Joint analysis of left‐censored longitudinal biomarker and binary outcome via latent class modeling
Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate...
Saved in:
| Published in: | Statistics in medicine Vol. 37; no. 13; pp. 2162 - 2173 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Wiley Subscription Services, Inc
15.06.2018
|
| Subjects: | |
| ISSN: | 0277-6715, 1097-0258, 1097-0258 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation‐maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation‐maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90‐day mortality for patients hospitalized with community‐acquired pneumonia. |
|---|---|
| AbstractList | Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation‐maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation‐maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90‐day mortality for patients hospitalized with community‐acquired pneumonia. Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation-maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation-maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90-day mortality for patients hospitalized with community-acquired pneumonia.Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation-maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation-maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90-day mortality for patients hospitalized with community-acquired pneumonia. Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation‐maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation‐maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90‐day mortality for patients hospitalized with community‐acquired pneumonia. |
| Author | Kong, Lan Li, Menghan |
| Author_xml | – sequence: 1 givenname: Menghan surname: Li fullname: Li, Menghan organization: Department of Public Health Sciences, Penn State College of Medicine – sequence: 2 givenname: Lan orcidid: 0000-0001-6098-9445 surname: Kong fullname: Kong, Lan email: luk14@psu.edu organization: Department of Public Health Sciences, Penn State College of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29611202$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10ctKxDAUBuAgIzpewCeQgBs3HZO0k7RLEa-MuFDXJU1PJJomY9Iqs_MRfEafxIxXEFyFwJcT_vNvoJHzDhDaoWRCCWEH0XQTwQu2gsaUVCIjbFqO0JgwITIu6HQdbcR4TwilUybW0DqrOKWMsDGCC29cj6WTdhFNxF5jC7p_e3lV4KIP0GLr3Z3ph9YkgxvjOxkeIKQnbbo5GRbYD73yHeAnI7GVPaSBysoYcedbsMbdbaFVLW2E7a9zE92eHN8cnWWzq9Pzo8NZpnJKWCYrpaAsqGy04EJDU0reMqFJ2WgtoCC8LbTkQARjFTCeN1xzqjhpyoqzPM830f7n3HnwjwPEvu5MVGCtdOCHWKfINGdkKqpE9_7Qez-EFHGpCpHTgpZFUrtfamg6aOt5MCn-ov5e4O-PKvgYA-gfQkm97KZO3dTLbhLNPumzsbD419XX55cf_h3jqJBd |
| Cites_doi | 10.1001/archinte.167.15.1655 10.1177/0962280212445839 10.1016/j.csda.2008.10.017 10.1093/biostatistics/1.4.355 10.1080/10618600.1998.10474787 10.1002/sim.1923 10.1289/ehp.8528 10.1002/sim.3905 10.1111/j.1541-0420.2009.01234.x 10.1016/j.csda.2014.11.011 10.1093/biostatistics/kxp009 10.1111/biom.12232 10.1021/es053368a 10.18637/jss.v078.i02 10.1037/1082-989X.8.3.338 10.1016/j.csda.2015.05.007 10.1080/1047322X.1990.10389587 10.1198/016214502753479220 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E 10.1111/1467-9876.00207 10.1016/S0167-9473(01)00017-2 10.1177/0049124101029003005 10.1111/j.0006-341X.1999.00625.x 10.1002/sim.2659 10.1002/0470036486 10.1214/aos/1176344136 10.1289/ehp.7199 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION NPM K9. 7X8 |
| DOI | 10.1002/sim.7642 |
| DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 2173 |
| ExternalDocumentID | 29611202 10_1002_sim_7642 SIM7642 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION O8X NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c3102-a9cce841abf767feb8a6d27f08bff7e406d4fa6e07229e263b6f61c60b8962333 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433594400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Sun Nov 09 10:13:41 EST 2025 Tue Oct 07 05:47:32 EDT 2025 Thu Apr 03 07:02:00 EDT 2025 Sat Nov 29 05:32:41 EST 2025 Wed Jan 22 16:41:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | limit of detection (LOD) joint modeling longitudinal biomarker Monte Carlo EM |
| Language | English |
| License | Copyright © 2018 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3102-a9cce841abf767feb8a6d27f08bff7e406d4fa6e07229e263b6f61c60b8962333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6098-9445 |
| PMID | 29611202 |
| PQID | 2047314184 |
| PQPubID | 48361 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2021320579 proquest_journals_2047314184 pubmed_primary_29611202 crossref_primary_10_1002_sim_7642 wiley_primary_10_1002_sim_7642_SIM7642 |
| PublicationCentury | 2000 |
| PublicationDate | 15 June 2018 |
| PublicationDateYYYYMMDD | 2018-06-15 |
| PublicationDate_xml | – month: 06 year: 2018 text: 15 June 2018 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Stat Med |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 167 2000; 49 2015; 71 2002; 97 1997 2006 2000; 1 2001; 29 2014; 23 2006; 114 2005; 24 1978; 6 2004; 112 2010; 66 2000; 19 2009; 10 2009; 53 2010; 29 2004; 14 2015; 85 2003; 8 2017; 78 1999; 55 2001; 38 2015; 91 1998; 7 2005; 39 1990; 5 2007; 26 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Stephen PB (e_1_2_8_22_1) 1998; 7 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Tsiatis AA (e_1_2_8_3_1) 2004; 14 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 McLachlan GJ (e_1_2_8_28_1) 1997 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
| References_xml | – volume: 38 start-page: 15 issue: 1 year: 2001 end-page: 48 article-title: Determining the number of components in mixtures of linear models publication-title: Comput Stat Data Anal – volume: 24 start-page: 65 issue: 1 year: 2005 end-page: 82 article-title: Joint modeling of bivariate longitudinal data with informative dropout and left‐censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection publication-title: Stat Med – volume: 97 start-page: 53 issue: 457 year: 2002 end-page: 65 article-title: Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate‐specic antigen readings and prostate cancer publication-title: J Am Stat Assoc – volume: 8 start-page: 338 issue: 3 year: 2003 end-page: 363 article-title: Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes publication-title: Psychol Methods – volume: 23 start-page: 74 issue: 1 year: 2014 end-page: 90 article-title: Joint latent class models for longitudinal and time‐to‐event data: a review publication-title: Stat Methods Med Res – volume: 6 start-page: 461 issue: 2 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: Ann Stat – volume: 91 start-page: 40 issue: C year: 2015 end-page: 50 article-title: Joint latent class model of survival and longitudinal data: an application to CPCRA study publication-title: Comput Stat Data Anal – volume: 39 start-page: 419A issue: 20 year: 2005 end-page: 423A article-title: More than obvious: better methods for interpreting nondetect data publication-title: Environ mental Science and Technol – volume: 29 start-page: 374 issue: 3 year: 2001 end-page: 393 article-title: A SAS procedure based on mixture models for estimating developmental trajectories publication-title: Sociol Methods Res – volume: 78 start-page: 1 issue: 2 year: 2017 end-page: 56 article-title: Estimation of extended mixed models using latent classes and latent processes: the R package lcmm publication-title: J Stat Software – volume: 66 start-page: 11 issue: 1 year: 2010 end-page: 19 article-title: Score test for conditional independence between longitudinal outcome and time to event given the classes in the joint latent class model publication-title: Biometrics – volume: 112 start-page: 1691 issue: 17 year: 2004 end-page: 1696 article-title: Epidemiologic evaluation of measurement data in the presence of detection limits publication-title: Environ Health Perspect – volume: 167 start-page: 1655 issue: 15 year: 2007 end-page: 1663 article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis publication-title: Arch Intern Med – volume: 19 start-page: 1303 issue: 10 year: 2000 end-page: 1318 article-title: A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations publication-title: Stat Med – year: 2006 – volume: 10 start-page: 535 issue: 3 year: 2009 end-page: 549 article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of post‐treatment PSA: a joint modelling approach publication-title: Biostatistics – volume: 114 start-page: 961 issue: 6 year: 2006 end-page: 968 article-title: A survey of laboratory and statistical issues related to farmworker exposure studies publication-title: Environ Health Perspect – year: 1997 – volume: 7 start-page: 434 issue: 4 year: 1998 end-page: 455 article-title: General methods for monitoring convergence of iterative simulations publication-title: J Comput Graphical Stat – volume: 71 start-page: 102 issue: 1 year: 2015 end-page: 113 article-title: Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time‐to‐event in presence of censoring and competing risks publication-title: Biometrics – volume: 49 start-page: 485 issue: 4 year: 2000 end-page: 498 article-title: Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop‐outs publication-title: Appl Stat – volume: 85 start-page: 37 year: 2015 end-page: 53 article-title: A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits publication-title: Comput Stat Data Anal – volume: 26 start-page: 2234 issue: 10 year: 2007 end-page: 2245 article-title: A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome publication-title: Stat Med – volume: 5 start-page: 46 issue: 1 year: 1990 end-page: 51 article-title: Estimation of average concentration in the presence of nondetectable values publication-title: Appl Occup Environ Hyg – volume: 53 start-page: 1142 issue: 4 year: 2009 end-page: 1154 article-title: Joint modelling of multivariate longitudinal outcomes and a time‐to‐event: a nonlinear latent class approach publication-title: Comput Stat Data Anal – volume: 29 start-page: 1661 issue: 16 year: 2010 end-page: 1672 article-title: Likelihood‐based methods for estimating the association between a health outcome and left‐or interval‐censored longitudinal exposure data publication-title: Stat Med – volume: 55 start-page: 625 issue: 2 year: 1999 end-page: 629 article-title: Mixed effects models with censored data with application to HIV RNA levels publication-title: Biometrics – volume: 1 start-page: 355 issue: 4 year: 2000 end-page: 368 article-title: Analysis of left‐censored longitudinal data with application to viral load in HIV infection publication-title: Biostatistics – volume: 14 start-page: 809 issue: 3 year: 2004 end-page: 834 article-title: Joint modeling of longitudinal and time‐to‐event data: an overview publication-title: Stat Sinica – ident: e_1_2_8_2_1 doi: 10.1001/archinte.167.15.1655 – ident: e_1_2_8_4_1 doi: 10.1177/0962280212445839 – ident: e_1_2_8_19_1 doi: 10.1016/j.csda.2008.10.017 – ident: e_1_2_8_12_1 doi: 10.1093/biostatistics/1.4.355 – volume: 7 start-page: 434 issue: 4 year: 1998 ident: e_1_2_8_22_1 article-title: General methods for monitoring convergence of iterative simulations publication-title: J Comput Graphical Stat doi: 10.1080/10618600.1998.10474787 – volume-title: The EM Algorithm and Extensions year: 1997 ident: e_1_2_8_28_1 – ident: e_1_2_8_13_1 doi: 10.1002/sim.1923 – ident: e_1_2_8_7_1 doi: 10.1289/ehp.8528 – ident: e_1_2_8_14_1 doi: 10.1002/sim.3905 – ident: e_1_2_8_27_1 doi: 10.1111/j.1541-0420.2009.01234.x – ident: e_1_2_8_15_1 doi: 10.1016/j.csda.2014.11.011 – ident: e_1_2_8_29_1 doi: 10.1093/biostatistics/kxp009 – ident: e_1_2_8_30_1 doi: 10.1111/biom.12232 – ident: e_1_2_8_9_1 doi: 10.1021/es053368a – ident: e_1_2_8_21_1 doi: 10.18637/jss.v078.i02 – ident: e_1_2_8_24_1 doi: 10.1037/1082-989X.8.3.338 – ident: e_1_2_8_20_1 doi: 10.1016/j.csda.2015.05.007 – ident: e_1_2_8_6_1 doi: 10.1080/1047322X.1990.10389587 – ident: e_1_2_8_17_1 doi: 10.1198/016214502753479220 – ident: e_1_2_8_16_1 doi: 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E – ident: e_1_2_8_11_1 doi: 10.1111/1467-9876.00207 – ident: e_1_2_8_25_1 doi: 10.1016/S0167-9473(01)00017-2 – ident: e_1_2_8_5_1 doi: 10.1177/0049124101029003005 – volume: 14 start-page: 809 issue: 3 year: 2004 ident: e_1_2_8_3_1 article-title: Joint modeling of longitudinal and time‐to‐event data: an overview publication-title: Stat Sinica – ident: e_1_2_8_10_1 doi: 10.1111/j.0006-341X.1999.00625.x – ident: e_1_2_8_18_1 doi: 10.1002/sim.2659 – ident: e_1_2_8_26_1 doi: 10.1002/0470036486 – ident: e_1_2_8_23_1 doi: 10.1214/aos/1176344136 – ident: e_1_2_8_8_1 doi: 10.1289/ehp.7199 |
| SSID | ssj0011527 |
| Score | 2.2487605 |
| Snippet | Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study... Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2162 |
| SubjectTerms | Biomarkers joint modeling Latent class analysis limit of detection (LOD) longitudinal biomarker Monte Carlo EM |
| Title | Joint analysis of left‐censored longitudinal biomarker and binary outcome via latent class modeling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7642 https://www.ncbi.nlm.nih.gov/pubmed/29611202 https://www.proquest.com/docview/2047314184 https://www.proquest.com/docview/2021320579 |
| Volume | 37 |
| WOSCitedRecordID | wos000433594400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 issn: 0277-6715 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7oKiIUbVfbbr0wBfEtmswmM5PHoi4qKqVW2Lcwk5mBhW1S9uKzP8Hf6C_xnFy2SBEEn0LI3JhzTs43c24ABzZHJRcnKEhWuCA2sUWRMjoQfaMcVU2LvKqKTcibGzUcpj8br0qKhanzQywu3Egyqv81Cbg20-N_SUOnoz9HEtHzMqxwZNu4AyunvwZ3VwsbQluwlYyUQkZJm3o25Mdt35fK6D-E-RKwVhpnsPmetX6EjQZnsh81Y3yCJVd0Ye26saR34UN9X8fqMKQurBPqrJM2b4G7LEfFjOkmYQkrPRs7P3t6eMzx1FtOnGXjkgodzS0V1WIUw09uPhPsYvGNQnxZOZ_hMh27H2k2RkSLA-YE1VlVfAc15jbcDc5-n5wHTT2GIEcQyAOd5rlTcaSNl0J6Z5QWlksfKuO9dAgNbOy1cKHkPHUcyS28iHIRGpUiyur3P0OnKAv3FZgVidQ2tInFPgghUxl6lySeG488Y30PvreEyf7WaTeyOsEyz3AzM9rMHuy2FMsawZtmPIxlP4rx3IpDLD6jyJAdRBeunFMbToHjiUx78KWm9GISngpEoCEOflgR9NXZs9uLa3p-e2vDHVhHsKXIzSxKdqEzm8zdHqzm90jcyT4sy6Hab1j4GcGC9WQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6dGyB0a7Z2mVtVw1G37zaiiXZ7Gm0C-2ahLG2kDcjWxIEUrvko8_9E_o37i_ZnT8ywhgU9mSM9YXuzvfTne4O4JPJUMmFAgXJSOuFaWhQpFLtyV4aWaqaFrioLDahRqNoPI5_bMCXJhamyg-xMriRZJT_axJwMkif_MkaOp_cflYIn5_BZohcJFqwefazfzNYORGaiq3kpZQqEE3uWZ-fNH3XtdFfEHMdsZYqp7_9X4t9DVs10mRfK9bYgQ2bd-DFsPald-BVZbFjVSBSB9qEO6u0zW_Afi8m-YLpOmUJKxybWrf49fCY4bm3mFnDpgWVOloaKqvFKIqfLvrMsIvBNwryZcVygeu07H6i2RQxLQ6YEVhnZfkd1Jlv4ab_7fr03KsrMngZwkDu6TjLbBQGOnVKKmfTSEvDlfOj1DllERyY0GlpfcV5bDkSXDoZZNJPoxhxVq-3C628yO07YEYKpY1vhME-CCJj5TsrhOOpQ64xrgsfG8okd1XijaRKscwT3MyENrMLBw3Jklr05gn3Q9ULQjy54hCrzyg05AnRuS2W1IZT6LhQcRf2KlKvJuGxRAzq4-DHJUX_OXtydTGk5_unNjyCl-fXw0EyuBhd7kMboVdEl84CcQCtxWxpD-F5do-Enn2oOfk3oRT4bA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-sFhFE2-uHZ7XdQulbNNnL7ib4JOpRWz2kreBb2GRn4eCayHnnc_-E_o3-Jc7k44qIUOhTCJn9YGcm89udnRmAT64gIxcrUiSnMYjz2JFK5TbQgzxBrpoW-aQuNmFGo-TqKr1YgoMuFqbJD7E4cGPNqP_XrOB47fz-36yhN-Nfe4bg8zNYiVWqSStXjr8PL88WToSuYit7KbWJVJd7NpT7XduH1ugRxHyIWGuTM9z8r8m-gI0WaYrDRjRewhKWPVg9b33pPVhvTuxEE4jUgzXGnU3a5leAX6txORO2TVkiKi8m6Gd3v_8UtO-tpujEpOJSR3PHZbUER_HzRZ8pNXH0xkG-oprPaJ4obsdWTAjTUocFg3VRl98hm_kaLocnP4--BG1FhqAgGCgDmxYFJnFkc2-08ZgnVjtpfJjk3hskcOBibzWGRsoUJTFcex0VOsyTlHDWYPAGlsuqxC0QTitjXeiUozYEIlMTelTKy9yT1Djfh48dZ7LrJvFG1qRYlhktZsaL2YedjmVZq3o3mQxjM4hi2rlSF4vPpDTsCbElVnOmkRw6rkzah7cNqxeDSBKliAj68Lnm6JOjZz9Oz_m5_a-EH2D14niYnZ2Ovr2DNUJeCd85i9QOLM-mc9yF58Ut8Xn6vhXkezjW9-c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+analysis+of+left-censored+longitudinal+biomarker+and+binary+outcome+via+latent+class+modeling&rft.jtitle=Statistics+in+medicine&rft.au=Li%2C+Menghan&rft.au=Kong%2C+Lan&rft.date=2018-06-15&rft.eissn=1097-0258&rft.volume=37&rft.issue=13&rft.spage=2162&rft_id=info:doi/10.1002%2Fsim.7642&rft_id=info%3Apmid%2F29611202&rft.externalDocID=29611202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |