Robust EV Scheduling in Charging Stations Under Uncertain Demands and Deadlines

To enable widespread use of electric vehicles (EVs), large-scale public charging stations with fast chargers are being planned in places such as shopping malls and office car parks. Operators of public charging stations need to utilize EV scheduling algorithms that can satisfy charging demands with...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent transportation systems Ročník 25; číslo 12; s. 21484 - 21499
Hlavní autori: Sone, Su Pyae, Lehtomaki, Janne J., Khan, Zaheer, Umebayashi, Kenta, Kim, Kwang Soon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2024
Predmet:
ISSN:1524-9050, 1558-0016
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To enable widespread use of electric vehicles (EVs), large-scale public charging stations with fast chargers are being planned in places such as shopping malls and office car parks. Operators of public charging stations need to utilize EV scheduling algorithms that can satisfy charging demands with a minimum number of simultaneous charging sessions. In this paper, we propose EV charging scheduling algorithms that meet the charging demands and deadlines of EV users while minimizing the number of simultaneous charging sessions. An uncertainty-aware deep learning (DL) framework is also used to predict EV arrivals at a charging station. The predicted EV arrivals in turn are used to help the charging operator estimate how many charging sessions to order from the grid. Our DL model not only predicts the mean EV arrival rates but also the upper limits of EV arrivals, which enhances robustness against uncertainty in EV arrivals and helps estimate the maximum charging demand for a given interval. Moreover, to overcome the challenge of insufficient EV charging data for DL models, we construct a synthetic data model that takes into account multiple factors influencing EV arrivals, such as weather, events, weekdays, and weekends. Both online and offline approaches in the design of EV scheduling algorithms are utilized. The performances of the proposed algorithms are evaluated in terms of active charging sessions used to serve EV users. We also compare their performance with a baseline algorithm which is an offline optimal algorithm based on a mixed integer linear problem formulation.
AbstractList To enable widespread use of electric vehicles (EVs), large-scale public charging stations with fast chargers are being planned in places such as shopping malls and office car parks. Operators of public charging stations need to utilize EV scheduling algorithms that can satisfy charging demands with a minimum number of simultaneous charging sessions. In this paper, we propose EV charging scheduling algorithms that meet the charging demands and deadlines of EV users while minimizing the number of simultaneous charging sessions. An uncertainty-aware deep learning (DL) framework is also used to predict EV arrivals at a charging station. The predicted EV arrivals in turn are used to help the charging operator estimate how many charging sessions to order from the grid. Our DL model not only predicts the mean EV arrival rates but also the upper limits of EV arrivals, which enhances robustness against uncertainty in EV arrivals and helps estimate the maximum charging demand for a given interval. Moreover, to overcome the challenge of insufficient EV charging data for DL models, we construct a synthetic data model that takes into account multiple factors influencing EV arrivals, such as weather, events, weekdays, and weekends. Both online and offline approaches in the design of EV scheduling algorithms are utilized. The performances of the proposed algorithms are evaluated in terms of active charging sessions used to serve EV users. We also compare their performance with a baseline algorithm which is an offline optimal algorithm based on a mixed integer linear problem formulation.
Author Khan, Zaheer
Kim, Kwang Soon
Sone, Su Pyae
Lehtomaki, Janne J.
Umebayashi, Kenta
Author_xml – sequence: 1
  givenname: Su Pyae
  orcidid: 0000-0001-5373-9421
  surname: Sone
  fullname: Sone, Su Pyae
  email: sone.supyae@oulu.fi
  organization: Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
– sequence: 2
  givenname: Janne J.
  orcidid: 0000-0002-5081-1843
  surname: Lehtomaki
  fullname: Lehtomaki, Janne J.
  email: janne.lehtomaki@oulu.fi
  organization: Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
– sequence: 3
  givenname: Zaheer
  orcidid: 0000-0003-2951-5684
  surname: Khan
  fullname: Khan, Zaheer
  email: zaheer.khan@oulu.fi
  organization: Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
– sequence: 4
  givenname: Kenta
  orcidid: 0000-0002-4669-7187
  surname: Umebayashi
  fullname: Umebayashi, Kenta
  email: ume_k@cc.tuat.ac.jp
  organization: Department of Electrical and Electronic Engineering, Umebayashi Laboratory, Tokyo University of Agriculture and Technology, Fuchu, Japan
– sequence: 5
  givenname: Kwang Soon
  orcidid: 0000-0002-5706-174X
  surname: Kim
  fullname: Kim, Kwang Soon
  email: ks.kim@yonsei.ac.kr
  organization: Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
BookMark eNp9kM9Kw0AQxhepYFt9AMFDXiBxNvsvOUqtWigUbOs1bLKz7UqbyG568O3d0B7Eg5eZj-H7zTDfhIzarkVC7ilklEL5uFls1lkOOc8Yl1JQfkXGVIgiBaByNOicpyUIuCGTED7jlAtKx2T13tWn0Cfzj2Td7NGcDq7dJa5NZnvtd4Ne97p3XRuSbWvQx9qg73V0PONRtyYksUStTSQx3JJrqw8B7y59SrYv883sLV2uXhezp2XaMCj71BZgmNSqsUUBqGvOrZU1Y0YZQMupUlboQlJFlTFSs7qxCEUe7UxIBGRTQs97G9-F4NFWX94dtf-uKFRDItWQSDUkUl0SiYz6wzTu_FzvtTv8Sz6cSYeIvy4p4CUv2A8Jc3FC
CODEN ITISFG
CitedBy_id crossref_primary_10_3390_su17062501
crossref_primary_10_1016_j_energy_2025_137422
Cites_doi 10.1109/ACCESS.2021.3103119
10.1109/TTE.2021.3139674
10.3390/en15176195
10.1145/3307772.3328313
10.1109/TNN.2011.2162110
10.1109/ACCESS.2022.3166844
10.1213/ane.0000000000002864
10.2307/2110973
10.1109/TPWRD.2013.2272436
10.1109/ACCESS.2023.3267164
10.3390/app9091723
10.1145/2935764.2935786
10.1007/s10878-020-00633-w
10.1007/s12351-017-0291-z
10.1007/978-3-662-62185-1_2
10.1002/9780470192610
10.3390/en13164211
10.1016/j.apm.2019.05.007
10.1109/TSG.2015.2403287
10.5555/3045390.3045502
10.1023/A:1026543900054
10.1109/ACCESS.2019.2925559
10.1109/TSG.2021.3074437
10.1109/TITS.2018.2887194
10.1109/FSKD.2011.6019496
10.1109/ACCESS.2022.3166935
10.1109/PESGM.2017.8274166
10.1016/j.neucom.2017.01.062
10.1109/ICDMW.2017.19
10.1109/mele.2021.3093597
10.1109/APEC.1997.575743
10.1049/iet-stg.2019.0258
10.1109/MCOM.2016.1600346CM
10.3390/a10040122
10.1007/s10462-023-10562-9
10.1201/9780203489802
10.1201/9781420082869
10.1109/TVT.2018.2797002
10.1109/TSG.2011.2163174
10.1109/ACC.2012.6314939
10.3390/en14082233
10.1109/ICPECTS49113.2020.9336979
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3466514
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 21499
ExternalDocumentID 10_1109_TITS_2024_3466514
10704948
Genre orig-research
GrantInformation_xml – fundername: Research Council of Finland’s Robust6G Project under the 6Genesis Flagship
– fundername: EVOLVE project under the European Union’s (EU’s) Horizon Europe research and innovation program through the Marie Skłodowska-Curie grant (MSCA)
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c309t-f80d36a7cf880eab44ff6b33d7d0ef4177f5a861717dd6a3bcfe082cf8356e0e3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329019300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sat Nov 29 06:35:09 EST 2025
Tue Nov 18 21:29:00 EST 2025
Wed Aug 27 03:02:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-f80d36a7cf880eab44ff6b33d7d0ef4177f5a861717dd6a3bcfe082cf8356e0e3
ORCID 0000-0003-2951-5684
0000-0002-5706-174X
0000-0002-5081-1843
0000-0002-4669-7187
0000-0001-5373-9421
OpenAccessLink https://ieeexplore.ieee.org/document/10704948
PageCount 16
ParticipantIDs crossref_primary_10_1109_TITS_2024_3466514
crossref_citationtrail_10_1109_TITS_2024_3466514
ieee_primary_10704948
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Saha (ref44); 24
ref17
ref39
ref16
ref38
ref19
ref18
Wennberg (ref23) 2022
Borodin (ref42) 2005
ref24
ref46
ref45
ref26
ref48
McKinney (ref22) 2011; 14
ref25
ref47
ref20
ref41
ref21
ref43
Amara-Ouali (ref36) 2022
ref28
ref27
ref29
ref8
(ref1) 2022
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1109/ACCESS.2021.3103119
– ident: ref47
  doi: 10.1109/TTE.2021.3139674
– ident: ref6
  doi: 10.3390/en15176195
– ident: ref7
  doi: 10.1145/3307772.3328313
– ident: ref32
  doi: 10.1109/TNN.2011.2162110
– ident: ref34
  doi: 10.1109/ACCESS.2022.3166844
– ident: ref24
  doi: 10.1213/ane.0000000000002864
– ident: ref25
  doi: 10.2307/2110973
– volume: 14
  start-page: 1
  issue: 9
  year: 2011
  ident: ref22
  article-title: Pandas: A foundational python library for data analysis and statistics
  publication-title: python High Perform. Sci. Comput.
– start-page: 2010
  volume-title: Global Sales and Sales Market Share of Electric Cars
  year: 2022
  ident: ref1
– ident: ref27
  doi: 10.1109/TPWRD.2013.2272436
– ident: ref2
  doi: 10.1109/ACCESS.2023.3267164
– ident: ref30
  doi: 10.3390/app9091723
– ident: ref43
  doi: 10.1145/2935764.2935786
– ident: ref45
  doi: 10.1007/s10878-020-00633-w
– ident: ref38
  doi: 10.1007/s12351-017-0291-z
– ident: ref40
  doi: 10.1007/978-3-662-62185-1_2
– ident: ref46
  doi: 10.1002/9780470192610
– ident: ref8
  doi: 10.3390/en13164211
– ident: ref17
  doi: 10.1016/j.apm.2019.05.007
– ident: ref12
  doi: 10.1109/TSG.2015.2403287
– ident: ref33
  doi: 10.5555/3045390.3045502
– volume-title: Online Computation and Competitive Analysis
  year: 2005
  ident: ref42
– ident: ref28
  doi: 10.1023/A:1026543900054
– volume: 24
  start-page: 437
  volume-title: Proc. IARCS Annu. Conf. Found. Softw. Technol. Theor. Comput. Sci. (FSTTCS)
  ident: ref44
  article-title: Renting a cloud
– ident: ref48
  doi: 10.1109/ACCESS.2019.2925559
– ident: ref3
  doi: 10.1109/TSG.2021.3074437
– ident: ref20
  doi: 10.1109/TITS.2018.2887194
– ident: ref41
  doi: 10.1109/FSKD.2011.6019496
– ident: ref10
  doi: 10.1109/ACCESS.2022.3166935
– ident: ref21
  doi: 10.1109/PESGM.2017.8274166
– ident: ref26
  doi: 10.1016/j.neucom.2017.01.062
– ident: ref13
  doi: 10.1109/ICDMW.2017.19
– ident: ref16
  doi: 10.1109/mele.2021.3093597
– ident: ref11
  doi: 10.1109/APEC.1997.575743
– ident: ref35
  doi: 10.1049/iet-stg.2019.0258
– ident: ref37
  doi: 10.1109/MCOM.2016.1600346CM
– ident: ref18
  doi: 10.3390/a10040122
– ident: ref31
  doi: 10.1007/s10462-023-10562-9
– ident: ref39
  doi: 10.1201/9780203489802
– year: 2022
  ident: ref36
  article-title: Statistical modelling of electric vehicle charging behaviours
– ident: ref29
  doi: 10.1201/9781420082869
– ident: ref19
  doi: 10.1109/TVT.2018.2797002
– ident: ref14
  doi: 10.1109/TSG.2011.2163174
– ident: ref4
  doi: 10.1109/ACC.2012.6314939
– volume-title: TCCON Data From Caltech (U.S.), Release GGG2020.R0
  year: 2022
  ident: ref23
– ident: ref15
  doi: 10.3390/en14082233
– ident: ref9
  doi: 10.1109/ICPECTS49113.2020.9336979
SSID ssj0014511
Score 2.4622242
Snippet To enable widespread use of electric vehicles (EVs), large-scale public charging stations with fast chargers are being planned in places such as shopping malls...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 21484
SubjectTerms Data models
Deep learning
Electric vehicle charging
EV arrivals prediction
EV scheduling algorithm
Fast charging
Hospitals
optimizing EV operations with uncertainty
Prediction algorithms
prediction uncertainty
predictive modeling for EV charging stations
Predictive models
Scheduling
Scheduling algorithms
Synthetic data
time series forecasting
Uncertainty
uncertainty-aware forecasting
Title Robust EV Scheduling in Charging Stations Under Uncertain Demands and Deadlines
URI https://ieeexplore.ieee.org/document/10704948
Volume 25
WOSCitedRecordID wos001329019300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxPnFzl4EjrTJm3ao-iGXqa4KbuVJnmRgXaydv795qMb86DgJYTyUsovCe-9vo8fQpdglIIIjVuiRUoDxgsaFIqzgGoVxdIYJDryZBN8OEwnk-ypKVZ3tTAA4JLPoGenLpavZnJhf5WZG85dO5MWanHOfbHWKmRgG2255qgRCzISL0OYIcmuxw_jkXEFI9ajLEnikP1QQmusKk6pDHb_-Tl7aKexHvGN3-59tAHlAdpe6yl4iB6fZ2JR1bj_ikdmQ5TNNH_D0xLbwLplJMIjH32vsOM8MqP0aQH4Dj5s4S82g5kXylqgVQe9DPrj2_ugYU0IJCVZHeiUKJoUXGpzNaEQjGmdCEoVVwQ0CznXcZEawyXkSiUFFVKDsQOMOI0TIECPULuclXCMMBVJxoWkKYBxI0FliXmrkiJUwCOZxV1EljDmsmkpbpkt3nPnWpAst8jnFvm8Qb6LrlZLPn0_jb-EOxb1NUEP-Mkvz0_Rll3us03OULueL-AcbcqvelrNL9xx-Qbcg71P
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86BfXBz4nzMw8-CZ1tkzbto-jGhnOKm7K30iQXGWgna-ffb5J2Yz4o-BJCuYZySbi73t3vh9AlaKPAPR2WKB4Rh7KUOKlk1CFK-oHQDonyS7IJ1u9Ho1H8VDWr214YALDFZ9A0U5vLlxMxM7_K9A1nFs5kFa0FlPpe2a61SBoYqC0Lj-pTJ3aDeRLTc-PrYXc40MGgT5uEhmHg0R9maIlXxZqV9s4_P2gXbVf-I74pN3wPrUC2j7aWUAUP0OPzhM_yArde8UBviTS15m94nGGTWjecRHhQ5t9zbFmP9CjKwgB8Bx-m9RfrQc9TaXzQvI5e2q3hbcepeBMcQdy4cFTkShKmTCh9OSHllCoVckIkky4o6jGmgjTSrovHpAxTwoUC7QlocRKE4AI5RLVsksERwoSHMeOCRAA6kAQZh3pVKbgngfkiDhrInasxERWouOG2eE9scOHGidF8YjSfVJpvoKvFK58losZfwnWj9SXBUuHHvzy_QBud4UMv6XX79ydo0yxV1p6coloxncEZWhdfxTifntuj8w3iIMCW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+EV+Scheduling+in+Charging+Stations+Under+Uncertain+Demands+and+Deadlines&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Sone%2C+Su+Pyae&rft.au=Lehtom%C3%A4ki%2C+Janne+J.&rft.au=Khan%2C+Zaheer&rft.au=Umebayashi%2C+Kenta&rft.date=2024-12-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=25&rft.issue=12&rft.spage=21484&rft.epage=21499&rft_id=info:doi/10.1109%2FTITS.2024.3466514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2024_3466514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon