Hybrid deep autoencoder network based adaptive cross guided bilateral filter for motion artifacts correction and denoising from MRI
Removal of motion artifacts from medical images is essential, because the respiration by patient causes degradation in artifact removal. Therefore, getting an MRI without any artifacts and noise is challenging. Previous techniques failed to preserve the image quality during denoising, thereby affect...
Gespeichert in:
| Veröffentlicht in: | The imaging science journal Jg. ahead-of-print; H. ahead-of-print; S. 1 - 16 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
02.01.2024
|
| Schlagworte: | |
| ISSN: | 1368-2199, 1743-131X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Removal of motion artifacts from medical images is essential, because the respiration by patient causes degradation in artifact removal. Therefore, getting an MRI without any artifacts and noise is challenging. Previous techniques failed to preserve the image quality during denoising, thereby affecting the classification accuracy. To overcome such challenges, two modules are considered in this work: classification and denoising. The classification process is successfully performed by Hybrid Deep autoencoder-convolutional neural network (DAE-CNN). It classifies the original images into motion artifacts, available and normal images. Then, the available artifacts are removed using cross guided bilateral filter (CGBF). The optimal parameters required to improve the CGBF performance are selected using the hybrid optimization algorithm. The filter's performance relies on the optimal spatial and range kernels selection. Finally, the classification and denoising-based results are evaluated using the BRATS 2015 dataset and achieved 95.84% accuracy and PSNR - 46.4, which is better than existing methods. |
|---|---|
| AbstractList | Removal of motion artifacts from medical images is essential, because the respiration by patient causes degradation in artifact removal. Therefore, getting an MRI without any artifacts and noise is challenging. Previous techniques failed to preserve the image quality during denoising, thereby affecting the classification accuracy. To overcome such challenges, two modules are considered in this work: classification and denoising. The classification process is successfully performed by Hybrid Deep autoencoder-convolutional neural network (DAE-CNN). It classifies the original images into motion artifacts, available and normal images. Then, the available artifacts are removed using cross guided bilateral filter (CGBF). The optimal parameters required to improve the CGBF performance are selected using the hybrid optimization algorithm. The filter's performance relies on the optimal spatial and range kernels selection. Finally, the classification and denoising-based results are evaluated using the BRATS 2015 dataset and achieved 95.84% accuracy and PSNR - 46.4, which is better than existing methods. |
| Author | Samuel, Shiju Ochawar, Rohini S. Rukmini, M.S.S. |
| Author_xml | – sequence: 1 givenname: Shiju surname: Samuel fullname: Samuel, Shiju email: shijuvector@gmail.com organization: Technology & Research – sequence: 2 givenname: Rohini S. surname: Ochawar fullname: Ochawar, Rohini S. organization: Shri Ramdeobaba College of Engineering & Management – sequence: 3 givenname: M.S.S. surname: Rukmini fullname: Rukmini, M.S.S. organization: Technology & Research |
| BookMark | eNqFkE1LAzEQhoNUsK3-BCF_YGuy2d3u4kUpagsVQRS8hdl8lOg2KUmq9OwfN2vrxYOe5mVm3vl4RmhgnVUInVMyoaQmF5RVdU6bZpKTnE2SqoqmOEJDOi1YRhl9GSSderK-6QSNQnglJBWLaog-57vWG4mlUhsM2-iUFU4qj62KH86_4RaCkhgkbKJ5V1h4FwJebY1M2dZ0EJWHDmvTJYG183jtonEWg49Gg4gBC-e9Evuk7TdZZ4KxK6y9W-P7x8UpOtbQBXV2iGP0fHvzNJtny4e7xex6mQlGSczyuhaVlCVpyooBq2sAKKAplFCaMVqoKpcwLcoWREPKmhGYKpLnhDZA2kZqNkaX-7nfT3iluTAR-sOiB9NxSnjPk__w5D1PfuCZ3OUv98abNfjdv76rvc_YhGcNiWoneYRd57z2YIUJnP094guE25G6 |
| CitedBy_id | crossref_primary_10_1002_ima_70106 |
| Cites_doi | 10.1016/j.mri.2019.05.038 10.1016/j.zemedi.2018.11.002 10.1155/2022/5906877 10.1016/j.neuroimage.2021.117756 10.1109/TMI.2014.2377694 10.1038/s41597-021-01044-0 10.1002/mrm.27705 10.3174/ajnr.A6436 10.1016/j.mri.2019.05.020 10.1007/s10278-018-0110-y 10.1007/s11760-013-0556-9 10.1109/JSEN.2018.2870759 10.1088/0031-9155/61/5/R32 10.3390/app12105097 10.1002/mrm.24314 10.1002/jmri.24850 10.1016/j.mri.2020.05.004 10.1016/j.asoc.2016.02.043 10.1186/s12968-017-0425-8 10.3174/ajnr.A4996 10.1016/j.jneumeth.2017.07.031 10.1038/s41598-019-56847-4 10.1002/mrm.27783 10.1016/j.ijleo.2017.12.074 10.1109/TMI.2017.2737081 10.1007/s10334-017-0650-z 10.1002/mrm.27771 10.1002/mrm.10093 10.1002/mrm.27772 10.1109/TMI.2021.3073381 10.1109/TIP.2015.2389617 10.1016/j.advengsoft.2017.07.002 10.1016/j.neuroimage.2017.08.025 10.1016/j.media.2014.05.005 |
| ContentType | Journal Article |
| Copyright | 2023 The Royal Photographic Society 2023 |
| Copyright_xml | – notice: 2023 The Royal Photographic Society 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/13682199.2023.2196494 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts |
| EISSN | 1743-131X |
| EndPage | 16 |
| ExternalDocumentID | 10_1080_13682199_2023_2196494 2196494 |
| Genre | Research Article |
| GroupedDBID | 002 0BK 0R~ 1~B 29I 4.4 53G AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABXUL ABXYU ACFOO ACGFS ACTIO ACUHS ADCVX ADGTB ADMLS AEISY AENEX AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AWYRJ BLEHA CCCUG DGEBU DU5 E01 EAP EBS EMK EPL EST ESX H13 HCLVR HZ~ I-F KYCEM LJTGL M4Z MV1 P2P P75 P7B RIG RNANH ROSJB RTWRZ TASJS TBQAZ TCY TDBHL TEX TFL TFT TFW TTHFI TUROJ TUS WH7 ZGOLN AAYXX CITATION |
| ID | FETCH-LOGICAL-c310t-288c6dd509563a388aaa4a94ecef3314e62da745bac905830a7e022019a0b9df3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970741100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1368-2199 |
| IngestDate | Sat Nov 29 03:42:03 EST 2025 Tue Nov 18 21:05:14 EST 2025 Mon Oct 20 23:46:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | ahead-of-print |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-288c6dd509563a388aaa4a94ecef3314e62da745bac905830a7e022019a0b9df3 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1080_13682199_2023_2196494 informaworld_taylorfrancis_310_1080_13682199_2023_2196494 crossref_primary_10_1080_13682199_2023_2196494 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-02 |
| PublicationDateYYYYMMDD | 2024-01-02 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | The imaging science journal |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_2_27_1 e_1_3_2_28_1 Johnson PM (e_1_3_2_22_1) 2019; 82 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_21_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_40_1 Elhoseny M (e_1_3_2_36_1) 2019; 143 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 Manoharan H (e_1_3_2_39_1) 2022 e_1_3_2_7_1 e_1_3_2_19_1 Kshirsagar PR (e_1_3_2_38_1) 2022 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 Patel S (e_1_3_2_3_1) 2016; 6 e_1_3_2_15_1 Fantini I (e_1_3_2_18_1) 2018 Alsattar HA (e_1_3_2_30_1) 2019 |
| References_xml | – ident: e_1_3_2_19_1 doi: 10.1016/j.mri.2019.05.038 – ident: e_1_3_2_17_1 doi: 10.1016/j.zemedi.2018.11.002 – ident: e_1_3_2_37_1 doi: 10.1155/2022/5906877 – ident: e_1_3_2_31_1 doi: 10.1016/j.neuroimage.2021.117756 – ident: e_1_3_2_32_1 doi: 10.1109/TMI.2014.2377694 – start-page: 1424 year: 2022 ident: e_1_3_2_38_1 article-title: Perception exploration on robustness syndromes with pre-processing entities using machine learning algorithm publication-title: Front Public Health – ident: e_1_3_2_42_1 doi: 10.1038/s41597-021-01044-0 – ident: e_1_3_2_9_1 doi: 10.1002/mrm.27705 – ident: e_1_3_2_13_1 doi: 10.3174/ajnr.A6436 – ident: e_1_3_2_8_1 doi: 10.1016/j.mri.2019.05.020 – ident: e_1_3_2_26_1 doi: 10.1007/s10278-018-0110-y – ident: e_1_3_2_27_1 doi: 10.1007/s11760-013-0556-9 – ident: e_1_3_2_16_1 doi: 10.1109/JSEN.2018.2870759 – ident: e_1_3_2_15_1 doi: 10.1088/0031-9155/61/5/R32 – ident: e_1_3_2_40_1 doi: 10.3390/app12105097 – ident: e_1_3_2_12_1 doi: 10.1002/mrm.24314 – ident: e_1_3_2_2_1 doi: 10.1002/jmri.24850 – ident: e_1_3_2_11_1 doi: 10.1016/j.mri.2020.05.004 – start-page: 10 year: 2022 ident: e_1_3_2_39_1 article-title: Deep conviction systems for biomedical applications using intuiting procedures With cross point approach publication-title: Front Public Health – ident: e_1_3_2_34_1 doi: 10.1016/j.asoc.2016.02.043 – ident: e_1_3_2_5_1 doi: 10.1186/s12968-017-0425-8 – ident: e_1_3_2_24_1 doi: 10.3174/ajnr.A4996 – volume: 143 start-page: 125 year: 2019 ident: e_1_3_2_36_1 article-title: Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements publication-title: Measurement ( Mahwah N J) – start-page: 1 year: 2018 ident: e_1_3_2_18_1 article-title: Automatic detection of motion artifacts on MRI using Deep CNN publication-title: Pattern Recognition in Neuroimaging (PRNI) IEEE – ident: e_1_3_2_7_1 doi: 10.1016/j.jneumeth.2017.07.031 – ident: e_1_3_2_4_1 doi: 10.1038/s41598-019-56847-4 – ident: e_1_3_2_20_1 doi: 10.1002/mrm.27783 – ident: e_1_3_2_23_1 – ident: e_1_3_2_35_1 doi: 10.1016/j.ijleo.2017.12.074 – ident: e_1_3_2_6_1 doi: 10.1109/TMI.2017.2737081 – volume: 6 start-page: 53 issue: 1 year: 2016 ident: e_1_3_2_3_1 article-title: Survey of data mining techniques used in healthcare domain publication-title: Int J Inf – start-page: 1 year: 2019 ident: e_1_3_2_30_1 article-title: Novel meta-heuristic bald eagle search optimization algorithm publication-title: Artif Intell Rev – ident: e_1_3_2_14_1 doi: 10.1007/s10334-017-0650-z – ident: e_1_3_2_25_1 doi: 10.1002/mrm.27771 – ident: e_1_3_2_33_1 doi: 10.1002/mrm.10093 – volume: 82 start-page: 901 issue: 3 year: 2019 ident: e_1_3_2_22_1 article-title: Conditional generative adversarial network for 3D rigid-body motion correction in MRI publication-title: Magn Reson Med doi: 10.1002/mrm.27772 – ident: e_1_3_2_41_1 doi: 10.1109/TMI.2021.3073381 – ident: e_1_3_2_28_1 doi: 10.1109/TIP.2015.2389617 – ident: e_1_3_2_29_1 doi: 10.1016/j.advengsoft.2017.07.002 – ident: e_1_3_2_10_1 doi: 10.1016/j.neuroimage.2017.08.025 – ident: e_1_3_2_21_1 doi: 10.1016/j.media.2014.05.005 |
| SSID | ssj0017446 |
| Score | 2.2960248 |
| Snippet | Removal of motion artifacts from medical images is essential, because the respiration by patient causes degradation in artifact removal. Therefore, getting an... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | autoencoder bald eagle search optimization cross-guided bilateral filtering Deep learning kernel selection Motion artifact removal Peak Signal to Noise Ratio (PSNR) Salp swarm optimization |
| Title | Hybrid deep autoencoder network based adaptive cross guided bilateral filter for motion artifacts correction and denoising from MRI |
| URI | https://www.tandfonline.com/doi/abs/10.1080/13682199.2023.2196494 |
| Volume | ahead-of-print |
| WOSCitedRecordID | wos000970741100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1743-131X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017446 issn: 1368-2199 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yeNCDb3F9kYPXatuk2-Qo4rKCioiPvZVpHlJYusu2K3j2j5tpuuIe1IMeG5g2TWYyyWS-bwg5kZrFqbDambjWgdOQKJA5s0EOSAuZpiE0KP6n6_T2VgyH8q7NJqzatEo8Q1tPFNGs1WjckFfzjLiziPWEMzSEmcTsNEZKKYmMoM71o2k-9J8_7xFS7vFFTiJAkTmG57u3LHinBe7SL16nv_4P_d0ga-2Wk557HdkkS6bcIqtPRTXzrdU2eR-8IXKLamMmFGb1GOkttZnS0meJU3R2moKGCS6PtOk9fZkV2rXmxQgQxzyitsC7d-p-h_rqQBQVE7ETFVVYBkT5xhK_VI4LjFNQBLjQm_urHfLYv3y4GARteYZAuT1hHcRCqJ7WCVIZMmBCAAAHyY0ylrGIm16sIeVJDkqGiWAhpAZxvZGEMJfasl3SKcel2SPUrQLOk7pzemI4N7EVrKclUxxMokIT2S7h82nJVMtdjiU0RlnUUpzOxzjDMc7aMe6S00-xiSfv-E1Afp3zrG6iJtaXOMnYj7L7f5A9ICvukTehnfiQdOrpzByRZfVaF9X0uFHpD1pM8oM |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLa4JGDgRtx4YA0ksdPYI0JUrWg7oFK6RY4PFKlKqzZFYuaP4xenVTsAA6yOXuLY77Cf_X0PoRuuSBgzo6yJK-VZDQk8nhLjpQJoIePYFyWKv9eKOx3W7_NFLAxcq4Q9tHFEEaWvBuOGZPTsStxdQGrMWhrgTEJyGwKnFKeraD2ysRb487v11_lJQkwdwsiKeCAzQ_F895ql-LTEXroQd-q7_9HjPbRTrTrxvVOTfbSi8wO03csmU9c6OUSfjQ8Ab2Gl9QiLaTEEhkulxzh3F8UxxDuFhRIj8JC47D5-m2bKtqbZQACUeYBNBsfv2P4PdgWCMOgmwCcmWEIlEOkac_hSPswgVYEB44Lbz80j9FJ_7D40vKpCgyftsrDwQsZkTakI2AyJIIwJIajgVEttCAmoroVKxDRKheR-xIgvYg3Q3oALP-XKkGO0lg9zfYKwdQQ2mNqteqQp1aFhpKY4kVToSPo6MKeIzuYlkRV9OVTRGCRBxXI6G-MExjipxvgU3c7FRo6_4zcBvjjpSVEmToyrcpKQH2XP_iB7jTYb3XYraTU7T-doyz6iZaYnvEBrxXiqL9GGfC-yyfiq1O8vvoj2rQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4CcHAG1GeHlgDSewk9oiACkSpEILCFjl-oEhVWjUpEjN_HF-cIjoAA6wXXeLYZ9_Zvu87hI65ImHCjLJTXCnPWkjg8YwYLxNAC5kkvqhR_L1O0u2y52d-12QTlk1aJeyhjSOKqNdqmNxDZSYZcacBiZmdaAAzCclJCJRSnM6ieRs6x2DkD-2nz4uEhDqAkVXxQGcC4vnuNVPuaYq89Ivbaa_-Q4PX0EoTc-IzZyTraEYXG2i5l5djJy030fvVG0C3sNJ6iMW4GgC_pdIjXLg0cQzeTmGhxBDWR1y3Hr-Mc2WlWd4XAGTuY5PD5Tu2v4NdeSAMlgngiRJLqAMinbCALxWDHA4qMCBc8O399RZ6bF8-nF95TX0GT9qgsPJCxmSsVARchkQQxoQQVHCqpTaEBFTHoRIJjTIhuR8x4otEA7A34MLPuDJkG80Vg0LvIGyXAetK7UY90pTq0DASK04kFTqSvg5MC9HJsKSyIS-HGhr9NGg4Tid9nEIfp00ft9DJp9rQsXf8psC_jnla1ccmxtU4ScmPurt_0D1Ci3cX7bRz3b3ZQ0v2Ca2PecJ9NFeNxvoALcjXKi9Hh7V1fwDYavVf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+deep+autoencoder+network+based+adaptive+cross+guided+bilateral+filter+for+motion+artifacts+correction+and+denoising+from+MRI&rft.jtitle=The+imaging+science+journal&rft.au=Samuel%2C+Shiju&rft.au=Ochawar%2C+Rohini+S.&rft.au=Rukmini%2C+M.S.S.&rft.date=2024-01-02&rft.issn=1368-2199&rft.eissn=1743-131X&rft.volume=72&rft.issue=1&rft.spage=76&rft.epage=91&rft_id=info:doi/10.1080%2F13682199.2023.2196494&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_13682199_2023_2196494 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1368-2199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1368-2199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1368-2199&client=summon |