Fast deterministic algorithms for non-submodular maximization with strong performance guarantees

We study the non-submodular maximization problem, in which the objective function is characterized by parameters, subject to a cardinality or p -system constraint. By adapting the Threshold-Greedy algorithm for the submodular maximization, we present two deterministic algorithms for approximately so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 89; H. 3; S. 777 - 801
Hauptverfasser: Lu, Cheng, Yang, Wenguo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2024
Springer
Springer Nature B.V
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the non-submodular maximization problem, in which the objective function is characterized by parameters, subject to a cardinality or p -system constraint. By adapting the Threshold-Greedy algorithm for the submodular maximization, we present two deterministic algorithms for approximately solving the non-submodular maximization problem. Our analysis shows that the algorithms we propose requires much less function evaluations than existing algorithms, while providing comparable approximation guarantees. Moreover, numerical experiment results are presented to validate the theoretical analysis. Our results not only fill a gap in the (non-)submodular maximization, but also generalize and improve several existing results on closely related optimization problems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-024-01371-7