_RuvhIB9PJRTaNPwE7RujY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Dynamic+Bayesian+Networks+structure+based+on+a+new+hybrid+K2-Bat+learning+algorithm&rft.jtitle=Journal+of+the+Chinese+Institute+of+Engineers&rft.au=Deng%2C+Yu-Jing&rft.au=Liu%2C+Hao-Ran&rft.au=Wang%2C+Hai-Yu&rft.au=Liu%2C+Bin&rft.date=2021-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0253-3839&rft.eissn=2158-7299&rft.volume=44&rft.issue=1&rft.spage=41&rft.epage=52&rft_id=info:doi/10.1080%2F02533839.2020.1838949&rft.externalDocID=1838949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-3839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-3839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-3839&client=summon