Computer programming-based numerical algorithm under Laguerre wavelets operational matrix of integration to the nonlinear Murray equation

In this study, I present a rapid numerical strategy based on computer programming to solve Murray's well-known nonlinear partial differential equation (PDE). This strategy utilizes the operational matrix of integration of the Laguerre wavelet. By employing the collocation approach, I transform...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical heat transfer. Part B, Fundamentals Ročník 86; číslo 7; s. 2246 - 2263
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 03.07.2025
Témata:
ISSN:1040-7790, 1521-0626
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, I present a rapid numerical strategy based on computer programming to solve Murray's well-known nonlinear partial differential equation (PDE). This strategy utilizes the operational matrix of integration of the Laguerre wavelet. By employing the collocation approach, I transform the problem into a set of solvable nonlinear equations, considering various boundary conditions. I employ MATLAB software for solving these equations and determining the wavelet coefficients. The results obtained from the proposed method are juxtaposed with those of other existing methods using figures and tables to assess the accuracy of the proposed approach. My results demonstrate that Y approach surpasses the Haar wavelet method both in accuracy and computational efficiency across a range of scenarios. Additionally, I provide numerous theorems illustrating the uniform convergence of the Laguerre wavelet expansion of a function to itself.
ISSN:1040-7790
1521-0626
DOI:10.1080/10407790.2024.2333032