Algebraic quantum codes: linking quantum mechanics and discrete mathematics

We discuss the connection between quantum error-correcting codes (QECCS) and algebraic coding theory. We start with an introduction to the relevant concepts of quantum mechanics, including the general error model. A quantum error-correcting code is a subspace of a complex Hilbert space, and its erro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics. Computer systems theory Ročník 6; číslo 4; s. 243 - 259
Hlavní autor: Grassl, Markus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 02.10.2021
Témata:
ISSN:2379-9927, 2379-9935
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We discuss the connection between quantum error-correcting codes (QECCS) and algebraic coding theory. We start with an introduction to the relevant concepts of quantum mechanics, including the general error model. A quantum error-correcting code is a subspace of a complex Hilbert space, and its error-correcting properties are characterized by the Knill-Laflamme conditions. Using the stabilizer formalism, we illustrate how QECCs for can be constructed using techniques from algebraic coding theory. We also sketch how the information obtained via a quantum measurement can be interpreted as syndrome of the related classical code. Additionally, we present secondary constructions for QECCs, leading to propagation rules for the parameters of QECCs. This includes the puncture code by Rains and construction X for quantum codes.
ISSN:2379-9927
2379-9935
DOI:10.1080/23799927.2020.1850530