Elastoplastic constitutive model considering the filling and cementation effects for gas hydrate-bearing sediments: development and finite element implementation
Dynamic evolution of hydrate filling and cementation effects significantly affects the mechanical behavior of gas hydrate-bearing sediments (GHBS). To analyze the strength and deformation characteristics of GHBS under varying effective confining pressures and hydrate saturations, we use the unified...
Gespeichert in:
| Veröffentlicht in: | Frontiers in earth science (Lausanne) Jg. 13 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frontiers Media S.A
02.04.2025
|
| Schlagworte: | |
| ISSN: | 2296-6463, 2296-6463 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Dynamic evolution of hydrate filling and cementation effects significantly affects the mechanical behavior of gas hydrate-bearing sediments (GHBS). To analyze the strength and deformation characteristics of GHBS under varying effective confining pressures and hydrate saturations, we use the unified hardening model for clays and sands (CSUH model) as a framework. A compressive hardening parameter is introduced to describe the isotropic compression behavior. Additionally, cementation strength is incorporated to adjust the yield function, while state parameters are used to modify the potential strength. An elastoplastic constitutive model is developed to capture the strength, stiffness, dilatancy, and softening of GHBS. Based on the user-defined subroutine interface provided by ABAQUS and the modified Euler integral algorithm with error control, the user-defined subroutine (UMAT) is embedded in ABAQUS to implement the finite element model. Numerical solutions are obtained, and the accuracy of the model is verified by comparing theoretical solutions with experimental data, showing good agreement. The results demonstrate that the model accurately represents the stress-strain relations and shear dilatancy characteristics of GHBS under various conditions. Furthermore, the model effectively evaluates the mechanical responses of GHBS with different hydrate formation behaviors under various environmental loads. These findings provide a foundation for further engineering applications. |
|---|---|
| AbstractList | Dynamic evolution of hydrate filling and cementation effects significantly affects the mechanical behavior of gas hydrate-bearing sediments (GHBS). To analyze the strength and deformation characteristics of GHBS under varying effective confining pressures and hydrate saturations, we use the unified hardening model for clays and sands (CSUH model) as a framework. A compressive hardening parameter is introduced to describe the isotropic compression behavior. Additionally, cementation strength is incorporated to adjust the yield function, while state parameters are used to modify the potential strength. An elastoplastic constitutive model is developed to capture the strength, stiffness, dilatancy, and softening of GHBS. Based on the user-defined subroutine interface provided by ABAQUS and the modified Euler integral algorithm with error control, the user-defined subroutine (UMAT) is embedded in ABAQUS to implement the finite element model. Numerical solutions are obtained, and the accuracy of the model is verified by comparing theoretical solutions with experimental data, showing good agreement. The results demonstrate that the model accurately represents the stress-strain relations and shear dilatancy characteristics of GHBS under various conditions. Furthermore, the model effectively evaluates the mechanical responses of GHBS with different hydrate formation behaviors under various environmental loads. These findings provide a foundation for further engineering applications. |
| Author | Yuan, Qingmeng Liang, Qianyong Yang, Lin Guo, Binbin Wang, Zhigang Liang, Jinqiang Wu, Xuemin Dong, Yifei |
| Author_xml | – sequence: 1 givenname: Qingmeng surname: Yuan fullname: Yuan, Qingmeng – sequence: 2 givenname: Qianyong surname: Liang fullname: Liang, Qianyong – sequence: 3 givenname: Jinqiang surname: Liang fullname: Liang, Jinqiang – sequence: 4 givenname: Zhigang surname: Wang fullname: Wang, Zhigang – sequence: 5 givenname: Lin surname: Yang fullname: Yang, Lin – sequence: 6 givenname: Xuemin surname: Wu fullname: Wu, Xuemin – sequence: 7 givenname: Binbin surname: Guo fullname: Guo, Binbin – sequence: 8 givenname: Yifei surname: Dong fullname: Dong, Yifei |
| BookMark | eNpNkd1KAzEQhYNU8PcFvMoLbE02m93GOyn-FAre6HXITiY1km5KEgs-jm9qdxX1Zs7McPgY5pyR2RAHJOSKs7kQC3Xt0KQyr1kt51wyrtr6iJzWtWqrtmnF7F9_Qi5zfmOMcVHLhqlT8nkXTC5xN1YPFOJw0PJe_B7pNloM08pbTH7Y0PKK1PkQxt4MlgJucSim-DhQdA6hZOpiohuT6euHTaZg1R-uG_0ZrR_d-YZa3GOIu3GaMM4PviDFMOGo3-7CH_iCHDsTMl7-6Dl5ub97Xj5W66eH1fJ2XYHgrFQce9Z0zFrAXqEToNhCGeTSWdO4BQDvQBrRddJYy1lTL4SzAsApJvtOgTgnq2-ujeZN75LfmvSho_F6WsS00Yc3ewioux4stkb00xc7qZQwjismFEropDyw6m8WpJhzQvfL40yPmekpMz1mpn8yE1-b95Ls |
| Cites_doi | 10.1021/acs.energyfuels.2c03255 10.3208/jgssp.kl-6 10.1002/2016gc006706 10.1029/2019jb018623 10.1029/2011jb008661 10.1016/j.compgeo.2023.105463 10.1016/j.energy.2023.126811 10.1016/j.oceaneng.2024.117245 10.1039/c6ra26487e 10.1016/j.jngse.2022.104852 10.3390/en5104057 10.1016/j.jclepro.2022.135440 10.1007/s40948-022-00461-8 10.1016/j.gr.2019.11.014 10.3390/pr12010204 10.1016/j.oceaneng.2024.116791 10.1016/j.trgeo.2024.101462 10.1680/geot.11.p.114 10.1016/j.jgsce.2023.205180 10.1631/jzus.a1700464 10.1007/s11802-024-5551-y 10.1016/j.ijhydene.2021.11.104 10.6052/0459-1879-19-184 10.1016/j.compgeo.2019.02.024 10.1016/j.jngse.2021.103963 10.1016/j.jclepro.2023.140032 10.1016/j.sandf.2021.101103 10.3208/sandf.35.61 10.1108/02644400110365842 10.1002/2016rg000534 10.1016/j.marpetgeo.2014.07.024 10.1016/j.cageo.2022.105162 10.1016/j.jngse.2018.02.029 10.1016/j.oceaneng.2022.112919 10.1016/j.marpetgeo.2019.03.024 10.1016/j.enggeo.2021.106450 10.1002/ese3.968 10.1038/328418a0 10.1016/j.jngse.2019.103119 10.1016/j.sandf.2013.02.010 10.1007/s10064-017-1109-1 10.31035/cg2020043 10.1016/s0025-3227(99)00004-3 10.1016/j.oceaneng.2022.113408 10.3390/jmse11030612 10.1139/cgj-2014-0172 10.1016/j.energy.2023.129214 10.7623/syxb201610007 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/feart.2025.1501962 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2296-6463 |
| ExternalDocumentID | oai_doaj_org_article_7bcde6a3b3254075993af19039e5c755 10_3389_feart_2025_1501962 |
| GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
| ID | FETCH-LOGICAL-c310t-1eb0470ddceb9ef3c9089ae15fda4f8cc17c5a3775add104283fd3ccf905b79c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001467375300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-6463 |
| IngestDate | Fri Oct 03 12:42:34 EDT 2025 Sat Nov 29 08:06:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-1eb0470ddceb9ef3c9089ae15fda4f8cc17c5a3775add104283fd3ccf905b79c3 |
| OpenAccessLink | https://doaj.org/article/7bcde6a3b3254075993af19039e5c755 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7bcde6a3b3254075993af19039e5c755 crossref_primary_10_3389_feart_2025_1501962 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-02 |
| PublicationDateYYYYMMDD | 2025-04-02 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in earth science (Lausanne) |
| PublicationYear | 2025 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Jiang (B18) 2018; 77 Yang (B40) 2023; 109 Ye (B43) 2020; 3 Sloan (B30) 2001; 18 Li (B20) 2016; 37 Davidson (B7) 1987; 328 Winters (B34) 2000; 2014 Xu (B36) 2023; 159 Chen (B6) 2018; 53 Fang (B10) 2022; 47 Zhao (B46); 283 Bian (B4) 2021; 295 Lin (B23) 2020; 52 Borowski (B5) 1999; 159 Miyazaki (B24) 2012; 5 Hong (B12) 2013; 63 Liao (B21) 2024; 12 Bai (B2) 2023; 268 Huang (B14) 2021; 95 Dong (B8) 2024; 23 Yan (B39) 2020; 81 Fang (B9) 2020; 75 Wang (B33) 2021; 9 Yan (B38) 2023; 383 Qiu (B26) 2023; 11 Ren (B27) 2022; 36 Wu (B35) 2020; 125 Samala (B29) 2022; 166 Yao (B42) 2019; 110 Onitsuka (B25) 1995; 35 Yang (B41) 2024; 298 Handwerger (B11) 2017; 18 Hyodo (B16) 2013; 53 Uchida (B32) 2012; 117 Sun (B31) 2018; 19 Zeng (B44) 2015; 52 Zhao (B48); 269 Hou (B13) 2022; 8 Bian (B3) 2024; 434 Ruppel (B28) 2017; 55 Li (B19) 2024; 121 Zhang (B45) 2022; 266 Bai (B1) 2025; 50 Yamamoto (B37) 2017; 7 Hyodo (B15) 2016; 2 Iwai (B17) 2022; 62 Zhao (B47) 2024; 294 Lijith (B22) 2019; 104 |
| References_xml | – volume: 36 start-page: 14874 year: 2022 ident: B27 article-title: Pore-Scale investigation of CH4 hydrate kinetics in clayey-silty sediments by low-field NMR publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.2c03255 – volume: 2 start-page: 62 year: 2016 ident: B15 article-title: Challenge for methane hydrate production by geotechnical engineering publication-title: Jpn. Geotech. Soc. Spec. Publ. doi: 10.3208/jgssp.kl-6 – volume: 18 start-page: 2429 year: 2017 ident: B11 article-title: Submarine landslides triggered by destabilization of high-saturation hydrate anomalies publication-title: Geochem. Geophys. Geosystems doi: 10.1002/2016gc006706 – volume: 125 start-page: e2019JB018623 year: 2020 ident: B35 article-title: Cementation failure behavior of consolidated gas hydrate-bearing sand publication-title: J. Geophys. Research-Solid Earth doi: 10.1029/2019jb018623 – volume: 117 start-page: B03209 year: 2012 ident: B32 article-title: Critical state soil constitutive model for methane hydrate soil publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2011jb008661 – volume: 159 start-page: 105463 year: 2023 ident: B36 article-title: Application and improvement of a stress partition framework-based methane hydrate-bearing sediment constitutive model for wide range confining stress publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2023.105463 – volume: 269 start-page: 126811 ident: B48 article-title: Experimental investigation on the permeability characteristics of methane hydrate-bearing clayey-silty sediments considering various factors publication-title: Energy doi: 10.1016/j.energy.2023.126811 – volume: 298 start-page: 117245 year: 2024 ident: B41 article-title: Mechanical properties and constitutive model of high-abundance methane hydrates containing clayey–silt sediments publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.117245 – volume: 7 start-page: 5554 year: 2017 ident: B37 article-title: Thermal responses of a gas hydrate-bearing sediment to a depressurization operation publication-title: Rsc Adv. doi: 10.1039/c6ra26487e – volume: 109 start-page: 104852 year: 2023 ident: B40 article-title: Geomechanical properties of artificial methane hydrate-bearing fine-grained sediments publication-title: Gas Sci. Eng. doi: 10.1016/j.jngse.2022.104852 – volume: 5 start-page: 4057 year: 2012 ident: B24 article-title: A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples publication-title: Energies doi: 10.3390/en5104057 – volume: 383 start-page: 135440 year: 2023 ident: B38 article-title: Stability of submarine slopes during replacement of methane in natural gas hydrates with carbon dioxide publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.135440 – volume: 8 start-page: 161 year: 2022 ident: B13 article-title: Hydrate morphology and mechanical behavior of hydrate-bearing sediments: a critical review publication-title: Geomechanics Geophys. Geo-Energy Geo-Resources doi: 10.1007/s40948-022-00461-8 – volume: 81 start-page: 403 year: 2020 ident: B39 article-title: Geomechanical issues in the exploitation of natural gas hydrate publication-title: Gondwana Res. doi: 10.1016/j.gr.2019.11.014 – volume: 12 start-page: 204 year: 2024 ident: B21 article-title: One-dimensional numerical simulation on removal of CO2 hydrate blockage around wellbore by N2 injection publication-title: Processes doi: 10.3390/pr12010204 – volume: 294 start-page: 116791 year: 2024 ident: B47 article-title: Mechanical behaviors of natural gas hydrate-bearing clayey-silty sediments: experiments and constitutive modeling publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.116791 – volume: 50 start-page: 101462 year: 2025 ident: B1 article-title: A novel thermodynamic constitutive model of coarse-grained soils considering the particle breakage publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2024.101462 – volume: 63 start-page: 441 year: 2013 ident: B12 article-title: Effect of initial water content on undrained shear behaviour of reconstituted clays publication-title: Géotechnique doi: 10.1680/geot.11.p.114 – volume: 121 start-page: 205180 year: 2024 ident: B19 article-title: Numerical simulation on gas production from hydrate-bearing sediments by depressurization considering time-varying reservoir compressibility publication-title: Gas Sci. Eng. doi: 10.1016/j.jgsce.2023.205180 – volume: 19 start-page: 600 year: 2018 ident: B31 article-title: A coupled thermal–hydraulic–mechanical–chemical (THMC) model for methane hydrate bearing sediments using COMSOL Multiphysics publication-title: J. Zhejiang University-Science A doi: 10.1631/jzus.a1700464 – volume: 23 start-page: 149 year: 2024 ident: B8 article-title: Deformation characteristics of hydrate-bearing sediments publication-title: J. Ocean Univ. China doi: 10.1007/s11802-024-5551-y – volume: 47 start-page: 4441 year: 2022 ident: B10 article-title: A state-dependent subloading constitutive model with unified hardening function for gas hydrate-bearing sediments publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.104 – volume: 52 start-page: 556 year: 2020 ident: B23 article-title: An elastoplastic constitutive model for gas hydrate-bearing sediments publication-title: Chin. J. Theor. Appl. Mech. doi: 10.6052/0459-1879-19-184 – volume: 110 start-page: 326 year: 2019 ident: B42 article-title: Unified hardening (UH) model for clays and sands publication-title: Comput. Geotechnics doi: 10.1016/j.compgeo.2019.02.024 – volume: 95 start-page: 103963 year: 2021 ident: B14 article-title: The depressurization of natural gas hydrate in the multi-physics coupling simulation based on a new developed constitutive model publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.103963 – volume: 434 start-page: 140032 year: 2024 ident: B3 article-title: Effects of biochar on the compressibility of soil with high water content publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.140032 – volume: 62 start-page: 101103 year: 2022 ident: B17 article-title: Constitutive model for gas hydrate-bearing soils considering different types of hydrate morphology and prediction of strength-band publication-title: Soils Found. doi: 10.1016/j.sandf.2021.101103 – volume: 35 start-page: 61 year: 1995 ident: B25 article-title: Interpretation of oedometer test data for natural clays publication-title: Soils Found. doi: 10.3208/sandf.35.61 – volume: 18 start-page: 121 year: 2001 ident: B30 article-title: Refined explicit integration of elastoplastic models with automatic error control publication-title: Eng. Comput. doi: 10.1108/02644400110365842 – volume: 55 start-page: 126 year: 2017 ident: B28 article-title: The interaction of climate change and methane hydrates publication-title: Rev. Geophys. doi: 10.1002/2016rg000534 – volume: 2014 start-page: 1 year: 2000 ident: B34 article-title: Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems publication-title: Mar. Petroleum Geol. doi: 10.1016/j.marpetgeo.2014.07.024 – volume: 166 start-page: 105162 year: 2022 ident: B29 article-title: Coupled THMC modeling of dissociation induced deformation of gas hydrate bearing media publication-title: Comput. Geosciences doi: 10.1016/j.cageo.2022.105162 – volume: 53 start-page: 55 year: 2018 ident: B6 article-title: Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2018.02.029 – volume: 266 start-page: 112919 year: 2022 ident: B45 article-title: A mesoelastic-plastic damage model for hydrate-bearing sediments with various hydrate-growth patterns publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.112919 – volume: 104 start-page: 270 year: 2019 ident: B22 article-title: A comprehensive review on the geomechanical properties of gas hydrate bearing sediments publication-title: Mar. Petroleum Geol. doi: 10.1016/j.marpetgeo.2019.03.024 – volume: 295 start-page: 106450 year: 2021 ident: B4 article-title: Deformation modulus of reconstituted and naturally sedimented clays publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2021.106450 – volume: 9 start-page: 2079 year: 2021 ident: B33 article-title: Statistical damage constitutive model based on self-consistent Eshelby method for natural gas hydrate sediments publication-title: Energy Sci. and Eng. doi: 10.1002/ese3.968 – volume: 328 start-page: 418 year: 1987 ident: B7 article-title: A Clathrate hydrate of carbon-Monoxide publication-title: Nature doi: 10.1038/328418a0 – volume: 75 start-page: 103119 year: 2020 ident: B9 article-title: Geomechanical constitutive modelling of gas hydrate-bearing sediments by a state-dependent multishear bounding surface model publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2019.103119 – volume: 53 start-page: 299 year: 2013 ident: B16 article-title: Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed publication-title: Soils Found. doi: 10.1016/j.sandf.2013.02.010 – volume: 77 start-page: 1015 year: 2018 ident: B18 article-title: Investigating the shear band of methane hydrate-bearing sediments by FEM with an elasto-plastic constitutive model publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-017-1109-1 – volume: 3 start-page: 197 year: 2020 ident: B43 article-title: The second natural gas hydrate production test in the South China Sea publication-title: China Geol. doi: 10.31035/cg2020043 – volume: 159 start-page: 131 year: 1999 ident: B5 article-title: Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates publication-title: Mar. Geol. doi: 10.1016/s0025-3227(99)00004-3 – volume: 268 start-page: 113408 year: 2023 ident: B2 article-title: The constitutive behavior and dissociation effect of hydrate-bearing sediment within a granular thermodynamic framework publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.113408 – volume: 11 start-page: 612 year: 2023 ident: B26 article-title: THMC fully coupled model of natural gas hydrate under damage effect and parameter sensitivity analysis publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse11030612 – volume: 52 start-page: 1408 year: 2015 ident: B44 article-title: Determining the virgin compression lines of reconstituted clays at different initial water contents publication-title: Can. Geotechnical J. doi: 10.1139/cgj-2014-0172 – volume: 283 start-page: 129214 ident: B46 article-title: Permeability properties of natural gas hydrate-bearing sediments considering dynamic stress coupling: a comprehensive experimental investigation publication-title: Energy doi: 10.1016/j.energy.2023.129214 – volume: 37 start-page: 1273 year: 2016 ident: B20 article-title: Damage statistic constitutive model of hydrate-bearing sediments and the determination method of parameters publication-title: Acta Pet. Sin. doi: 10.7623/syxb201610007 |
| SSID | ssj0001325409 |
| Score | 2.2966955 |
| Snippet | Dynamic evolution of hydrate filling and cementation effects significantly affects the mechanical behavior of gas hydrate-bearing sediments (GHBS). To analyze... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | elastoplastic constitutive model gas hydrate-bearing sediments modified euler integration algorithm numerical integration state parameter |
| Title | Elastoplastic constitutive model considering the filling and cementation effects for gas hydrate-bearing sediments: development and finite element implementation |
| URI | https://doaj.org/article/7bcde6a3b3254075993af19039e5c755 |
| Volume | 13 |
| WOSCitedRecordID | wos001467375300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-6463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325409 issn: 2296-6463 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2296-6463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325409 issn: 2296-6463 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQBRIL4lOUL3lgQ4EmjuuYDVCBhYoBpG6RfbYhA23VFqQu_Bf-KXdOgDKxsHiwLMvynXzv7Od3jB3nlOv4UCTKBpHk2qR4Dro8ofvHjjIeMm1jsQnV7xeDgb5fKPVFnLBaHrjeuDNlwfmuEVZkpBUnMZ6agFFMaC9ByaheiqhnIZmKtytxtK5_yWAWps8COg5xJzN5ihgI_S77FYkWBPtjZLleZ2sNJOQX9VI22JIfbrKVm1hyd77FPnoIcGejMbUVcBg1z_t4TPFYxyZ20W86jEIc8RwPVRTa5mboONTscNp-3nA3OOJU_mSm_HnuSCgisbhoGj_FQBZ_vJ1z98MlitOEirAp9zXZnFcvX7RzmnibPV73Hq5uk6awQgKI5mZJ6m0nVx3nwFvtgwB6_DM-lcGZPBQAqQJphFIST7-UsioRnAAIuiOt0iB2WGs4GvpdxrMcnEJUILu-mzvrdQoKQlbIQnilC91mJ1-bXI5r_YwS8w4ySRlNUpJJysYkbXZJdvgeSdrXsQM9omw8ovzLI_b-Y5J9tkoLixyd7IC1ZpNXf8iW4W1WTSdH0dmwvXvvfQJ1D98E |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastoplastic+constitutive+model+considering+the+filling+and+cementation+effects+for+gas+hydrate-bearing+sediments%3A+development+and+finite+element+implementation&rft.jtitle=Frontiers+in+earth+science+%28Lausanne%29&rft.au=Qingmeng+Yuan&rft.au=Qingmeng+Yuan&rft.au=Qingmeng+Yuan&rft.au=Qianyong+Liang&rft.date=2025-04-02&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-6463&rft.volume=13&rft_id=info:doi/10.3389%2Ffeart.2025.1501962&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7bcde6a3b3254075993af19039e5c755 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-6463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-6463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-6463&client=summon |