Adaptive hybrid optimization algorithm for numerical computing in engineering applications

A novel hybrid arithmetic optimization algorithm (HAOA) is proposed to address the inherent constraints of traditional numerical computing techniques, including increased computational complexity and excessive reliance on gradient information. First, the Latin hypercube sampling initialization strat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering optimization Ročník 57; číslo 4; s. 845 - 883
Hlavní autori: Wang, Hongbo, Mo, Yuanbin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 03.04.2025
Predmet:
ISSN:0305-215X, 1029-0273
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A novel hybrid arithmetic optimization algorithm (HAOA) is proposed to address the inherent constraints of traditional numerical computing techniques, including increased computational complexity and excessive reliance on gradient information. First, the Latin hypercube sampling initialization strategy is used to generate higher quality initial candidate solutions. Then, the strategy is used to expand the advantages of leading individuals, boost the local search ability and improve the computational accuracy of the algorithm. Finally, the adaptive t-distribution mutation perturbation strategy is adopted to randomly perturb the position of the current optimal solution, aiming to prevent the algorithm from falling into a local optimal solution. The performance of HAOA is examined in comparison to alternative algorithms using the CEC 2022 data set and Bayesian validation is applied to comprehensively validate the superiority of the HAOA. Numerical experimental results demonstrate that HAOA achieves more accurate extremal and integral results, and has a high solution speed.
ISSN:0305-215X
1029-0273
DOI:10.1080/0305215X.2024.2337072