A simple stress correction method for explicit integration algorithm of elastoplastic constitutive models and its application to advanced anisotropic S-CLAY1 model

[Display omitted] The stress correction, which prevents stresses drifting from the yield surface, is a key step in the explicit scheme for integrating elastoplastic constitutive models in finite element analyses. In this paper, a simple, robust, and efficient stress correction method is proposed for...

Full description

Saved in:
Bibliographic Details
Published in:Computers and geotechnics Vol. 148; p. 104817
Main Authors: Wang, Hui, Li, Lin, Li, Jingpei, Sun, De'an
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2022
Subjects:
ISSN:0266-352X, 1873-7633
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] The stress correction, which prevents stresses drifting from the yield surface, is a key step in the explicit scheme for integrating elastoplastic constitutive models in finite element analyses. In this paper, a simple, robust, and efficient stress correction method is proposed for improving the well-established explicit modified Euler scheme of Sloan et al. (2001). The method subtly proposes a single correction coefficient assuming that the stress components are proportional to the corrected stress components on the yield surface. The expression of the correction coefficient can be explicitly determined with the current stress state and the yield function, which allows the correction procedure to be easily and conveniently accomplished through multiplying the stress components by a single coefficient without resorting to the Newton iteration algorithm. The proposed method is applied to develop a user defined material (UMAT) subroutine for the advanced anisotropic elastoplastic model S-CLAY1 (Wheeler et al. 2003), which is subsequently used to simulate triaxial tests, the collapse of a rigid smooth square footing and a natural ground under embankment loading. The comparisons with other stress correction methods, the exact results from MATLAB, and the field measured values demonstrate the stability, robust, efficiency and validity of the proposed method.
AbstractList [Display omitted] The stress correction, which prevents stresses drifting from the yield surface, is a key step in the explicit scheme for integrating elastoplastic constitutive models in finite element analyses. In this paper, a simple, robust, and efficient stress correction method is proposed for improving the well-established explicit modified Euler scheme of Sloan et al. (2001). The method subtly proposes a single correction coefficient assuming that the stress components are proportional to the corrected stress components on the yield surface. The expression of the correction coefficient can be explicitly determined with the current stress state and the yield function, which allows the correction procedure to be easily and conveniently accomplished through multiplying the stress components by a single coefficient without resorting to the Newton iteration algorithm. The proposed method is applied to develop a user defined material (UMAT) subroutine for the advanced anisotropic elastoplastic model S-CLAY1 (Wheeler et al. 2003), which is subsequently used to simulate triaxial tests, the collapse of a rigid smooth square footing and a natural ground under embankment loading. The comparisons with other stress correction methods, the exact results from MATLAB, and the field measured values demonstrate the stability, robust, efficiency and validity of the proposed method.
ArticleNumber 104817
Author Li, Lin
Sun, De'an
Wang, Hui
Li, Jingpei
Author_xml – sequence: 1
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  email: wanghui97@tongji.edu.cn
  organization: Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, China
– sequence: 2
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  email: lilin_sanmao@163.com
  organization: School of Highway, Chang’an University, Xi’an 710064, China
– sequence: 3
  givenname: Jingpei
  surname: Li
  fullname: Li, Jingpei
  email: lijp2773@tongji.edu.cn
  organization: Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, China
– sequence: 4
  givenname: De'an
  surname: Sun
  fullname: Sun, De'an
  organization: Department of Civil Engineering, Shanghai University, Shanghai, China
BookMark eNqFkd1KwzAYhoNMcFMvQcgNdCbNmmZ4IGP4BwMPVNCjkKZfZkbblCQOvR5v1HT1yBNP8kI-npd8T2Zo0rkOELqgZE4J5Ze7uXZtvwU3z0mep7uFoOURmlJRsqzkjE3QlOScZ6zIX0_QLIQdSdxSLKfoe4WDbfsGcIgeQsDaeQ86WtfhFuK7q7FxHsNn31htI7ZdhK1Xh7lqts7b-N5iZzA0KkTXD6fVqaVLGT-i3QNuXQ1NwKqrsY0p-6FrrIgOq3qvOg11mtvgond94p-y9Wb1Rkf0DB0b1QQ4_81T9HJ787y-zzaPdw_r1SbTjCxjZpiiolIglDGVBiKWtCjMgnEKVVnkXGihla4IpZwrTQswBVfAdSHqBa0UY6foauzV3oXgwci08eGd0SvbSErk4Fvu5K9vOfiWo-9EF3_o3ttW-a9_ueuRS45gb8HLoC0MRuzwEbJ29p-GH8klpaQ
CitedBy_id crossref_primary_10_1016_j_compgeo_2023_105253
crossref_primary_10_1061_IJGNAI_GMENG_9842
crossref_primary_10_1016_j_compgeo_2023_105992
crossref_primary_10_1007_s10706_024_03006_w
crossref_primary_10_1016_j_compgeo_2025_107242
crossref_primary_10_1016_j_ijrmms_2025_106255
crossref_primary_10_1007_s11440_023_02105_x
crossref_primary_10_1016_j_compgeo_2022_105218
crossref_primary_10_1016_j_compgeo_2024_106604
crossref_primary_10_1002_nag_3680
crossref_primary_10_1016_j_soildyn_2023_108060
crossref_primary_10_1098_rspa_2025_0001
Cites_doi 10.1016/j.compgeo.2012.03.007
10.1016/j.compgeo.2003.11.003
10.1016/j.compgeo.2020.103961
10.1016/j.compgeo.2009.07.004
10.1016/S0045-7825(00)00301-7
10.1016/j.compgeo.2019.02.005
10.1002/nme.1620220310
10.1002/nag.2533
10.1139/T10-019
10.1016/j.compgeo.2014.03.003
10.1002/nag.179
10.1002/nag.1610060105
10.1002/(SICI)1097-0207(19960530)39:10<1737::AID-NME927>3.0.CO;2-5
10.1016/0045-7825(85)90070-2
10.1007/s00603-021-02757-9
10.1115/1.4010747
10.1016/j.compgeo.2014.03.016
10.1108/02644400110365842
10.1002/nag.2418
10.1002/nag.690
10.1002/nme.1620240505
10.1002/nag.1610090204
10.1061/(ASCE)1532-3641(2006)6:3(147)
10.3208/sandf1972.27.3_71
10.1016/0045-7825(94)90094-9
10.1002/nag.875
10.1002/nme.1620050111
10.1016/S0045-7949(96)00373-2
10.1016/j.compgeo.2015.04.003
10.1016/j.compgeo.2019.103198
10.1080/19386362.2016.1221575
10.1007/978-981-13-0095-0_9
10.1016/j.compgeo.2013.12.009
10.1016/0266-352X(92)90015-L
10.1016/j.jrmge.2021.10.016
10.1007/s004660000166
10.1002/nag.3321
10.1007/s11440-018-0684-z
10.1002/nag.140
10.1002/nag.456
10.1061/(ASCE)GM.1943-5622.0002335
10.1016/0045-7949(83)90033-0
10.1007/BF01932959
10.1139/t02-119
10.1007/s10483-014-1859-6
10.1007/s11440-017-0587-4
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compgeo.2022.104817
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7633
ExternalDocumentID 10_1016_j_compgeo_2022_104817
S0266352X22001719
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSV
SSZ
T5K
TN5
WH7
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c309t-f3a18bae8affbce089155f4361eb75268c8cacb01166ac15ef56ae6c58d41ba33
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809236500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-352X
IngestDate Sat Nov 29 07:23:54 EST 2025
Tue Nov 18 22:51:08 EST 2025
Fri Feb 23 02:40:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Correction coefficient
Modified Euler algorithm
Stress correction
Explicit scheme
Anisotropic elastoplastic model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-f3a18bae8affbce089155f4361eb75268c8cacb01166ac15ef56ae6c58d41ba33
ParticipantIDs crossref_citationtrail_10_1016_j_compgeo_2022_104817
crossref_primary_10_1016_j_compgeo_2022_104817
elsevier_sciencedirect_doi_10_1016_j_compgeo_2022_104817
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Computers and geotechnics
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wissmann, Hauck (b0090) 1983; 17
Chen, Mo (bib274) 2022
Potts, Ganendra (b0150) 1994; 119
Hu, Liu (b0035) 2014; 55
Simo, Taylor (b0045) 1986; 22
Abeda, Sołowskia (b0145) 2020; 128
Chen, Zhang (bib272) 2022; 55
Simo, Taylor (b0040) 1985; 48
Zhao, Sheng, Rouainia, Sloan (b0010) 2005; 29
Ding, Huang, Sheng, Sloan (b0115) 2015; 68
Sloan, Abbo, Sheng (b0005) 2001; 18
Manzari, Prachathananukit (b0085) 2001; 25
Zhou, He, Sun (bib273) 2022; 46
Liu, Chen, Voyiadjis (b0030) 2019; 29
Sivasithamparam, Rezania (b0270) 2017; 11
Castro, Karstunen, Sivasithamparam (b0020) 2014; 59
Sołowski, Hofmann, Hofstetter, Sheng, Sloan (b0080) 2012; 44
Zhou, A.N., Wu, S.S., Li, J., 2018. A constitutive model for unsaturated soils using degree of capillary saturation and effective interparticle stress as constitutive variables. In: 4th GeoShanghai International Conference on Multi-Physics Processes in Soil Mechanics and Advances in Geotechnical Testing, Shanghai, China.
Hashash, Whittle (b0095) 1992; 14
Michalowski, R.L., Dawson, E.M., 2002. Three-dimensional analysis of limit loads on Mohr-Coulomb soil, vol. 1. Poland: Foundations of Civil and Environmental Engineering, Poznan University of Technology Press. p. 137–147.
Gourvenec, Randolph, Kingsnorth (b0225) 2006; 6
Ma, Wei, Chen, Wei (b0055) 2014; 35
Sloan, Randolph (b0195) 1982; 6
Iizuka, Ohta (b0230) 1987; 27
Rouainia, Wood (b0250) 2001; 25
Chen, Li, Li, Sun (bib271) 2022; 22
Zhang, H.W., Zhou, L., 2008. Implicit integration of a chemo-plastic constitutive model for partially saturated soils. 32, 1715–1735.
Castro (b0015) 2014; 60
Manzari, Noor (b0065) 1997; 63
Zhang, Zhou (b0125) 2016; 40
Heeres, O.M., Borst, R.D., 1999. Robust modelling of cyclic soil behaviour using a subloading model. In: Proceedings of 7th International Conference on Numerical Models in Geomechanics NUMOG VII, Pande, G.N., Pietruszczak, S.(Eds.). Balkema: Rotterdam, 27–32.
Potts, Gens (b0200) 1985; 9
Wang, Wu, Peng, He, Cui (b0130) 2018; 13
Potts, Zdravkovic (b0215) 2001
Sun, Matsuoka, Yao, Ishii (b0235) 2004; 31
Nayak, Zienkiewicz (b0185) 1972; 5
Wheeler, Naatanen, Karstunen, Lojander (b0260) 2003; 40
Sołowskia, Gallipolib (b0110) 2010; 37
Andrianopoulos, Papadimitriou, Bouckovalas (b0105) 2010; 34
Castro, Karstunen (b0265) 2010; 47
Zhou, Zhang (b0120) 2015; 55
Abbo, Sloan (b0100) 1996; 39
Shield, Drucker (b0220) 1953; 20
Sivasithamparam, Castro (b0025) 2016; 40
Borja, Lin, Montans (b0075) 2001; 190
Sloan (b0180) 1987; 24
Crisfield (b0205) 1991
Sheng, D.C., Sloan, S.W0, Yu, H.S., 2000. Aspects of finite elment implementation of critical state models. Cmput. Mech. 26, 185–196.
Geng, D.J., Dai, N., Guo, P.J., Zhou, S.H., Di, H.G., 2021. Implicit numerical integration of highly nonlinear plasticity models. 132, 103961.
Sivasithamparam, Castro (b0210) 2017; 13
Zhang, Zhou, Nazem, Cater (b0140) 2019; 110
Dowell, Jarratt (b0240) 1972; 12
Owen, Hinton (b0190) 1980
Sivasithamparam (10.1016/j.compgeo.2022.104817_b0025) 2016; 40
Owen (10.1016/j.compgeo.2022.104817_b0190) 1980
Sun (10.1016/j.compgeo.2022.104817_b0235) 2004; 31
Zhou (10.1016/j.compgeo.2022.104817_b0120) 2015; 55
Zhang (10.1016/j.compgeo.2022.104817_b0125) 2016; 40
Wissmann (10.1016/j.compgeo.2022.104817_b0090) 1983; 17
Ma (10.1016/j.compgeo.2022.104817_b0055) 2014; 35
Manzari (10.1016/j.compgeo.2022.104817_b0065) 1997; 63
Potts (10.1016/j.compgeo.2022.104817_b0200) 1985; 9
Zhao (10.1016/j.compgeo.2022.104817_b0010) 2005; 29
10.1016/j.compgeo.2022.104817_b0070
Chen (10.1016/j.compgeo.2022.104817_bib271) 2022; 22
Liu (10.1016/j.compgeo.2022.104817_b0030) 2019; 29
Ding (10.1016/j.compgeo.2022.104817_b0115) 2015; 68
Potts (10.1016/j.compgeo.2022.104817_b0150) 1994; 119
Sołowski (10.1016/j.compgeo.2022.104817_b0080) 2012; 44
Gourvenec (10.1016/j.compgeo.2022.104817_b0225) 2006; 6
Crisfield (10.1016/j.compgeo.2022.104817_b0205) 1991
10.1016/j.compgeo.2022.104817_b0245
Borja (10.1016/j.compgeo.2022.104817_b0075) 2001; 190
Wang (10.1016/j.compgeo.2022.104817_b0130) 2018; 13
Castro (10.1016/j.compgeo.2022.104817_b0020) 2014; 59
Simo (10.1016/j.compgeo.2022.104817_b0040) 1985; 48
Shield (10.1016/j.compgeo.2022.104817_b0220) 1953; 20
Simo (10.1016/j.compgeo.2022.104817_b0045) 1986; 22
Wheeler (10.1016/j.compgeo.2022.104817_b0260) 2003; 40
Castro (10.1016/j.compgeo.2022.104817_b0015) 2014; 60
Hashash (10.1016/j.compgeo.2022.104817_b0095) 1992; 14
10.1016/j.compgeo.2022.104817_b0255
Sołowskia (10.1016/j.compgeo.2022.104817_b0110) 2010; 37
10.1016/j.compgeo.2022.104817_b0135
Abeda (10.1016/j.compgeo.2022.104817_b0145) 2020; 128
Manzari (10.1016/j.compgeo.2022.104817_b0085) 2001; 25
Andrianopoulos (10.1016/j.compgeo.2022.104817_b0105) 2010; 34
Rouainia (10.1016/j.compgeo.2022.104817_b0250) 2001; 25
10.1016/j.compgeo.2022.104817_b0050
Sloan (10.1016/j.compgeo.2022.104817_b0180) 1987; 24
Sloan (10.1016/j.compgeo.2022.104817_b0005) 2001; 18
Chen (10.1016/j.compgeo.2022.104817_bib272) 2022; 55
Chen (10.1016/j.compgeo.2022.104817_bib274) 2022
Dowell (10.1016/j.compgeo.2022.104817_b0240) 1972; 12
Zhang (10.1016/j.compgeo.2022.104817_b0140) 2019; 110
Sloan (10.1016/j.compgeo.2022.104817_b0195) 1982; 6
Sivasithamparam (10.1016/j.compgeo.2022.104817_b0210) 2017; 13
Sivasithamparam (10.1016/j.compgeo.2022.104817_b0270) 2017; 11
Potts (10.1016/j.compgeo.2022.104817_b0215) 2001
Castro (10.1016/j.compgeo.2022.104817_b0265) 2010; 47
Abbo (10.1016/j.compgeo.2022.104817_b0100) 1996; 39
10.1016/j.compgeo.2022.104817_b0060
Iizuka (10.1016/j.compgeo.2022.104817_b0230) 1987; 27
Zhou (10.1016/j.compgeo.2022.104817_bib273) 2022; 46
Nayak (10.1016/j.compgeo.2022.104817_b0185) 1972; 5
Hu (10.1016/j.compgeo.2022.104817_b0035) 2014; 55
References_xml – volume: 110
  start-page: 222
  year: 2019
  end-page: 241
  ident: b0140
  article-title: Finite element implementation of a fully coupled hydro-mechanical model and unsaturated soil analysis under hydraulic and mechanical loads
  publication-title: Comput. Geotech.
– reference: Zhou, A.N., Wu, S.S., Li, J., 2018. A constitutive model for unsaturated soils using degree of capillary saturation and effective interparticle stress as constitutive variables. In: 4th GeoShanghai International Conference on Multi-Physics Processes in Soil Mechanics and Advances in Geotechnical Testing, Shanghai, China.
– volume: 25
  start-page: 525
  year: 2001
  end-page: 549
  ident: b0085
  article-title: On integration of a cyclic soil plasticity model
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– reference: Heeres, O.M., Borst, R.D., 1999. Robust modelling of cyclic soil behaviour using a subloading model. In: Proceedings of 7th International Conference on Numerical Models in Geomechanics NUMOG VII, Pande, G.N., Pietruszczak, S.(Eds.). Balkema: Rotterdam, 27–32.
– year: 1991
  ident: b0205
  article-title: Non-linear Finite Element Analysis of Solids and Structures
– volume: 55
  start-page: 24
  year: 2014
  end-page: 41
  ident: b0035
  article-title: Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay
  publication-title: Comput. Geotech.
– volume: 29
  start-page: 103198
  year: 2019
  ident: b0030
  article-title: Integration of anisotropic modified Cam Clay model in finite element
  publication-title: Comput. Geotech.
– volume: 44
  start-page: 22
  year: 2012
  end-page: 33
  ident: b0080
  article-title: A comparative study of stress integration methods for the Barcelona Basic Model
  publication-title: Comput. Geotech.
– volume: 13
  start-page: 729
  year: 2017
  end-page: 746
  ident: b0210
  article-title: Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution
  publication-title: Acta Geotech.
– volume: 55
  start-page: 1743
  year: 2022
  end-page: 1757
  ident: bib272
  article-title: A machine learning-based method for predicting end-bearing capacity of rock-socketed shafts
  publication-title: Rock Mech. Rock Eng.
– volume: 128
  start-page: 10384
  year: 2020
  ident: b0145
  article-title: Finite element method algorithm for geotechnical applications based on Runge-Kutta scheme with automatic error control
  publication-title: Comput. Geotech.
– volume: 12
  start-page: 503
  year: 1972
  end-page: 508
  ident: b0240
  article-title: The Pegasus method for computing the root of an equation
  publication-title: BIT
– volume: 48
  start-page: 101
  year: 1985
  end-page: 118
  ident: b0040
  article-title: Consistent tangent operators for rate-independent elastoplasticity
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 39
  start-page: 1737
  year: 1996
  end-page: 1759
  ident: b0100
  article-title: An automatic load stepping algorithm with error control
  publication-title: Int. J. Numer. Meth. Eng.
– year: 2022
  ident: bib274
  article-title: An undrained expansion solution of cylindrical cavity in SANICLAY for K0-consolidated clays
  publication-title: J. Rock Mech. Geotech. Eng.
– year: 1980
  ident: b0190
  article-title: Finite Elements in Plasticity: Theory and Practice
– volume: 34
  start-page: 1586
  year: 2010
  end-page: 1614
  ident: b0105
  article-title: Explicit integration of bounding surface model for the analysis of earthquake soil liquefaction
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 27
  start-page: 71
  year: 1987
  end-page: 87
  ident: b0230
  article-title: A determination procedure of input parameters in elasto-viscoplastic finite element analysis
  publication-title: Soils Found.
– volume: 40
  start-page: 596
  year: 2016
  end-page: 621
  ident: b0025
  article-title: An anisotropic elastoplastic model for soft clays based on logarithmic contractancy
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 5
  start-page: 113
  year: 1972
  end-page: 135
  ident: b0185
  article-title: Elasto-plastic stress analysis: a generalisation for various constitutive relations including strain softening
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 9
  start-page: 149
  year: 1985
  end-page: 159
  ident: b0200
  article-title: A critical assessment of methods of correcting for drift from the yield surface in elastoplastic finite element analysis
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 11
  start-page: 343
  year: 2017
  end-page: 354
  ident: b0270
  article-title: The comparison of modelling inherent and evolving anisotropy on the behaviour of a full-scale embankment
  publication-title: Int. J. Geotech. Eng.
– volume: 40
  start-page: 403
  year: 2003
  end-page: 418
  ident: b0260
  article-title: An anisotropic elastoplastic model for soft clays
  publication-title: Can. Geotech. J.
– reference: Geng, D.J., Dai, N., Guo, P.J., Zhou, S.H., Di, H.G., 2021. Implicit numerical integration of highly nonlinear plasticity models. 132, 103961.
– reference: Zhang, H.W., Zhou, L., 2008. Implicit integration of a chemo-plastic constitutive model for partially saturated soils. 32, 1715–1735.
– volume: 37
  start-page: 59
  year: 2010
  end-page: 67
  ident: b0110
  article-title: Explicit stress integration with error control for the Barcelona Basic Model Part I: Algorithms formulations
  publication-title: Comput. Geotech.
– volume: 47
  start-page: 1127
  year: 2010
  end-page: 1138
  ident: b0265
  article-title: Numerical simulations of stone column installation
  publication-title: Can. Geotech. J.
– volume: 190
  start-page: 3293
  year: 2001
  end-page: 3323
  ident: b0075
  article-title: Cam-clay plasticity. Part IV: implicit integration of anisotropic bounding surface model with nonlinear hyper-elasticity and ellipsoidal loading function
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 20
  start-page: 453
  year: 1953
  end-page: 460
  ident: b0220
  article-title: The application of limit analysis to punch indentation problems
  publication-title: J. Appl. Mech.
– volume: 18
  start-page: 121
  year: 2001
  end-page: 194
  ident: b0005
  article-title: Refined explicit integration of elastoplastic models with automatic error control
  publication-title: Eng. Comput.
– volume: 55
  start-page: 943
  year: 2015
  end-page: 961
  ident: b0120
  article-title: Explicit integration scheme for a non-isothermal elastoplastic model with convex and nonconvex subloading surfaces
  publication-title: Comput. Geotech.
– volume: 22
  start-page: 04022023
  year: 2022
  ident: bib271
  article-title: A generic analytical elastic solution for excavation responses of an arbitrarily-shaped deep opening under biaxial in-situ stresses
  publication-title: Int. J. Geomech.
– volume: 22
  start-page: 649
  year: 1986
  end-page: 670
  ident: b0045
  article-title: Return mapping algorithm for plane stress elasto-plasticity
  publication-title: Int. J. Numer. Methods Eng.
– volume: 46
  start-page: 779
  year: 2022
  end-page: 797
  ident: bib273
  article-title: Three-dimensional thermal modeling and dimensioning design in the nuclear waste repository
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 17
  start-page: 89
  year: 1983
  end-page: 95
  ident: b0090
  article-title: Efficient elastic-plastic finite element analysis with higher order stress point algorithms
  publication-title: Comput. Struc.
– volume: 63
  start-page: 385
  year: 1997
  end-page: 395
  ident: b0065
  article-title: On implicit integration of bounding surface plasticity models
  publication-title: Comput. Struct.
– volume: 6
  start-page: 147
  year: 2006
  end-page: 157
  ident: b0225
  article-title: Undrained bearing capacity of square and rectangular footings
  publication-title: Int. J. Geomech.
– volume: 68
  start-page: 78
  year: 2015
  end-page: 90
  ident: b0115
  article-title: Numerical study on finite element implementation of hypoplastic models
  publication-title: Comput. Geotech.
– volume: 13
  start-page: 1265
  year: 2018
  end-page: 1281
  ident: b0130
  article-title: Numerical integration and FE implementation of a hypoplastic constitutive model
  publication-title: Acta Geotech.
– reference: Michalowski, R.L., Dawson, E.M., 2002. Three-dimensional analysis of limit loads on Mohr-Coulomb soil, vol. 1. Poland: Foundations of Civil and Environmental Engineering, Poznan University of Technology Press. p. 137–147.
– volume: 29
  start-page: 1209
  year: 2005
  end-page: 1229
  ident: b0010
  article-title: Explicit stress integration of complex soil models
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 14
  start-page: 59
  year: 1992
  end-page: 83
  ident: b0095
  article-title: Integration of the modified Cam-clay model in nonlinear finite element analysis
  publication-title: Comput. Geotech.
– volume: 25
  start-page: 1305
  year: 2001
  end-page: 1325
  ident: b0250
  article-title: Implicit numerical integration for a kinematic hardening soil plasticity model
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 59
  start-page: 87
  year: 2014
  end-page: 97
  ident: b0020
  article-title: Influence of stone column installation on settlement reduction
  publication-title: Comput. Geotech.
– volume: 35
  start-page: 1129
  year: 2014
  end-page: 1154
  ident: b0055
  article-title: Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior
  publication-title: Appl. Math. Mech.
– volume: 119
  start-page: 341
  year: 1994
  end-page: 354
  ident: b0150
  article-title: An evaluation of substepping and implicit stress point algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 31
  start-page: 37
  year: 2004
  end-page: 46
  ident: b0235
  article-title: An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis
  publication-title: Comput. Geotech.
– volume: 24
  start-page: 893
  year: 1987
  end-page: 911
  ident: b0180
  article-title: Substepping schemes for the numerical integration of elastoplastic stress-strain relations
  publication-title: Int. J. Numer. Methods. Eng.
– reference: Sheng, D.C., Sloan, S.W0, Yu, H.S., 2000. Aspects of finite elment implementation of critical state models. Cmput. Mech. 26, 185–196.
– volume: 6
  start-page: 47
  year: 1982
  end-page: 76
  ident: b0195
  article-title: Numerical prediction of collapse loads using finite element methods
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 60
  start-page: 77
  year: 2014
  end-page: 87
  ident: b0015
  article-title: Numerical modelling of stone columns beneath a rigid footing
  publication-title: Comput. Geotech.
– volume: 40
  start-page: 2353
  year: 2016
  end-page: 2382
  ident: b0125
  article-title: Explicit integration of a porosity-dependent hydro-mechanical model for unsaturated soils
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– year: 2001
  ident: b0215
  article-title: Finite element analysis in geotechnical engineering: theory & application
– year: 1991
  ident: 10.1016/j.compgeo.2022.104817_b0205
– volume: 44
  start-page: 22
  year: 2012
  ident: 10.1016/j.compgeo.2022.104817_b0080
  article-title: A comparative study of stress integration methods for the Barcelona Basic Model
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2012.03.007
– volume: 31
  start-page: 37
  year: 2004
  ident: 10.1016/j.compgeo.2022.104817_b0235
  article-title: An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2003.11.003
– ident: 10.1016/j.compgeo.2022.104817_b0060
  doi: 10.1016/j.compgeo.2020.103961
– volume: 37
  start-page: 59
  year: 2010
  ident: 10.1016/j.compgeo.2022.104817_b0110
  article-title: Explicit stress integration with error control for the Barcelona Basic Model Part I: Algorithms formulations
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2009.07.004
– volume: 190
  start-page: 3293
  year: 2001
  ident: 10.1016/j.compgeo.2022.104817_b0075
  article-title: Cam-clay plasticity. Part IV: implicit integration of anisotropic bounding surface model with nonlinear hyper-elasticity and ellipsoidal loading function
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00301-7
– volume: 110
  start-page: 222
  year: 2019
  ident: 10.1016/j.compgeo.2022.104817_b0140
  article-title: Finite element implementation of a fully coupled hydro-mechanical model and unsaturated soil analysis under hydraulic and mechanical loads
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2019.02.005
– year: 1980
  ident: 10.1016/j.compgeo.2022.104817_b0190
– volume: 22
  start-page: 649
  year: 1986
  ident: 10.1016/j.compgeo.2022.104817_b0045
  article-title: Return mapping algorithm for plane stress elasto-plasticity
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620220310
– volume: 40
  start-page: 2353
  issue: 17
  year: 2016
  ident: 10.1016/j.compgeo.2022.104817_b0125
  article-title: Explicit integration of a porosity-dependent hydro-mechanical model for unsaturated soils
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.2533
– volume: 47
  start-page: 1127
  issue: 10
  year: 2010
  ident: 10.1016/j.compgeo.2022.104817_b0265
  article-title: Numerical simulations of stone column installation
  publication-title: Can. Geotech. J.
  doi: 10.1139/T10-019
– volume: 59
  start-page: 87
  year: 2014
  ident: 10.1016/j.compgeo.2022.104817_b0020
  article-title: Influence of stone column installation on settlement reduction
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2014.03.003
– volume: 25
  start-page: 1305
  year: 2001
  ident: 10.1016/j.compgeo.2022.104817_b0250
  article-title: Implicit numerical integration for a kinematic hardening soil plasticity model
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.179
– volume: 6
  start-page: 47
  year: 1982
  ident: 10.1016/j.compgeo.2022.104817_b0195
  article-title: Numerical prediction of collapse loads using finite element methods
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.1610060105
– volume: 39
  start-page: 1737
  year: 1996
  ident: 10.1016/j.compgeo.2022.104817_b0100
  article-title: An automatic load stepping algorithm with error control
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19960530)39:10<1737::AID-NME927>3.0.CO;2-5
– volume: 48
  start-page: 101
  year: 1985
  ident: 10.1016/j.compgeo.2022.104817_b0040
  article-title: Consistent tangent operators for rate-independent elastoplasticity
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/0045-7825(85)90070-2
– volume: 55
  start-page: 1743
  year: 2022
  ident: 10.1016/j.compgeo.2022.104817_bib272
  article-title: A machine learning-based method for predicting end-bearing capacity of rock-socketed shafts
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-021-02757-9
– volume: 20
  start-page: 453
  year: 1953
  ident: 10.1016/j.compgeo.2022.104817_b0220
  article-title: The application of limit analysis to punch indentation problems
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4010747
– volume: 60
  start-page: 77
  year: 2014
  ident: 10.1016/j.compgeo.2022.104817_b0015
  article-title: Numerical modelling of stone columns beneath a rigid footing
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2014.03.016
– volume: 18
  start-page: 121
  issue: 1/2
  year: 2001
  ident: 10.1016/j.compgeo.2022.104817_b0005
  article-title: Refined explicit integration of elastoplastic models with automatic error control
  publication-title: Eng. Comput.
  doi: 10.1108/02644400110365842
– volume: 40
  start-page: 596
  year: 2016
  ident: 10.1016/j.compgeo.2022.104817_b0025
  article-title: An anisotropic elastoplastic model for soft clays based on logarithmic contractancy
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.2418
– year: 2001
  ident: 10.1016/j.compgeo.2022.104817_b0215
– ident: 10.1016/j.compgeo.2022.104817_b0050
  doi: 10.1002/nag.690
– volume: 55
  start-page: 943
  issue: 5
  year: 2015
  ident: 10.1016/j.compgeo.2022.104817_b0120
  article-title: Explicit integration scheme for a non-isothermal elastoplastic model with convex and nonconvex subloading surfaces
  publication-title: Comput. Geotech.
– volume: 24
  start-page: 893
  year: 1987
  ident: 10.1016/j.compgeo.2022.104817_b0180
  article-title: Substepping schemes for the numerical integration of elastoplastic stress-strain relations
  publication-title: Int. J. Numer. Methods. Eng.
  doi: 10.1002/nme.1620240505
– volume: 9
  start-page: 149
  year: 1985
  ident: 10.1016/j.compgeo.2022.104817_b0200
  article-title: A critical assessment of methods of correcting for drift from the yield surface in elastoplastic finite element analysis
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.1610090204
– volume: 6
  start-page: 147
  issue: 3
  year: 2006
  ident: 10.1016/j.compgeo.2022.104817_b0225
  article-title: Undrained bearing capacity of square and rectangular footings
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)1532-3641(2006)6:3(147)
– volume: 27
  start-page: 71
  issue: 3
  year: 1987
  ident: 10.1016/j.compgeo.2022.104817_b0230
  article-title: A determination procedure of input parameters in elasto-viscoplastic finite element analysis
  publication-title: Soils Found.
  doi: 10.3208/sandf1972.27.3_71
– volume: 119
  start-page: 341
  year: 1994
  ident: 10.1016/j.compgeo.2022.104817_b0150
  article-title: An evaluation of substepping and implicit stress point algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(94)90094-9
– volume: 34
  start-page: 1586
  issue: 15
  year: 2010
  ident: 10.1016/j.compgeo.2022.104817_b0105
  article-title: Explicit integration of bounding surface model for the analysis of earthquake soil liquefaction
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.875
– volume: 5
  start-page: 113
  year: 1972
  ident: 10.1016/j.compgeo.2022.104817_b0185
  article-title: Elasto-plastic stress analysis: a generalisation for various constitutive relations including strain softening
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620050111
– volume: 128
  start-page: 10384
  year: 2020
  ident: 10.1016/j.compgeo.2022.104817_b0145
  article-title: Finite element method algorithm for geotechnical applications based on Runge-Kutta scheme with automatic error control
  publication-title: Comput. Geotech.
– volume: 63
  start-page: 385
  year: 1997
  ident: 10.1016/j.compgeo.2022.104817_b0065
  article-title: On implicit integration of bounding surface plasticity models
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(96)00373-2
– volume: 68
  start-page: 78
  year: 2015
  ident: 10.1016/j.compgeo.2022.104817_b0115
  article-title: Numerical study on finite element implementation of hypoplastic models
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2015.04.003
– volume: 29
  start-page: 103198
  issue: 2019
  year: 2019
  ident: 10.1016/j.compgeo.2022.104817_b0030
  article-title: Integration of anisotropic modified Cam Clay model in finite element
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2019.103198
– volume: 11
  start-page: 343
  issue: 4
  year: 2017
  ident: 10.1016/j.compgeo.2022.104817_b0270
  article-title: The comparison of modelling inherent and evolving anisotropy on the behaviour of a full-scale embankment
  publication-title: Int. J. Geotech. Eng.
  doi: 10.1080/19386362.2016.1221575
– ident: 10.1016/j.compgeo.2022.104817_b0135
  doi: 10.1007/978-981-13-0095-0_9
– volume: 55
  start-page: 24
  issue: 2014
  year: 2014
  ident: 10.1016/j.compgeo.2022.104817_b0035
  article-title: Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2013.12.009
– volume: 14
  start-page: 59
  year: 1992
  ident: 10.1016/j.compgeo.2022.104817_b0095
  article-title: Integration of the modified Cam-clay model in nonlinear finite element analysis
  publication-title: Comput. Geotech.
  doi: 10.1016/0266-352X(92)90015-L
– year: 2022
  ident: 10.1016/j.compgeo.2022.104817_bib274
  article-title: An undrained expansion solution of cylindrical cavity in SANICLAY for K0-consolidated clays
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.10.016
– ident: 10.1016/j.compgeo.2022.104817_b0245
  doi: 10.1007/s004660000166
– volume: 46
  start-page: 779
  issue: 4
  year: 2022
  ident: 10.1016/j.compgeo.2022.104817_bib273
  article-title: Three-dimensional thermal modeling and dimensioning design in the nuclear waste repository
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.3321
– ident: 10.1016/j.compgeo.2022.104817_b0255
– volume: 13
  start-page: 1265
  issue: 6
  year: 2018
  ident: 10.1016/j.compgeo.2022.104817_b0130
  article-title: Numerical integration and FE implementation of a hypoplastic constitutive model
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-018-0684-z
– volume: 25
  start-page: 525
  year: 2001
  ident: 10.1016/j.compgeo.2022.104817_b0085
  article-title: On integration of a cyclic soil plasticity model
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.140
– volume: 29
  start-page: 1209
  year: 2005
  ident: 10.1016/j.compgeo.2022.104817_b0010
  article-title: Explicit stress integration of complex soil models
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.456
– volume: 22
  start-page: 04022023
  issue: 4
  year: 2022
  ident: 10.1016/j.compgeo.2022.104817_bib271
  article-title: A generic analytical elastic solution for excavation responses of an arbitrarily-shaped deep opening under biaxial in-situ stresses
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0002335
– volume: 17
  start-page: 89
  year: 1983
  ident: 10.1016/j.compgeo.2022.104817_b0090
  article-title: Efficient elastic-plastic finite element analysis with higher order stress point algorithms
  publication-title: Comput. Struc.
  doi: 10.1016/0045-7949(83)90033-0
– volume: 12
  start-page: 503
  year: 1972
  ident: 10.1016/j.compgeo.2022.104817_b0240
  article-title: The Pegasus method for computing the root of an equation
  publication-title: BIT
  doi: 10.1007/BF01932959
– volume: 40
  start-page: 403
  issue: 2
  year: 2003
  ident: 10.1016/j.compgeo.2022.104817_b0260
  article-title: An anisotropic elastoplastic model for soft clays
  publication-title: Can. Geotech. J.
  doi: 10.1139/t02-119
– volume: 35
  start-page: 1129
  issue: 9
  year: 2014
  ident: 10.1016/j.compgeo.2022.104817_b0055
  article-title: Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-014-1859-6
– volume: 13
  start-page: 729
  issue: 3
  year: 2017
  ident: 10.1016/j.compgeo.2022.104817_b0210
  article-title: Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-017-0587-4
– ident: 10.1016/j.compgeo.2022.104817_b0070
SSID ssj0016989
Score 2.395581
Snippet [Display omitted] The stress correction, which prevents stresses drifting from the yield surface, is a key step in the explicit scheme for integrating...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104817
SubjectTerms Anisotropic elastoplastic model
Correction coefficient
Explicit scheme
Modified Euler algorithm
Stress correction
Title A simple stress correction method for explicit integration algorithm of elastoplastic constitutive models and its application to advanced anisotropic S-CLAY1 model
URI https://dx.doi.org/10.1016/j.compgeo.2022.104817
Volume 148
WOSCitedRecordID wos000809236500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7633
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016989
  issn: 0266-352X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivDQHOKGUdZ7OMaqKSoUqpBaxnCLHtbepliTazVb7f_gV_DvGa8fJolWhBy7Wysp4o8wX-8t4_A0hb6mkExYWvqeQjXihkBMvRV97Bb-gNEH-7HO1KTaRnJ6y6TT9Mhr96s7CXM-TqmLrddr8V1djHzpbH529hbvdoNiBv9Hp2KLbsf0nx2fvl6WW_O2OgQhdf8MUBDfloo3K91pvXJet04vYpCXPZ_WibC9_aAopkVe3daPbUujsdJNVoDONNuVzlm7fYbAJrqmsSyvgVbms20XdoP2Zd_g5-06N6ZARd2UlzHAzWRtV2T4H_5uNaB-vSpc9VNpwwnbHCS7DjXRXna3sjPrOT-w7YMMb-GXcJdd1syAyCA9Z4nRryjbqnHbSpVrzJtm5HpjQxJV2ZzPbHPb0_YP--m397T_WRZet2CXCXeV2mFwPk5th7pA9P4lSNiZ72aej6YnbwtKVOU2Az9x_f3zsw8772U2MBmTn_CF5YL9SIDPoekRGsnpM7g-0K5-QnxkYnIHBGfQ4A4MzQJxBhzMY4AwczqBWsIUzGOIMDM4AgQGIMxjgDNoaOpzBAGdgcWZMn5KvH4_OD489W_HDE8EkbT0VcMoKLhlXqsB5g-nqBSoMYiqLRAsTCSa4KPTmYcwFjaSKYi5jEbGLkBY8CJ6RcVVX8jmBhBYqoT6u3jwOhRKFT0XAVeSnIk6jpNgnYfe4c2Hl8HVVlnl-o7v3yYEza4wezN8MWOfL3JJaQ1ZzxOjNpi9u-18vyb3-FXpFxu1iJV-Tu-K6LZeLNxagvwE5689n
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+stress+correction+method+for+explicit+integration+algorithm+of+elastoplastic+constitutive+models+and+its+application+to+advanced+anisotropic+S-CLAY1+model&rft.jtitle=Computers+and+geotechnics&rft.au=Wang%2C+Hui&rft.au=Li%2C+Lin&rft.au=Li%2C+Jingpei&rft.au=Sun%2C+De%27an&rft.date=2022-08-01&rft.issn=0266-352X&rft.volume=148&rft.spage=104817&rft_id=info:doi/10.1016%2Fj.compgeo.2022.104817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compgeo_2022_104817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-352X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-352X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-352X&client=summon