Robust EV Scheduling in Charging Stations Under Uncertain Demands and Deadlines
To enable widespread use of electric vehicles (EVs), large-scale public charging stations with fast chargers are being planned in places such as shopping malls and office car parks. Operators of public charging stations need to utilize EV scheduling algorithms that can satisfy charging demands with...
Uložené v:
| Vydané v: | IEEE transactions on intelligent transportation systems Ročník 25; číslo 12; s. 21484 - 21499 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2024
|
| Predmet: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To enable widespread use of electric vehicles (EVs), large-scale public charging stations with fast chargers are being planned in places such as shopping malls and office car parks. Operators of public charging stations need to utilize EV scheduling algorithms that can satisfy charging demands with a minimum number of simultaneous charging sessions. In this paper, we propose EV charging scheduling algorithms that meet the charging demands and deadlines of EV users while minimizing the number of simultaneous charging sessions. An uncertainty-aware deep learning (DL) framework is also used to predict EV arrivals at a charging station. The predicted EV arrivals in turn are used to help the charging operator estimate how many charging sessions to order from the grid. Our DL model not only predicts the mean EV arrival rates but also the upper limits of EV arrivals, which enhances robustness against uncertainty in EV arrivals and helps estimate the maximum charging demand for a given interval. Moreover, to overcome the challenge of insufficient EV charging data for DL models, we construct a synthetic data model that takes into account multiple factors influencing EV arrivals, such as weather, events, weekdays, and weekends. Both online and offline approaches in the design of EV scheduling algorithms are utilized. The performances of the proposed algorithms are evaluated in terms of active charging sessions used to serve EV users. We also compare their performance with a baseline algorithm which is an offline optimal algorithm based on a mixed integer linear problem formulation. |
|---|---|
| AbstractList | To enable widespread use of electric vehicles (EVs), large-scale public charging stations with fast chargers are being planned in places such as shopping malls and office car parks. Operators of public charging stations need to utilize EV scheduling algorithms that can satisfy charging demands with a minimum number of simultaneous charging sessions. In this paper, we propose EV charging scheduling algorithms that meet the charging demands and deadlines of EV users while minimizing the number of simultaneous charging sessions. An uncertainty-aware deep learning (DL) framework is also used to predict EV arrivals at a charging station. The predicted EV arrivals in turn are used to help the charging operator estimate how many charging sessions to order from the grid. Our DL model not only predicts the mean EV arrival rates but also the upper limits of EV arrivals, which enhances robustness against uncertainty in EV arrivals and helps estimate the maximum charging demand for a given interval. Moreover, to overcome the challenge of insufficient EV charging data for DL models, we construct a synthetic data model that takes into account multiple factors influencing EV arrivals, such as weather, events, weekdays, and weekends. Both online and offline approaches in the design of EV scheduling algorithms are utilized. The performances of the proposed algorithms are evaluated in terms of active charging sessions used to serve EV users. We also compare their performance with a baseline algorithm which is an offline optimal algorithm based on a mixed integer linear problem formulation. |
| Author | Khan, Zaheer Kim, Kwang Soon Sone, Su Pyae Lehtomaki, Janne J. Umebayashi, Kenta |
| Author_xml | – sequence: 1 givenname: Su Pyae orcidid: 0000-0001-5373-9421 surname: Sone fullname: Sone, Su Pyae email: sone.supyae@oulu.fi organization: Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland – sequence: 2 givenname: Janne J. orcidid: 0000-0002-5081-1843 surname: Lehtomaki fullname: Lehtomaki, Janne J. email: janne.lehtomaki@oulu.fi organization: Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland – sequence: 3 givenname: Zaheer orcidid: 0000-0003-2951-5684 surname: Khan fullname: Khan, Zaheer email: zaheer.khan@oulu.fi organization: Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland – sequence: 4 givenname: Kenta orcidid: 0000-0002-4669-7187 surname: Umebayashi fullname: Umebayashi, Kenta email: ume_k@cc.tuat.ac.jp organization: Department of Electrical and Electronic Engineering, Umebayashi Laboratory, Tokyo University of Agriculture and Technology, Fuchu, Japan – sequence: 5 givenname: Kwang Soon orcidid: 0000-0002-5706-174X surname: Kim fullname: Kim, Kwang Soon email: ks.kim@yonsei.ac.kr organization: Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea |
| BookMark | eNp9kM9Kw0AQxhepYFt9AMFDXiBxNvsvOUqtWigUbOs1bLKz7UqbyG568O3d0B7Eg5eZj-H7zTDfhIzarkVC7ilklEL5uFls1lkOOc8Yl1JQfkXGVIgiBaByNOicpyUIuCGTED7jlAtKx2T13tWn0Cfzj2Td7NGcDq7dJa5NZnvtd4Ne97p3XRuSbWvQx9qg73V0PONRtyYksUStTSQx3JJrqw8B7y59SrYv883sLV2uXhezp2XaMCj71BZgmNSqsUUBqGvOrZU1Y0YZQMupUlboQlJFlTFSs7qxCEUe7UxIBGRTQs97G9-F4NFWX94dtf-uKFRDItWQSDUkUl0SiYz6wzTu_FzvtTv8Sz6cSYeIvy4p4CUv2A8Jc3FC |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_3390_su17062501 crossref_primary_10_1016_j_energy_2025_137422 |
| Cites_doi | 10.1109/ACCESS.2021.3103119 10.1109/TTE.2021.3139674 10.3390/en15176195 10.1145/3307772.3328313 10.1109/TNN.2011.2162110 10.1109/ACCESS.2022.3166844 10.1213/ane.0000000000002864 10.2307/2110973 10.1109/TPWRD.2013.2272436 10.1109/ACCESS.2023.3267164 10.3390/app9091723 10.1145/2935764.2935786 10.1007/s10878-020-00633-w 10.1007/s12351-017-0291-z 10.1007/978-3-662-62185-1_2 10.1002/9780470192610 10.3390/en13164211 10.1016/j.apm.2019.05.007 10.1109/TSG.2015.2403287 10.5555/3045390.3045502 10.1023/A:1026543900054 10.1109/ACCESS.2019.2925559 10.1109/TSG.2021.3074437 10.1109/TITS.2018.2887194 10.1109/FSKD.2011.6019496 10.1109/ACCESS.2022.3166935 10.1109/PESGM.2017.8274166 10.1016/j.neucom.2017.01.062 10.1109/ICDMW.2017.19 10.1109/mele.2021.3093597 10.1109/APEC.1997.575743 10.1049/iet-stg.2019.0258 10.1109/MCOM.2016.1600346CM 10.3390/a10040122 10.1007/s10462-023-10562-9 10.1201/9780203489802 10.1201/9781420082869 10.1109/TVT.2018.2797002 10.1109/TSG.2011.2163174 10.1109/ACC.2012.6314939 10.3390/en14082233 10.1109/ICPECTS49113.2020.9336979 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION |
| DOI | 10.1109/TITS.2024.3466514 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 21499 |
| ExternalDocumentID | 10_1109_TITS_2024_3466514 10704948 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Council of Finland’s Robust6G Project under the 6Genesis Flagship – fundername: EVOLVE project under the European Union’s (EU’s) Horizon Europe research and innovation program through the Marie Skłodowska-Curie grant (MSCA) |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION |
| ID | FETCH-LOGICAL-c309t-f80d36a7cf880eab44ff6b33d7d0ef4177f5a861717dd6a3bcfe082cf8356e0e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329019300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sat Nov 29 06:35:09 EST 2025 Tue Nov 18 21:29:00 EST 2025 Wed Aug 27 03:02:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c309t-f80d36a7cf880eab44ff6b33d7d0ef4177f5a861717dd6a3bcfe082cf8356e0e3 |
| ORCID | 0000-0003-2951-5684 0000-0002-5706-174X 0000-0002-5081-1843 0000-0002-4669-7187 0000-0001-5373-9421 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10704948 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TITS_2024_3466514 crossref_citationtrail_10_1109_TITS_2024_3466514 ieee_primary_10704948 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Saha (ref44); 24 ref17 ref39 ref16 ref38 ref19 ref18 Wennberg (ref23) 2022 Borodin (ref42) 2005 ref24 ref46 ref45 ref26 ref48 McKinney (ref22) 2011; 14 ref25 ref47 ref20 ref41 ref21 ref43 Amara-Ouali (ref36) 2022 ref28 ref27 ref29 ref8 (ref1) 2022 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref5 doi: 10.1109/ACCESS.2021.3103119 – ident: ref47 doi: 10.1109/TTE.2021.3139674 – ident: ref6 doi: 10.3390/en15176195 – ident: ref7 doi: 10.1145/3307772.3328313 – ident: ref32 doi: 10.1109/TNN.2011.2162110 – ident: ref34 doi: 10.1109/ACCESS.2022.3166844 – ident: ref24 doi: 10.1213/ane.0000000000002864 – ident: ref25 doi: 10.2307/2110973 – volume: 14 start-page: 1 issue: 9 year: 2011 ident: ref22 article-title: Pandas: A foundational python library for data analysis and statistics publication-title: python High Perform. Sci. Comput. – start-page: 2010 volume-title: Global Sales and Sales Market Share of Electric Cars year: 2022 ident: ref1 – ident: ref27 doi: 10.1109/TPWRD.2013.2272436 – ident: ref2 doi: 10.1109/ACCESS.2023.3267164 – ident: ref30 doi: 10.3390/app9091723 – ident: ref43 doi: 10.1145/2935764.2935786 – ident: ref45 doi: 10.1007/s10878-020-00633-w – ident: ref38 doi: 10.1007/s12351-017-0291-z – ident: ref40 doi: 10.1007/978-3-662-62185-1_2 – ident: ref46 doi: 10.1002/9780470192610 – ident: ref8 doi: 10.3390/en13164211 – ident: ref17 doi: 10.1016/j.apm.2019.05.007 – ident: ref12 doi: 10.1109/TSG.2015.2403287 – ident: ref33 doi: 10.5555/3045390.3045502 – volume-title: Online Computation and Competitive Analysis year: 2005 ident: ref42 – ident: ref28 doi: 10.1023/A:1026543900054 – volume: 24 start-page: 437 volume-title: Proc. IARCS Annu. Conf. Found. Softw. Technol. Theor. Comput. Sci. (FSTTCS) ident: ref44 article-title: Renting a cloud – ident: ref48 doi: 10.1109/ACCESS.2019.2925559 – ident: ref3 doi: 10.1109/TSG.2021.3074437 – ident: ref20 doi: 10.1109/TITS.2018.2887194 – ident: ref41 doi: 10.1109/FSKD.2011.6019496 – ident: ref10 doi: 10.1109/ACCESS.2022.3166935 – ident: ref21 doi: 10.1109/PESGM.2017.8274166 – ident: ref26 doi: 10.1016/j.neucom.2017.01.062 – ident: ref13 doi: 10.1109/ICDMW.2017.19 – ident: ref16 doi: 10.1109/mele.2021.3093597 – ident: ref11 doi: 10.1109/APEC.1997.575743 – ident: ref35 doi: 10.1049/iet-stg.2019.0258 – ident: ref37 doi: 10.1109/MCOM.2016.1600346CM – ident: ref18 doi: 10.3390/a10040122 – ident: ref31 doi: 10.1007/s10462-023-10562-9 – ident: ref39 doi: 10.1201/9780203489802 – year: 2022 ident: ref36 article-title: Statistical modelling of electric vehicle charging behaviours – ident: ref29 doi: 10.1201/9781420082869 – ident: ref19 doi: 10.1109/TVT.2018.2797002 – ident: ref14 doi: 10.1109/TSG.2011.2163174 – ident: ref4 doi: 10.1109/ACC.2012.6314939 – volume-title: TCCON Data From Caltech (U.S.), Release GGG2020.R0 year: 2022 ident: ref23 – ident: ref15 doi: 10.3390/en14082233 – ident: ref9 doi: 10.1109/ICPECTS49113.2020.9336979 |
| SSID | ssj0014511 |
| Score | 2.4622242 |
| Snippet | To enable widespread use of electric vehicles (EVs), large-scale public charging stations with fast chargers are being planned in places such as shopping malls... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 21484 |
| SubjectTerms | Data models Deep learning Electric vehicle charging EV arrivals prediction EV scheduling algorithm Fast charging Hospitals optimizing EV operations with uncertainty Prediction algorithms prediction uncertainty predictive modeling for EV charging stations Predictive models Scheduling Scheduling algorithms Synthetic data time series forecasting Uncertainty uncertainty-aware forecasting |
| Title | Robust EV Scheduling in Charging Stations Under Uncertain Demands and Deadlines |
| URI | https://ieeexplore.ieee.org/document/10704948 |
| Volume | 25 |
| WOSCitedRecordID | wos001329019300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxPnFzl4EjrTJm3ao-iGXqa4KbuVJnmRgXaydv795qMb86DgJYTyUsovCe-9vo8fQpdglIIIjVuiRUoDxgsaFIqzgGoVxdIYJDryZBN8OEwnk-ypKVZ3tTAA4JLPoGenLpavZnJhf5WZG85dO5MWanHOfbHWKmRgG2255qgRCzISL0OYIcmuxw_jkXEFI9ajLEnikP1QQmusKk6pDHb_-Tl7aKexHvGN3-59tAHlAdpe6yl4iB6fZ2JR1bj_ikdmQ5TNNH_D0xLbwLplJMIjH32vsOM8MqP0aQH4Dj5s4S82g5kXylqgVQe9DPrj2_ugYU0IJCVZHeiUKJoUXGpzNaEQjGmdCEoVVwQ0CznXcZEawyXkSiUFFVKDsQOMOI0TIECPULuclXCMMBVJxoWkKYBxI0FliXmrkiJUwCOZxV1EljDmsmkpbpkt3nPnWpAst8jnFvm8Qb6LrlZLPn0_jb-EOxb1NUEP-Mkvz0_Rll3us03OULueL-AcbcqvelrNL9xx-Qbcg71P |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86BfXBz4nzMw8-CZ1tkzbto-jGhnOKm7K30iQXGWgna-ffb5J2Yz4o-BJCuYZySbi73t3vh9AlaKPAPR2WKB4Rh7KUOKlk1CFK-oHQDonyS7IJ1u9Ho1H8VDWr214YALDFZ9A0U5vLlxMxM7_K9A1nFs5kFa0FlPpe2a61SBoYqC0Lj-pTJ3aDeRLTc-PrYXc40MGgT5uEhmHg0R9maIlXxZqV9s4_P2gXbVf-I74pN3wPrUC2j7aWUAUP0OPzhM_yArde8UBviTS15m94nGGTWjecRHhQ5t9zbFmP9CjKwgB8Bx-m9RfrQc9TaXzQvI5e2q3hbcepeBMcQdy4cFTkShKmTCh9OSHllCoVckIkky4o6jGmgjTSrovHpAxTwoUC7QlocRKE4AI5RLVsksERwoSHMeOCRAA6kAQZh3pVKbgngfkiDhrInasxERWouOG2eE9scOHGidF8YjSfVJpvoKvFK58losZfwnWj9SXBUuHHvzy_QBud4UMv6XX79ydo0yxV1p6coloxncEZWhdfxTifntuj8w3iIMCW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+EV+Scheduling+in+Charging+Stations+Under+Uncertain+Demands+and+Deadlines&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Sone%2C+Su+Pyae&rft.au=Lehtom%C3%A4ki%2C+Janne+J.&rft.au=Khan%2C+Zaheer&rft.au=Umebayashi%2C+Kenta&rft.date=2024-12-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=25&rft.issue=12&rft.spage=21484&rft.epage=21499&rft_id=info:doi/10.1109%2FTITS.2024.3466514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2024_3466514 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |