A simple stress correction method for explicit integration algorithm of elastoplastic constitutive models and its application to advanced anisotropic S-CLAY1 model
[Display omitted] The stress correction, which prevents stresses drifting from the yield surface, is a key step in the explicit scheme for integrating elastoplastic constitutive models in finite element analyses. In this paper, a simple, robust, and efficient stress correction method is proposed for...
Saved in:
| Published in: | Computers and geotechnics Vol. 148; p. 104817 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2022
|
| Subjects: | |
| ISSN: | 0266-352X, 1873-7633 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
The stress correction, which prevents stresses drifting from the yield surface, is a key step in the explicit scheme for integrating elastoplastic constitutive models in finite element analyses. In this paper, a simple, robust, and efficient stress correction method is proposed for improving the well-established explicit modified Euler scheme of Sloan et al. (2001). The method subtly proposes a single correction coefficient assuming that the stress components are proportional to the corrected stress components on the yield surface. The expression of the correction coefficient can be explicitly determined with the current stress state and the yield function, which allows the correction procedure to be easily and conveniently accomplished through multiplying the stress components by a single coefficient without resorting to the Newton iteration algorithm. The proposed method is applied to develop a user defined material (UMAT) subroutine for the advanced anisotropic elastoplastic model S-CLAY1 (Wheeler et al. 2003), which is subsequently used to simulate triaxial tests, the collapse of a rigid smooth square footing and a natural ground under embankment loading. The comparisons with other stress correction methods, the exact results from MATLAB, and the field measured values demonstrate the stability, robust, efficiency and validity of the proposed method. |
|---|---|
| AbstractList | [Display omitted]
The stress correction, which prevents stresses drifting from the yield surface, is a key step in the explicit scheme for integrating elastoplastic constitutive models in finite element analyses. In this paper, a simple, robust, and efficient stress correction method is proposed for improving the well-established explicit modified Euler scheme of Sloan et al. (2001). The method subtly proposes a single correction coefficient assuming that the stress components are proportional to the corrected stress components on the yield surface. The expression of the correction coefficient can be explicitly determined with the current stress state and the yield function, which allows the correction procedure to be easily and conveniently accomplished through multiplying the stress components by a single coefficient without resorting to the Newton iteration algorithm. The proposed method is applied to develop a user defined material (UMAT) subroutine for the advanced anisotropic elastoplastic model S-CLAY1 (Wheeler et al. 2003), which is subsequently used to simulate triaxial tests, the collapse of a rigid smooth square footing and a natural ground under embankment loading. The comparisons with other stress correction methods, the exact results from MATLAB, and the field measured values demonstrate the stability, robust, efficiency and validity of the proposed method. |
| ArticleNumber | 104817 |
| Author | Li, Lin Sun, De'an Wang, Hui Li, Jingpei |
| Author_xml | – sequence: 1 givenname: Hui surname: Wang fullname: Wang, Hui email: wanghui97@tongji.edu.cn organization: Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, China – sequence: 2 givenname: Lin surname: Li fullname: Li, Lin email: lilin_sanmao@163.com organization: School of Highway, Chang’an University, Xi’an 710064, China – sequence: 3 givenname: Jingpei surname: Li fullname: Li, Jingpei email: lijp2773@tongji.edu.cn organization: Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, China – sequence: 4 givenname: De'an surname: Sun fullname: Sun, De'an organization: Department of Civil Engineering, Shanghai University, Shanghai, China |
| BookMark | eNqFkd1KwzAYhoNMcFMvQcgNdCbNmmZ4IGP4BwMPVNCjkKZfZkbblCQOvR5v1HT1yBNP8kI-npd8T2Zo0rkOELqgZE4J5Ze7uXZtvwU3z0mep7uFoOURmlJRsqzkjE3QlOScZ6zIX0_QLIQdSdxSLKfoe4WDbfsGcIgeQsDaeQ86WtfhFuK7q7FxHsNn31htI7ZdhK1Xh7lqts7b-N5iZzA0KkTXD6fVqaVLGT-i3QNuXQ1NwKqrsY0p-6FrrIgOq3qvOg11mtvgond94p-y9Wb1Rkf0DB0b1QQ4_81T9HJ787y-zzaPdw_r1SbTjCxjZpiiolIglDGVBiKWtCjMgnEKVVnkXGihla4IpZwrTQswBVfAdSHqBa0UY6foauzV3oXgwci08eGd0SvbSErk4Fvu5K9vOfiWo-9EF3_o3ttW-a9_ueuRS45gb8HLoC0MRuzwEbJ29p-GH8klpaQ |
| CitedBy_id | crossref_primary_10_1016_j_compgeo_2023_105253 crossref_primary_10_1061_IJGNAI_GMENG_9842 crossref_primary_10_1016_j_compgeo_2023_105992 crossref_primary_10_1007_s10706_024_03006_w crossref_primary_10_1016_j_compgeo_2025_107242 crossref_primary_10_1016_j_ijrmms_2025_106255 crossref_primary_10_1007_s11440_023_02105_x crossref_primary_10_1016_j_compgeo_2022_105218 crossref_primary_10_1016_j_compgeo_2024_106604 crossref_primary_10_1002_nag_3680 crossref_primary_10_1016_j_soildyn_2023_108060 crossref_primary_10_1098_rspa_2025_0001 |
| Cites_doi | 10.1016/j.compgeo.2012.03.007 10.1016/j.compgeo.2003.11.003 10.1016/j.compgeo.2020.103961 10.1016/j.compgeo.2009.07.004 10.1016/S0045-7825(00)00301-7 10.1016/j.compgeo.2019.02.005 10.1002/nme.1620220310 10.1002/nag.2533 10.1139/T10-019 10.1016/j.compgeo.2014.03.003 10.1002/nag.179 10.1002/nag.1610060105 10.1002/(SICI)1097-0207(19960530)39:10<1737::AID-NME927>3.0.CO;2-5 10.1016/0045-7825(85)90070-2 10.1007/s00603-021-02757-9 10.1115/1.4010747 10.1016/j.compgeo.2014.03.016 10.1108/02644400110365842 10.1002/nag.2418 10.1002/nag.690 10.1002/nme.1620240505 10.1002/nag.1610090204 10.1061/(ASCE)1532-3641(2006)6:3(147) 10.3208/sandf1972.27.3_71 10.1016/0045-7825(94)90094-9 10.1002/nag.875 10.1002/nme.1620050111 10.1016/S0045-7949(96)00373-2 10.1016/j.compgeo.2015.04.003 10.1016/j.compgeo.2019.103198 10.1080/19386362.2016.1221575 10.1007/978-981-13-0095-0_9 10.1016/j.compgeo.2013.12.009 10.1016/0266-352X(92)90015-L 10.1016/j.jrmge.2021.10.016 10.1007/s004660000166 10.1002/nag.3321 10.1007/s11440-018-0684-z 10.1002/nag.140 10.1002/nag.456 10.1061/(ASCE)GM.1943-5622.0002335 10.1016/0045-7949(83)90033-0 10.1007/BF01932959 10.1139/t02-119 10.1007/s10483-014-1859-6 10.1007/s11440-017-0587-4 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compgeo.2022.104817 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7633 |
| ExternalDocumentID | 10_1016_j_compgeo_2022_104817 S0266352X22001719 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SES SET SEW SPC SPCBC SSE SST SSV SSZ T5K TN5 WH7 WUQ ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c309t-f3a18bae8affbce089155f4361eb75268c8cacb01166ac15ef56ae6c58d41ba33 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809236500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-352X |
| IngestDate | Sat Nov 29 07:23:54 EST 2025 Tue Nov 18 22:51:08 EST 2025 Fri Feb 23 02:40:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Correction coefficient Modified Euler algorithm Stress correction Explicit scheme Anisotropic elastoplastic model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-f3a18bae8affbce089155f4361eb75268c8cacb01166ac15ef56ae6c58d41ba33 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compgeo_2022_104817 crossref_primary_10_1016_j_compgeo_2022_104817 elsevier_sciencedirect_doi_10_1016_j_compgeo_2022_104817 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 2022-08-00 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers and geotechnics |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wissmann, Hauck (b0090) 1983; 17 Chen, Mo (bib274) 2022 Potts, Ganendra (b0150) 1994; 119 Hu, Liu (b0035) 2014; 55 Simo, Taylor (b0045) 1986; 22 Abeda, Sołowskia (b0145) 2020; 128 Chen, Zhang (bib272) 2022; 55 Simo, Taylor (b0040) 1985; 48 Zhao, Sheng, Rouainia, Sloan (b0010) 2005; 29 Ding, Huang, Sheng, Sloan (b0115) 2015; 68 Sloan, Abbo, Sheng (b0005) 2001; 18 Manzari, Prachathananukit (b0085) 2001; 25 Zhou, He, Sun (bib273) 2022; 46 Liu, Chen, Voyiadjis (b0030) 2019; 29 Sivasithamparam, Rezania (b0270) 2017; 11 Castro, Karstunen, Sivasithamparam (b0020) 2014; 59 Sołowski, Hofmann, Hofstetter, Sheng, Sloan (b0080) 2012; 44 Zhou, A.N., Wu, S.S., Li, J., 2018. A constitutive model for unsaturated soils using degree of capillary saturation and effective interparticle stress as constitutive variables. In: 4th GeoShanghai International Conference on Multi-Physics Processes in Soil Mechanics and Advances in Geotechnical Testing, Shanghai, China. Hashash, Whittle (b0095) 1992; 14 Michalowski, R.L., Dawson, E.M., 2002. Three-dimensional analysis of limit loads on Mohr-Coulomb soil, vol. 1. Poland: Foundations of Civil and Environmental Engineering, Poznan University of Technology Press. p. 137–147. Gourvenec, Randolph, Kingsnorth (b0225) 2006; 6 Ma, Wei, Chen, Wei (b0055) 2014; 35 Sloan, Randolph (b0195) 1982; 6 Iizuka, Ohta (b0230) 1987; 27 Rouainia, Wood (b0250) 2001; 25 Chen, Li, Li, Sun (bib271) 2022; 22 Zhang, H.W., Zhou, L., 2008. Implicit integration of a chemo-plastic constitutive model for partially saturated soils. 32, 1715–1735. Castro (b0015) 2014; 60 Manzari, Noor (b0065) 1997; 63 Zhang, Zhou (b0125) 2016; 40 Heeres, O.M., Borst, R.D., 1999. Robust modelling of cyclic soil behaviour using a subloading model. In: Proceedings of 7th International Conference on Numerical Models in Geomechanics NUMOG VII, Pande, G.N., Pietruszczak, S.(Eds.). Balkema: Rotterdam, 27–32. Potts, Gens (b0200) 1985; 9 Wang, Wu, Peng, He, Cui (b0130) 2018; 13 Potts, Zdravkovic (b0215) 2001 Sun, Matsuoka, Yao, Ishii (b0235) 2004; 31 Nayak, Zienkiewicz (b0185) 1972; 5 Wheeler, Naatanen, Karstunen, Lojander (b0260) 2003; 40 Sołowskia, Gallipolib (b0110) 2010; 37 Andrianopoulos, Papadimitriou, Bouckovalas (b0105) 2010; 34 Castro, Karstunen (b0265) 2010; 47 Zhou, Zhang (b0120) 2015; 55 Abbo, Sloan (b0100) 1996; 39 Shield, Drucker (b0220) 1953; 20 Sivasithamparam, Castro (b0025) 2016; 40 Borja, Lin, Montans (b0075) 2001; 190 Sloan (b0180) 1987; 24 Crisfield (b0205) 1991 Sheng, D.C., Sloan, S.W0, Yu, H.S., 2000. Aspects of finite elment implementation of critical state models. Cmput. Mech. 26, 185–196. Geng, D.J., Dai, N., Guo, P.J., Zhou, S.H., Di, H.G., 2021. Implicit numerical integration of highly nonlinear plasticity models. 132, 103961. Sivasithamparam, Castro (b0210) 2017; 13 Zhang, Zhou, Nazem, Cater (b0140) 2019; 110 Dowell, Jarratt (b0240) 1972; 12 Owen, Hinton (b0190) 1980 Sivasithamparam (10.1016/j.compgeo.2022.104817_b0025) 2016; 40 Owen (10.1016/j.compgeo.2022.104817_b0190) 1980 Sun (10.1016/j.compgeo.2022.104817_b0235) 2004; 31 Zhou (10.1016/j.compgeo.2022.104817_b0120) 2015; 55 Zhang (10.1016/j.compgeo.2022.104817_b0125) 2016; 40 Wissmann (10.1016/j.compgeo.2022.104817_b0090) 1983; 17 Ma (10.1016/j.compgeo.2022.104817_b0055) 2014; 35 Manzari (10.1016/j.compgeo.2022.104817_b0065) 1997; 63 Potts (10.1016/j.compgeo.2022.104817_b0200) 1985; 9 Zhao (10.1016/j.compgeo.2022.104817_b0010) 2005; 29 10.1016/j.compgeo.2022.104817_b0070 Chen (10.1016/j.compgeo.2022.104817_bib271) 2022; 22 Liu (10.1016/j.compgeo.2022.104817_b0030) 2019; 29 Ding (10.1016/j.compgeo.2022.104817_b0115) 2015; 68 Potts (10.1016/j.compgeo.2022.104817_b0150) 1994; 119 Sołowski (10.1016/j.compgeo.2022.104817_b0080) 2012; 44 Gourvenec (10.1016/j.compgeo.2022.104817_b0225) 2006; 6 Crisfield (10.1016/j.compgeo.2022.104817_b0205) 1991 10.1016/j.compgeo.2022.104817_b0245 Borja (10.1016/j.compgeo.2022.104817_b0075) 2001; 190 Wang (10.1016/j.compgeo.2022.104817_b0130) 2018; 13 Castro (10.1016/j.compgeo.2022.104817_b0020) 2014; 59 Simo (10.1016/j.compgeo.2022.104817_b0040) 1985; 48 Shield (10.1016/j.compgeo.2022.104817_b0220) 1953; 20 Simo (10.1016/j.compgeo.2022.104817_b0045) 1986; 22 Wheeler (10.1016/j.compgeo.2022.104817_b0260) 2003; 40 Castro (10.1016/j.compgeo.2022.104817_b0015) 2014; 60 Hashash (10.1016/j.compgeo.2022.104817_b0095) 1992; 14 10.1016/j.compgeo.2022.104817_b0255 Sołowskia (10.1016/j.compgeo.2022.104817_b0110) 2010; 37 10.1016/j.compgeo.2022.104817_b0135 Abeda (10.1016/j.compgeo.2022.104817_b0145) 2020; 128 Manzari (10.1016/j.compgeo.2022.104817_b0085) 2001; 25 Andrianopoulos (10.1016/j.compgeo.2022.104817_b0105) 2010; 34 Rouainia (10.1016/j.compgeo.2022.104817_b0250) 2001; 25 10.1016/j.compgeo.2022.104817_b0050 Sloan (10.1016/j.compgeo.2022.104817_b0180) 1987; 24 Sloan (10.1016/j.compgeo.2022.104817_b0005) 2001; 18 Chen (10.1016/j.compgeo.2022.104817_bib272) 2022; 55 Chen (10.1016/j.compgeo.2022.104817_bib274) 2022 Dowell (10.1016/j.compgeo.2022.104817_b0240) 1972; 12 Zhang (10.1016/j.compgeo.2022.104817_b0140) 2019; 110 Sloan (10.1016/j.compgeo.2022.104817_b0195) 1982; 6 Sivasithamparam (10.1016/j.compgeo.2022.104817_b0210) 2017; 13 Sivasithamparam (10.1016/j.compgeo.2022.104817_b0270) 2017; 11 Potts (10.1016/j.compgeo.2022.104817_b0215) 2001 Castro (10.1016/j.compgeo.2022.104817_b0265) 2010; 47 Abbo (10.1016/j.compgeo.2022.104817_b0100) 1996; 39 10.1016/j.compgeo.2022.104817_b0060 Iizuka (10.1016/j.compgeo.2022.104817_b0230) 1987; 27 Zhou (10.1016/j.compgeo.2022.104817_bib273) 2022; 46 Nayak (10.1016/j.compgeo.2022.104817_b0185) 1972; 5 Hu (10.1016/j.compgeo.2022.104817_b0035) 2014; 55 |
| References_xml | – volume: 110 start-page: 222 year: 2019 end-page: 241 ident: b0140 article-title: Finite element implementation of a fully coupled hydro-mechanical model and unsaturated soil analysis under hydraulic and mechanical loads publication-title: Comput. Geotech. – reference: Zhou, A.N., Wu, S.S., Li, J., 2018. A constitutive model for unsaturated soils using degree of capillary saturation and effective interparticle stress as constitutive variables. In: 4th GeoShanghai International Conference on Multi-Physics Processes in Soil Mechanics and Advances in Geotechnical Testing, Shanghai, China. – volume: 25 start-page: 525 year: 2001 end-page: 549 ident: b0085 article-title: On integration of a cyclic soil plasticity model publication-title: Int. J. Numer. Anal. Meth. Geomech. – reference: Heeres, O.M., Borst, R.D., 1999. Robust modelling of cyclic soil behaviour using a subloading model. In: Proceedings of 7th International Conference on Numerical Models in Geomechanics NUMOG VII, Pande, G.N., Pietruszczak, S.(Eds.). Balkema: Rotterdam, 27–32. – year: 1991 ident: b0205 article-title: Non-linear Finite Element Analysis of Solids and Structures – volume: 55 start-page: 24 year: 2014 end-page: 41 ident: b0035 article-title: Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay publication-title: Comput. Geotech. – volume: 29 start-page: 103198 year: 2019 ident: b0030 article-title: Integration of anisotropic modified Cam Clay model in finite element publication-title: Comput. Geotech. – volume: 44 start-page: 22 year: 2012 end-page: 33 ident: b0080 article-title: A comparative study of stress integration methods for the Barcelona Basic Model publication-title: Comput. Geotech. – volume: 13 start-page: 729 year: 2017 end-page: 746 ident: b0210 article-title: Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution publication-title: Acta Geotech. – volume: 55 start-page: 1743 year: 2022 end-page: 1757 ident: bib272 article-title: A machine learning-based method for predicting end-bearing capacity of rock-socketed shafts publication-title: Rock Mech. Rock Eng. – volume: 128 start-page: 10384 year: 2020 ident: b0145 article-title: Finite element method algorithm for geotechnical applications based on Runge-Kutta scheme with automatic error control publication-title: Comput. Geotech. – volume: 12 start-page: 503 year: 1972 end-page: 508 ident: b0240 article-title: The Pegasus method for computing the root of an equation publication-title: BIT – volume: 48 start-page: 101 year: 1985 end-page: 118 ident: b0040 article-title: Consistent tangent operators for rate-independent elastoplasticity publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 39 start-page: 1737 year: 1996 end-page: 1759 ident: b0100 article-title: An automatic load stepping algorithm with error control publication-title: Int. J. Numer. Meth. Eng. – year: 2022 ident: bib274 article-title: An undrained expansion solution of cylindrical cavity in SANICLAY for K0-consolidated clays publication-title: J. Rock Mech. Geotech. Eng. – year: 1980 ident: b0190 article-title: Finite Elements in Plasticity: Theory and Practice – volume: 34 start-page: 1586 year: 2010 end-page: 1614 ident: b0105 article-title: Explicit integration of bounding surface model for the analysis of earthquake soil liquefaction publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 27 start-page: 71 year: 1987 end-page: 87 ident: b0230 article-title: A determination procedure of input parameters in elasto-viscoplastic finite element analysis publication-title: Soils Found. – volume: 40 start-page: 596 year: 2016 end-page: 621 ident: b0025 article-title: An anisotropic elastoplastic model for soft clays based on logarithmic contractancy publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 5 start-page: 113 year: 1972 end-page: 135 ident: b0185 article-title: Elasto-plastic stress analysis: a generalisation for various constitutive relations including strain softening publication-title: Int. J. Numer. Meth. Eng. – volume: 9 start-page: 149 year: 1985 end-page: 159 ident: b0200 article-title: A critical assessment of methods of correcting for drift from the yield surface in elastoplastic finite element analysis publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 11 start-page: 343 year: 2017 end-page: 354 ident: b0270 article-title: The comparison of modelling inherent and evolving anisotropy on the behaviour of a full-scale embankment publication-title: Int. J. Geotech. Eng. – volume: 40 start-page: 403 year: 2003 end-page: 418 ident: b0260 article-title: An anisotropic elastoplastic model for soft clays publication-title: Can. Geotech. J. – reference: Geng, D.J., Dai, N., Guo, P.J., Zhou, S.H., Di, H.G., 2021. Implicit numerical integration of highly nonlinear plasticity models. 132, 103961. – reference: Zhang, H.W., Zhou, L., 2008. Implicit integration of a chemo-plastic constitutive model for partially saturated soils. 32, 1715–1735. – volume: 37 start-page: 59 year: 2010 end-page: 67 ident: b0110 article-title: Explicit stress integration with error control for the Barcelona Basic Model Part I: Algorithms formulations publication-title: Comput. Geotech. – volume: 47 start-page: 1127 year: 2010 end-page: 1138 ident: b0265 article-title: Numerical simulations of stone column installation publication-title: Can. Geotech. J. – volume: 190 start-page: 3293 year: 2001 end-page: 3323 ident: b0075 article-title: Cam-clay plasticity. Part IV: implicit integration of anisotropic bounding surface model with nonlinear hyper-elasticity and ellipsoidal loading function publication-title: Comput. Methods Appl. Mech. Eng. – volume: 20 start-page: 453 year: 1953 end-page: 460 ident: b0220 article-title: The application of limit analysis to punch indentation problems publication-title: J. Appl. Mech. – volume: 18 start-page: 121 year: 2001 end-page: 194 ident: b0005 article-title: Refined explicit integration of elastoplastic models with automatic error control publication-title: Eng. Comput. – volume: 55 start-page: 943 year: 2015 end-page: 961 ident: b0120 article-title: Explicit integration scheme for a non-isothermal elastoplastic model with convex and nonconvex subloading surfaces publication-title: Comput. Geotech. – volume: 22 start-page: 04022023 year: 2022 ident: bib271 article-title: A generic analytical elastic solution for excavation responses of an arbitrarily-shaped deep opening under biaxial in-situ stresses publication-title: Int. J. Geomech. – volume: 22 start-page: 649 year: 1986 end-page: 670 ident: b0045 article-title: Return mapping algorithm for plane stress elasto-plasticity publication-title: Int. J. Numer. Methods Eng. – volume: 46 start-page: 779 year: 2022 end-page: 797 ident: bib273 article-title: Three-dimensional thermal modeling and dimensioning design in the nuclear waste repository publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 17 start-page: 89 year: 1983 end-page: 95 ident: b0090 article-title: Efficient elastic-plastic finite element analysis with higher order stress point algorithms publication-title: Comput. Struc. – volume: 63 start-page: 385 year: 1997 end-page: 395 ident: b0065 article-title: On implicit integration of bounding surface plasticity models publication-title: Comput. Struct. – volume: 6 start-page: 147 year: 2006 end-page: 157 ident: b0225 article-title: Undrained bearing capacity of square and rectangular footings publication-title: Int. J. Geomech. – volume: 68 start-page: 78 year: 2015 end-page: 90 ident: b0115 article-title: Numerical study on finite element implementation of hypoplastic models publication-title: Comput. Geotech. – volume: 13 start-page: 1265 year: 2018 end-page: 1281 ident: b0130 article-title: Numerical integration and FE implementation of a hypoplastic constitutive model publication-title: Acta Geotech. – reference: Michalowski, R.L., Dawson, E.M., 2002. Three-dimensional analysis of limit loads on Mohr-Coulomb soil, vol. 1. Poland: Foundations of Civil and Environmental Engineering, Poznan University of Technology Press. p. 137–147. – volume: 29 start-page: 1209 year: 2005 end-page: 1229 ident: b0010 article-title: Explicit stress integration of complex soil models publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 14 start-page: 59 year: 1992 end-page: 83 ident: b0095 article-title: Integration of the modified Cam-clay model in nonlinear finite element analysis publication-title: Comput. Geotech. – volume: 25 start-page: 1305 year: 2001 end-page: 1325 ident: b0250 article-title: Implicit numerical integration for a kinematic hardening soil plasticity model publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 59 start-page: 87 year: 2014 end-page: 97 ident: b0020 article-title: Influence of stone column installation on settlement reduction publication-title: Comput. Geotech. – volume: 35 start-page: 1129 year: 2014 end-page: 1154 ident: b0055 article-title: Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior publication-title: Appl. Math. Mech. – volume: 119 start-page: 341 year: 1994 end-page: 354 ident: b0150 article-title: An evaluation of substepping and implicit stress point algorithms publication-title: Comput. Methods Appl. Mech. Eng. – volume: 31 start-page: 37 year: 2004 end-page: 46 ident: b0235 article-title: An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis publication-title: Comput. Geotech. – volume: 24 start-page: 893 year: 1987 end-page: 911 ident: b0180 article-title: Substepping schemes for the numerical integration of elastoplastic stress-strain relations publication-title: Int. J. Numer. Methods. Eng. – reference: Sheng, D.C., Sloan, S.W0, Yu, H.S., 2000. Aspects of finite elment implementation of critical state models. Cmput. Mech. 26, 185–196. – volume: 6 start-page: 47 year: 1982 end-page: 76 ident: b0195 article-title: Numerical prediction of collapse loads using finite element methods publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 60 start-page: 77 year: 2014 end-page: 87 ident: b0015 article-title: Numerical modelling of stone columns beneath a rigid footing publication-title: Comput. Geotech. – volume: 40 start-page: 2353 year: 2016 end-page: 2382 ident: b0125 article-title: Explicit integration of a porosity-dependent hydro-mechanical model for unsaturated soils publication-title: Int. J. Numer. Anal. Meth. Geomech. – year: 2001 ident: b0215 article-title: Finite element analysis in geotechnical engineering: theory & application – year: 1991 ident: 10.1016/j.compgeo.2022.104817_b0205 – volume: 44 start-page: 22 year: 2012 ident: 10.1016/j.compgeo.2022.104817_b0080 article-title: A comparative study of stress integration methods for the Barcelona Basic Model publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2012.03.007 – volume: 31 start-page: 37 year: 2004 ident: 10.1016/j.compgeo.2022.104817_b0235 article-title: An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2003.11.003 – ident: 10.1016/j.compgeo.2022.104817_b0060 doi: 10.1016/j.compgeo.2020.103961 – volume: 37 start-page: 59 year: 2010 ident: 10.1016/j.compgeo.2022.104817_b0110 article-title: Explicit stress integration with error control for the Barcelona Basic Model Part I: Algorithms formulations publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2009.07.004 – volume: 190 start-page: 3293 year: 2001 ident: 10.1016/j.compgeo.2022.104817_b0075 article-title: Cam-clay plasticity. Part IV: implicit integration of anisotropic bounding surface model with nonlinear hyper-elasticity and ellipsoidal loading function publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(00)00301-7 – volume: 110 start-page: 222 year: 2019 ident: 10.1016/j.compgeo.2022.104817_b0140 article-title: Finite element implementation of a fully coupled hydro-mechanical model and unsaturated soil analysis under hydraulic and mechanical loads publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2019.02.005 – year: 1980 ident: 10.1016/j.compgeo.2022.104817_b0190 – volume: 22 start-page: 649 year: 1986 ident: 10.1016/j.compgeo.2022.104817_b0045 article-title: Return mapping algorithm for plane stress elasto-plasticity publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620220310 – volume: 40 start-page: 2353 issue: 17 year: 2016 ident: 10.1016/j.compgeo.2022.104817_b0125 article-title: Explicit integration of a porosity-dependent hydro-mechanical model for unsaturated soils publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.2533 – volume: 47 start-page: 1127 issue: 10 year: 2010 ident: 10.1016/j.compgeo.2022.104817_b0265 article-title: Numerical simulations of stone column installation publication-title: Can. Geotech. J. doi: 10.1139/T10-019 – volume: 59 start-page: 87 year: 2014 ident: 10.1016/j.compgeo.2022.104817_b0020 article-title: Influence of stone column installation on settlement reduction publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2014.03.003 – volume: 25 start-page: 1305 year: 2001 ident: 10.1016/j.compgeo.2022.104817_b0250 article-title: Implicit numerical integration for a kinematic hardening soil plasticity model publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.179 – volume: 6 start-page: 47 year: 1982 ident: 10.1016/j.compgeo.2022.104817_b0195 article-title: Numerical prediction of collapse loads using finite element methods publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.1610060105 – volume: 39 start-page: 1737 year: 1996 ident: 10.1016/j.compgeo.2022.104817_b0100 article-title: An automatic load stepping algorithm with error control publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(19960530)39:10<1737::AID-NME927>3.0.CO;2-5 – volume: 48 start-page: 101 year: 1985 ident: 10.1016/j.compgeo.2022.104817_b0040 article-title: Consistent tangent operators for rate-independent elastoplasticity publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/0045-7825(85)90070-2 – volume: 55 start-page: 1743 year: 2022 ident: 10.1016/j.compgeo.2022.104817_bib272 article-title: A machine learning-based method for predicting end-bearing capacity of rock-socketed shafts publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-021-02757-9 – volume: 20 start-page: 453 year: 1953 ident: 10.1016/j.compgeo.2022.104817_b0220 article-title: The application of limit analysis to punch indentation problems publication-title: J. Appl. Mech. doi: 10.1115/1.4010747 – volume: 60 start-page: 77 year: 2014 ident: 10.1016/j.compgeo.2022.104817_b0015 article-title: Numerical modelling of stone columns beneath a rigid footing publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2014.03.016 – volume: 18 start-page: 121 issue: 1/2 year: 2001 ident: 10.1016/j.compgeo.2022.104817_b0005 article-title: Refined explicit integration of elastoplastic models with automatic error control publication-title: Eng. Comput. doi: 10.1108/02644400110365842 – volume: 40 start-page: 596 year: 2016 ident: 10.1016/j.compgeo.2022.104817_b0025 article-title: An anisotropic elastoplastic model for soft clays based on logarithmic contractancy publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.2418 – year: 2001 ident: 10.1016/j.compgeo.2022.104817_b0215 – ident: 10.1016/j.compgeo.2022.104817_b0050 doi: 10.1002/nag.690 – volume: 55 start-page: 943 issue: 5 year: 2015 ident: 10.1016/j.compgeo.2022.104817_b0120 article-title: Explicit integration scheme for a non-isothermal elastoplastic model with convex and nonconvex subloading surfaces publication-title: Comput. Geotech. – volume: 24 start-page: 893 year: 1987 ident: 10.1016/j.compgeo.2022.104817_b0180 article-title: Substepping schemes for the numerical integration of elastoplastic stress-strain relations publication-title: Int. J. Numer. Methods. Eng. doi: 10.1002/nme.1620240505 – volume: 9 start-page: 149 year: 1985 ident: 10.1016/j.compgeo.2022.104817_b0200 article-title: A critical assessment of methods of correcting for drift from the yield surface in elastoplastic finite element analysis publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.1610090204 – volume: 6 start-page: 147 issue: 3 year: 2006 ident: 10.1016/j.compgeo.2022.104817_b0225 article-title: Undrained bearing capacity of square and rectangular footings publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)1532-3641(2006)6:3(147) – volume: 27 start-page: 71 issue: 3 year: 1987 ident: 10.1016/j.compgeo.2022.104817_b0230 article-title: A determination procedure of input parameters in elasto-viscoplastic finite element analysis publication-title: Soils Found. doi: 10.3208/sandf1972.27.3_71 – volume: 119 start-page: 341 year: 1994 ident: 10.1016/j.compgeo.2022.104817_b0150 article-title: An evaluation of substepping and implicit stress point algorithms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(94)90094-9 – volume: 34 start-page: 1586 issue: 15 year: 2010 ident: 10.1016/j.compgeo.2022.104817_b0105 article-title: Explicit integration of bounding surface model for the analysis of earthquake soil liquefaction publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.875 – volume: 5 start-page: 113 year: 1972 ident: 10.1016/j.compgeo.2022.104817_b0185 article-title: Elasto-plastic stress analysis: a generalisation for various constitutive relations including strain softening publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1620050111 – volume: 128 start-page: 10384 year: 2020 ident: 10.1016/j.compgeo.2022.104817_b0145 article-title: Finite element method algorithm for geotechnical applications based on Runge-Kutta scheme with automatic error control publication-title: Comput. Geotech. – volume: 63 start-page: 385 year: 1997 ident: 10.1016/j.compgeo.2022.104817_b0065 article-title: On implicit integration of bounding surface plasticity models publication-title: Comput. Struct. doi: 10.1016/S0045-7949(96)00373-2 – volume: 68 start-page: 78 year: 2015 ident: 10.1016/j.compgeo.2022.104817_b0115 article-title: Numerical study on finite element implementation of hypoplastic models publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2015.04.003 – volume: 29 start-page: 103198 issue: 2019 year: 2019 ident: 10.1016/j.compgeo.2022.104817_b0030 article-title: Integration of anisotropic modified Cam Clay model in finite element publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2019.103198 – volume: 11 start-page: 343 issue: 4 year: 2017 ident: 10.1016/j.compgeo.2022.104817_b0270 article-title: The comparison of modelling inherent and evolving anisotropy on the behaviour of a full-scale embankment publication-title: Int. J. Geotech. Eng. doi: 10.1080/19386362.2016.1221575 – ident: 10.1016/j.compgeo.2022.104817_b0135 doi: 10.1007/978-981-13-0095-0_9 – volume: 55 start-page: 24 issue: 2014 year: 2014 ident: 10.1016/j.compgeo.2022.104817_b0035 article-title: Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2013.12.009 – volume: 14 start-page: 59 year: 1992 ident: 10.1016/j.compgeo.2022.104817_b0095 article-title: Integration of the modified Cam-clay model in nonlinear finite element analysis publication-title: Comput. Geotech. doi: 10.1016/0266-352X(92)90015-L – year: 2022 ident: 10.1016/j.compgeo.2022.104817_bib274 article-title: An undrained expansion solution of cylindrical cavity in SANICLAY for K0-consolidated clays publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2021.10.016 – ident: 10.1016/j.compgeo.2022.104817_b0245 doi: 10.1007/s004660000166 – volume: 46 start-page: 779 issue: 4 year: 2022 ident: 10.1016/j.compgeo.2022.104817_bib273 article-title: Three-dimensional thermal modeling and dimensioning design in the nuclear waste repository publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.3321 – ident: 10.1016/j.compgeo.2022.104817_b0255 – volume: 13 start-page: 1265 issue: 6 year: 2018 ident: 10.1016/j.compgeo.2022.104817_b0130 article-title: Numerical integration and FE implementation of a hypoplastic constitutive model publication-title: Acta Geotech. doi: 10.1007/s11440-018-0684-z – volume: 25 start-page: 525 year: 2001 ident: 10.1016/j.compgeo.2022.104817_b0085 article-title: On integration of a cyclic soil plasticity model publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.140 – volume: 29 start-page: 1209 year: 2005 ident: 10.1016/j.compgeo.2022.104817_b0010 article-title: Explicit stress integration of complex soil models publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.456 – volume: 22 start-page: 04022023 issue: 4 year: 2022 ident: 10.1016/j.compgeo.2022.104817_bib271 article-title: A generic analytical elastic solution for excavation responses of an arbitrarily-shaped deep opening under biaxial in-situ stresses publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0002335 – volume: 17 start-page: 89 year: 1983 ident: 10.1016/j.compgeo.2022.104817_b0090 article-title: Efficient elastic-plastic finite element analysis with higher order stress point algorithms publication-title: Comput. Struc. doi: 10.1016/0045-7949(83)90033-0 – volume: 12 start-page: 503 year: 1972 ident: 10.1016/j.compgeo.2022.104817_b0240 article-title: The Pegasus method for computing the root of an equation publication-title: BIT doi: 10.1007/BF01932959 – volume: 40 start-page: 403 issue: 2 year: 2003 ident: 10.1016/j.compgeo.2022.104817_b0260 article-title: An anisotropic elastoplastic model for soft clays publication-title: Can. Geotech. J. doi: 10.1139/t02-119 – volume: 35 start-page: 1129 issue: 9 year: 2014 ident: 10.1016/j.compgeo.2022.104817_b0055 article-title: Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior publication-title: Appl. Math. Mech. doi: 10.1007/s10483-014-1859-6 – volume: 13 start-page: 729 issue: 3 year: 2017 ident: 10.1016/j.compgeo.2022.104817_b0210 article-title: Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution publication-title: Acta Geotech. doi: 10.1007/s11440-017-0587-4 – ident: 10.1016/j.compgeo.2022.104817_b0070 |
| SSID | ssj0016989 |
| Score | 2.395581 |
| Snippet | [Display omitted]
The stress correction, which prevents stresses drifting from the yield surface, is a key step in the explicit scheme for integrating... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104817 |
| SubjectTerms | Anisotropic elastoplastic model Correction coefficient Explicit scheme Modified Euler algorithm Stress correction |
| Title | A simple stress correction method for explicit integration algorithm of elastoplastic constitutive models and its application to advanced anisotropic S-CLAY1 model |
| URI | https://dx.doi.org/10.1016/j.compgeo.2022.104817 |
| Volume | 148 |
| WOSCitedRecordID | wos000809236500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7633 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016989 issn: 0266-352X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivDQHOKGUdZ7OMaqKSoUqpBaxnCLHtbepliTazVb7f_gV_DvGa8fJolWhBy7Wysp4o8wX-8t4_A0hb6mkExYWvqeQjXihkBMvRV97Bb-gNEH-7HO1KTaRnJ6y6TT9Mhr96s7CXM-TqmLrddr8V1djHzpbH529hbvdoNiBv9Hp2KLbsf0nx2fvl6WW_O2OgQhdf8MUBDfloo3K91pvXJet04vYpCXPZ_WibC9_aAopkVe3daPbUujsdJNVoDONNuVzlm7fYbAJrqmsSyvgVbms20XdoP2Zd_g5-06N6ZARd2UlzHAzWRtV2T4H_5uNaB-vSpc9VNpwwnbHCS7DjXRXna3sjPrOT-w7YMMb-GXcJdd1syAyCA9Z4nRryjbqnHbSpVrzJtm5HpjQxJV2ZzPbHPb0_YP--m397T_WRZet2CXCXeV2mFwPk5th7pA9P4lSNiZ72aej6YnbwtKVOU2Az9x_f3zsw8772U2MBmTn_CF5YL9SIDPoekRGsnpM7g-0K5-QnxkYnIHBGfQ4A4MzQJxBhzMY4AwczqBWsIUzGOIMDM4AgQGIMxjgDNoaOpzBAGdgcWZMn5KvH4_OD489W_HDE8EkbT0VcMoKLhlXqsB5g-nqBSoMYiqLRAsTCSa4KPTmYcwFjaSKYi5jEbGLkBY8CJ6RcVVX8jmBhBYqoT6u3jwOhRKFT0XAVeSnIk6jpNgnYfe4c2Hl8HVVlnl-o7v3yYEza4wezN8MWOfL3JJaQ1ZzxOjNpi9u-18vyb3-FXpFxu1iJV-Tu-K6LZeLNxagvwE5689n |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+stress+correction+method+for+explicit+integration+algorithm+of+elastoplastic+constitutive+models+and+its+application+to+advanced+anisotropic+S-CLAY1+model&rft.jtitle=Computers+and+geotechnics&rft.au=Wang%2C+Hui&rft.au=Li%2C+Lin&rft.au=Li%2C+Jingpei&rft.au=Sun%2C+De%27an&rft.date=2022-08-01&rft.issn=0266-352X&rft.volume=148&rft.spage=104817&rft_id=info:doi/10.1016%2Fj.compgeo.2022.104817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compgeo_2022_104817 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-352X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-352X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-352X&client=summon |