The improvement of initial value closer to the target for Fermat's factorization algorithm

Integer Factorization Algorithm is one of the hard problems for breaking RSA. Fermat's Factorization Algorithm (FFA) factoring the modulus very fast whenever the difference between two large prime factors is very small is a type of integer factorization algorithms. Generally, the initial values...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of discrete mathematical sciences & cryptography Jg. 21; H. 7-8; S. 1573 - 1580
1. Verfasser: Somsuk, Kritsanapong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 17.11.2018
Schlagworte:
ISSN:0972-0529, 2169-0065
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Integer Factorization Algorithm is one of the hard problems for breaking RSA. Fermat's Factorization Algorithm (FFA) factoring the modulus very fast whenever the difference between two large prime factors is very small is a type of integer factorization algorithms. Generally, the initial values are far from the targets which are perfect square numbers. Although the new initial values closer to the targets in comparison to the originals were proposed, the method is called Estimated Prime Factor (EPF), they can be applied with only unbalanced modulus. In this paper, the new methodology for estimating one of initial values is proposed. In deep, it is closer to the target when it is compared with the original and it can be applied with all values of the modulus. The experimental results show that the new initial value can be larger when the size of the modulus is higher. In fact, it is based on the size of the modulus and also the distance between the original initial value and the possible target which is the closest to the original initial value. Furthermore, it implies that loops computation can be decreased especially the large size of the modulus because the new initial value is always very larger than the traditional.
AbstractList Integer Factorization Algorithm is one of the hard problems for breaking RSA. Fermat's Factorization Algorithm (FFA) factoring the modulus very fast whenever the difference between two large prime factors is very small is a type of integer factorization algorithms. Generally, the initial values are far from the targets which are perfect square numbers. Although the new initial values closer to the targets in comparison to the originals were proposed, the method is called Estimated Prime Factor (EPF), they can be applied with only unbalanced modulus. In this paper, the new methodology for estimating one of initial values is proposed. In deep, it is closer to the target when it is compared with the original and it can be applied with all values of the modulus. The experimental results show that the new initial value can be larger when the size of the modulus is higher. In fact, it is based on the size of the modulus and also the distance between the original initial value and the possible target which is the closest to the original initial value. Furthermore, it implies that loops computation can be decreased especially the large size of the modulus because the new initial value is always very larger than the traditional.
Author Somsuk, Kritsanapong
Author_xml – sequence: 1
  givenname: Kritsanapong
  surname: Somsuk
  fullname: Somsuk, Kritsanapong
  email: kritsanapong@udru.ac.th
  organization: Department of Computer and Communication Engineering, Faculty of Technology, Udon Thani Rajabhat University
BookMark eNqFkE1LAzEURYNUsK3-BCE7V1Pz0ZlMcKMUq0LBTd24CSHz0kYyk5LESv31Tm3duNDV48E9F-4ZoUEXOkDokpIJJTW5JlIwUjI5YYTWE1oSJrg4QUNGK1kQUpUDNNxnin3oDI1SeiOklIzKIXpdrgG7dhPDFlroMg4Wu85lpz3eav8O2PiQIOIccO6jWccVZGxDxHOIrc5XCVttcojuU2cXOqz9qn_yuj1Hp1b7BBfHO0Yv8_vl7LFYPD88ze4WheGU5IJOmea8aYSVTNi6NLUxUAlJqa1sZQS3Jad8yhpb8wYECAEN1JRDv4xIyfkYlYdeE0NKEazaRNfquFOUqL0g9SNI7QWpo6Ceu_nFGZe_N-Sonf-Xvj3QrutltPojRN-orHc-RBt1Z1xS_O-KLyHHgbU
CitedBy_id crossref_primary_10_3390_sym13081314
crossref_primary_10_1080_09720529_2021_1930656
crossref_primary_10_1016_j_heliyon_2025_e42481
crossref_primary_10_3390_sym14020312
crossref_primary_10_3390_sym13050735
crossref_primary_10_1080_23311916_2023_2301149
crossref_primary_10_1016_j_jisa_2023_103614
Cites_doi 10.1016/j.future.2013.06.008
10.1080/09720529.2008.10698205
10.1145/359340.359342
ContentType Journal Article
Copyright 2018 Taru Publications 2018
Copyright_xml – notice: 2018 Taru Publications 2018
DBID AAYXX
CITATION
DOI 10.1080/09720529.2018.1502737
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2169-0065
EndPage 1580
ExternalDocumentID 10_1080_09720529_2018_1502737
1502737
Genre Article
GroupedDBID 30N
4.4
ABCCY
ABFIM
ABPEM
ABTAI
ABXYU
ACGFS
ACTIO
ADCVX
AEYOC
AGDLA
AIJEM
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J9A
KYCEM
M4Z
O9-
P2P
S-T
SNACF
TDBHL
TFW
TTHFI
UT5
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-142a33dd7f927f85c8cce67911f6f6c73f531342df83de7e77ede813e00609933
IEDL.DBID TFW
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455116500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0972-0529
IngestDate Tue Nov 18 22:23:21 EST 2025
Sat Nov 29 02:16:49 EST 2025
Mon Oct 20 23:49:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-142a33dd7f927f85c8cce67911f6f6c73f531342df83de7e77ede813e00609933
PageCount 8
ParticipantIDs crossref_primary_10_1080_09720529_2018_1502737
crossref_citationtrail_10_1080_09720529_2018_1502737
informaworld_taylorfrancis_310_1080_09720529_2018_1502737
PublicationCentury 2000
PublicationDate 2018-11-17
PublicationDateYYYYMMDD 2018-11-17
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-17
  day: 17
PublicationDecade 2010
PublicationTitle Journal of discrete mathematical sciences & cryptography
PublicationYear 2018
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0007
Somsuk K. (CIT0010) 2017; 19
CIT0001
Murat S. (CIT0003) 2011; 6
CIT0009
References_xml – ident: CIT0009
  doi: 10.1016/j.future.2013.06.008
– volume: 6
  start-page: 59
  issue: 2
  year: 2011
  ident: CIT0003
  publication-title: International Journal of Contemporary Mathematical Science
– ident: CIT0007
  doi: 10.1080/09720529.2008.10698205
– volume: 19
  start-page: 99
  issue: 1
  year: 2017
  ident: CIT0010
  publication-title: International Journal of Network Security
– ident: CIT0001
  doi: 10.1145/359340.359342
SSID ssj0059219
Score 2.1527164
Snippet Integer Factorization Algorithm is one of the hard problems for breaking RSA. Fermat's Factorization Algorithm (FFA) factoring the modulus very fast whenever...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1573
SubjectTerms Fermat's Factorization Algorithm
Initial value
Loop computation
Prime number
Title The improvement of initial value closer to the target for Fermat's factorization algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/09720529.2018.1502737
Volume 21
WOSCitedRecordID wos000455116500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 2169-0065
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059219
  issn: 0972-0529
  databaseCode: TFW
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcBCeYrykgckphQS23E8IkTEVDEUUbFEiR9QqTSoSfn93CUOagdggNHDRdb5fP7sfPcdIRdSRRZxceAMtwHXKg8KowQMQyYcV9ww1zSbkKNRMpmoB88mrDytEu_QrhWKaHI1bu68qDpG3BUqzuAPKiRmJUNANHAEYz05IHsk9Y3Tpy4XCxWFrdqejAI06Wp4vvvK2um0pl26cuqk_X-Y7w7Z9pCT3rQxsks27HyP9Lt2DtTv7n3yDCFDp80jQ_NmSEtHp8gtAmPUBLdUz0qIWFqXFGAjbUnkFCZPU8zv9WVF2_Y9vraT5rMXGNSvbwfkMb0b394HvvVCoAHv1UHIo5wxY6RTkXSJ0InWNpaQGV3sYi2Zg73LeGRcwoyVVkprbBIyi_ouAHnYIenNy7k9IvTaxZAkeFEIK7iGC4nMjeAO7n5C8lzLAeGdyzPtdcmxPcYsCzv5Uu-_DP2Xef8NyPDL7L0V5vjNQK2uZ1Y3LyKubV-SsR9tj_9ge0K2cIj1i6E8Jb16sbRnZFN_1NNqcd6E6ycrlOUq
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIMGF8RTjmQMSpw7aJE1zRIhqiLHTEBOXqssDJo0VbYXfT9wH2g7AAY5R5SpyHcd27e8DOBMyMBgXe1Yz4zElU2-oJXdLn3LLJNPUFmQToteLBgM5PwuDbZWYQ9sSKKLw1Xi4sRhdt8RdIOQM_qHCzqyo7UIadweLZVhBdjpMwPrxY-2NuQz8Em9PBB7K1FM8371m4X5aQC-du3fi5n_seBM2qqiTXJVmsgVLZrINzZrRgVQHfAeenNWQUVFnKMqGJLNkhO1FThhhwQ1R48wZLckz4iJHUvaRE7d7EqOLz89npGTwqcY7STp-dov85XUXHuKb_nXHq9gXPOVCvtzzWZBSqrWwMhA24ipSyoTCOUcb2lAJat3xpSzQNqLaCCOE0SbyqUGIFxf10D1oTLKJ2QdyaUPnJ9hwyA1nyuUkItWcWZf-ccFSJVrAap0nqoImR4aMceLXCKaV_hLUX1LprwXtL7G3EpvjNwE5_0GTvCiK2JLBJKE_yh78QfYU1jr9-27Sve3dHcI6PsJxRl8cQSOfvptjWFUf-Wg2PSls9xOwg-lN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIMSF8RTjmQMSpwJtkqY9IqACgaYdhpi4VF0eMGms01b4_dhtirYDcIBjVLmKXMf57NqfCTmRcWAQF3tWc-NxFWdeX8cClj4TlsdcM1sOm5DtdtTrxR1XTTh1ZZUYQ9uKKKL01Xi4x9rWFXHnyDiDP6iwMCs6A0QDV7BcJEsAnQUadjd5qp2xiAO_otuTgYcydRPPd6-Zu57myEtnrp2k-Q8bXidrDnPSy8pINsiCGW2SZj3PgbrjvUWewWbooMwylElDmls6wOIiEEZScEPVMAeTpUVOATfSqoqcwuZpgg6-OJ3San6Pa-6k2fAFFsXr2zZ5TG66V7eem73gKQB8hefzIGNMa2njQNpIqEgpE0pwjTa0oZLMwuFlPNA2YtpII6XRJvKZQYIXwDxshzRG-cjsEnphQ_ASvN8XRnAFEYnMtOAWgj8heaZki_Ba5alyxOQ4H2OY-jV_qdNfivpLnf5a5OxLbFwxc_wmEM9-z7QoUyK2ml-Ssh9l9_4ge0xWOtdJ-nDXvt8nq_gEexl9eUAaxeTdHJJl9VEMppOj0nI_Afiw5_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+improvement+of+initial+value+closer+to+the+target+for+Fermat%27s+factorization+algorithm&rft.jtitle=Journal+of+discrete+mathematical+sciences+%26+cryptography&rft.au=Somsuk%2C+Kritsanapong&rft.date=2018-11-17&rft.pub=Taylor+%26+Francis&rft.issn=0972-0529&rft.eissn=2169-0065&rft.volume=21&rft.issue=7-8&rft.spage=1573&rft.epage=1580&rft_id=info:doi/10.1080%2F09720529.2018.1502737&rft.externalDocID=1502737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-0529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-0529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-0529&client=summon