Fuzzy Adaptive Whale Optimization Control Algorithm for Trajectory Tracking of a Cable-Driven Parallel Robot

This paper proposes a fuzzy proportion integration differentiation (PID) control strategy based on an adaptive whale optimization algorithm (FPID-AWOA) for trajectory tracking of a cable-driven parallel robot (CDPR). A mechanical prototype, and kinematic and dynamic models of the CDPR are establishe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 21; no. 4; pp. 5149 - 5160
Main Authors: Zhou, Bin, Wang, Yuhang, Zi, Bin, Zhu, Weidong
Format: Journal Article
Language:English
Published: IEEE 01.10.2024
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a fuzzy proportion integration differentiation (PID) control strategy based on an adaptive whale optimization algorithm (FPID-AWOA) for trajectory tracking of a cable-driven parallel robot (CDPR). A mechanical prototype, and kinematic and dynamic models of the CDPR are established. Thus, new fuzzy rules are developed and a new fuzzy PID controller is designed. Subsequently, the AWOA is introduced to optimize quantization and scale factors of the fuzzy PID controller to obtain the optimal solution. Among them, AWOA is an improvement on WOA. Numerical examples show that the fuzzy PID control strategy based on adaptive whale optimization algorithm (FPID-AWOA) has higher CDPR trajectory tracking accuracy than the traditional fuzzy PID control strategy, the fuzzy PID control strategy based on whale optimization algorithm (FPID-WOA), and the fuzzy PID control strategy based on particle swarm optimization (FPID-PSOA). In comparison with the FPID and FPID-PSOA, the experimental results show that the trajectory tracking error of the proposed FPID-AWOA is reduced by 51.2% and 19.5% in the <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-axis direction, respectively, 64.2% and 49.7% in the <inline-formula> <tex-math notation="LaTeX">Y </tex-math></inline-formula>-axis direction, respectively, and 29.1% and 12.2% in the <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-axis direction, respectively. Note to Practitioners-The motivation of this article stems from the need to develop efficient trajectory tracking control algorithms for practical applications of CDPRs. Fuzzy PID control is widely used in CDPRs because of its good robustness and fast response speed. However, the fuzzy parameter selection depends on experience, and the efficiency is low. In order to obtain high quality quantization and scale factors quickly, we propose FPID-AWOA. It uses AWOA to find the optimal quantization and scale factors, which makes the fuzzy PID control get better performance. FPID-AWOA can also be applied to control other robots. In future research, we will extend the proposed approach to multiple CDPRs working collaboratively as well as to mobile operational requirements.
AbstractList This paper proposes a fuzzy proportion integration differentiation (PID) control strategy based on an adaptive whale optimization algorithm (FPID-AWOA) for trajectory tracking of a cable-driven parallel robot (CDPR). A mechanical prototype, and kinematic and dynamic models of the CDPR are established. Thus, new fuzzy rules are developed and a new fuzzy PID controller is designed. Subsequently, the AWOA is introduced to optimize quantization and scale factors of the fuzzy PID controller to obtain the optimal solution. Among them, AWOA is an improvement on WOA. Numerical examples show that the fuzzy PID control strategy based on adaptive whale optimization algorithm (FPID-AWOA) has higher CDPR trajectory tracking accuracy than the traditional fuzzy PID control strategy, the fuzzy PID control strategy based on whale optimization algorithm (FPID-WOA), and the fuzzy PID control strategy based on particle swarm optimization (FPID-PSOA). In comparison with the FPID and FPID-PSOA, the experimental results show that the trajectory tracking error of the proposed FPID-AWOA is reduced by 51.2% and 19.5% in the <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-axis direction, respectively, 64.2% and 49.7% in the <inline-formula> <tex-math notation="LaTeX">Y </tex-math></inline-formula>-axis direction, respectively, and 29.1% and 12.2% in the <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-axis direction, respectively. Note to Practitioners-The motivation of this article stems from the need to develop efficient trajectory tracking control algorithms for practical applications of CDPRs. Fuzzy PID control is widely used in CDPRs because of its good robustness and fast response speed. However, the fuzzy parameter selection depends on experience, and the efficiency is low. In order to obtain high quality quantization and scale factors quickly, we propose FPID-AWOA. It uses AWOA to find the optimal quantization and scale factors, which makes the fuzzy PID control get better performance. FPID-AWOA can also be applied to control other robots. In future research, we will extend the proposed approach to multiple CDPRs working collaboratively as well as to mobile operational requirements.
Author Zhou, Bin
Zhu, Weidong
Zi, Bin
Wang, Yuhang
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0002-5879-5614
  surname: Zhou
  fullname: Zhou, Bin
  email: bzhfut@163.com
  organization: School of Mechanical Engineering, Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Yuhang
  orcidid: 0009-0004-8488-2465
  surname: Wang
  fullname: Wang, Yuhang
  email: 2732424418@qq.com
  organization: School of Mechanical Engineering, Hefei University of Technology, Hefei, China
– sequence: 3
  givenname: Bin
  orcidid: 0000-0003-2534-1138
  surname: Zi
  fullname: Zi, Bin
  email: hfutzibin888@163.com
  organization: School of Mechanical Engineering, Hefei University of Technology, Hefei, China
– sequence: 4
  givenname: Weidong
  orcidid: 0000-0003-2707-2533
  surname: Zhu
  fullname: Zhu, Weidong
  email: wzhu@umbc.edu
  organization: Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
BookMark eNp9kM9Kw0AQhxepYK0-gOBhXyB1_2ST7DHUVoVCRSsewyaZbbdus2WzCu3Tm9gexIOn-Q3MN8x8l2jQuAYQuqFkTCmRd8v8dTpmhPEx50SSWJ6hIRUii3ia8UGfYxEJKcQFumzbDSEsziQZIjv7PBz2OK_VLpgvwO9rZQEvumZrDioY1-CJa4J3Fud25bwJ6y3WzuOlVxuogvP7PlYfpllhp7HCE1VaiO59t63Bz8ora8HiF1e6cIXOtbItXJ_qCL3NpsvJYzRfPDxN8nlUdbeHCJKk1rSuSVwxWSoiU5IlXBFO01qWOosZ6KzSdQwKGC-J0FJqLiRQWZeUAR-h9Li38q5tPeiiMuHnmeCVsQUlRS-t6KUVvbTiJK0j6R9y581W-f2_zO2RMQDwa54lqaScfwOH43wi
CODEN ITASC7
CitedBy_id crossref_primary_10_1002_rob_22544
crossref_primary_10_1007_s11071_025_11299_6
crossref_primary_10_1109_TASE_2025_3600027
crossref_primary_10_1109_TASE_2025_3596494
crossref_primary_10_3390_app15084240
crossref_primary_10_1186_s10033_024_01149_8
crossref_primary_10_1177_09544054251337813
crossref_primary_10_3390_automation6020015
crossref_primary_10_1016_j_ymssp_2025_112325
crossref_primary_10_1017_S0263574723001510
crossref_primary_10_1109_TASE_2025_3533583
crossref_primary_10_1177_01423312251352884
crossref_primary_10_1088_2631_8695_adface
Cites_doi 10.1109/TASE.2021.3102588
10.1016/j.eswa.2013.12.030
10.1109/TASE.2020.3027394
10.1016/j.ast.2020.105685
10.1038/s41598-020-80411-0
10.1115/1.4046434
10.1016/j.mechmachtheory.2021.104442
10.1177/1077546314532116
10.1115/1.4042626
10.1007/s11465-022-0693-3
10.1016/j.ifacol.2018.07.299
10.1109/TASE.2019.2951714
10.1109/TIE.2020.3013776
10.1109/TMECH.2019.2960048
10.1109/TASE.2022.3183610
10.1016/j.mechmachtheory.2022.104964
10.1109/TMECH.2021.3094575
10.1109/TASE.2020.2986503
10.1109/TASE.2021.3095061
10.1109/TASE.2019.2961258
10.1109/TIE.2022.3165305
10.1109/TASE.2021.3133138
10.1109/TASE.2021.3088004
10.1016/j.automatica.2018.02.011
10.1109/TMECH.2019.2899016
10.1115/1.4053219
10.1109/TMECH.2022.3187460
10.1109/TFUZZ.2018.2864940
10.1109/ICICICT.2014.6781368
10.1109/TII.2018.2876605
10.1016/j.fss.2004.11.012
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2023.3309049
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 5160
ExternalDocumentID 10_1109_TASE_2023_3309049
10267913
Genre orig-research
GrantInformation_xml – fundername: Anhui Provincial Natural Science Foundation
  grantid: 2108085QE218
  funderid: 10.13039/501100003995
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JZ2023HGTB0253
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 52205258; 51925502
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c309t-e66df1dd04c29ba0970863a0317d9bf842ef8cfd4eae23b05f99f359e19db12e3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001082404300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Tue Nov 18 22:44:13 EST 2025
Sat Nov 29 04:12:50 EST 2025
Wed Aug 27 02:15:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-e66df1dd04c29ba0970863a0317d9bf842ef8cfd4eae23b05f99f359e19db12e3
ORCID 0000-0002-5879-5614
0000-0003-2707-2533
0000-0003-2534-1138
0009-0004-8488-2465
OpenAccessLink https://doi.org/10.13016/m2hnuw-bvnc
PageCount 12
ParticipantIDs crossref_primary_10_1109_TASE_2023_3309049
crossref_citationtrail_10_1109_TASE_2023_3309049
ieee_primary_10267913
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1109/TASE.2021.3102588
– ident: ref20
  doi: 10.1016/j.eswa.2013.12.030
– ident: ref17
  doi: 10.1109/TASE.2020.3027394
– ident: ref24
  doi: 10.1016/j.ast.2020.105685
– ident: ref6
  doi: 10.1038/s41598-020-80411-0
– ident: ref3
  doi: 10.1115/1.4046434
– ident: ref15
  doi: 10.1016/j.mechmachtheory.2021.104442
– ident: ref19
  doi: 10.1177/1077546314532116
– ident: ref5
  doi: 10.1115/1.4042626
– ident: ref1
  doi: 10.1007/s11465-022-0693-3
– ident: ref23
  doi: 10.1016/j.ifacol.2018.07.299
– ident: ref21
  doi: 10.1109/TASE.2019.2951714
– ident: ref30
  doi: 10.1109/TIE.2020.3013776
– ident: ref12
  doi: 10.1109/TMECH.2019.2960048
– ident: ref10
  doi: 10.1109/TASE.2022.3183610
– ident: ref2
  doi: 10.1016/j.mechmachtheory.2022.104964
– ident: ref25
  doi: 10.1109/TMECH.2021.3094575
– ident: ref31
  doi: 10.1109/TASE.2020.2986503
– ident: ref9
  doi: 10.1109/TASE.2021.3095061
– ident: ref29
  doi: 10.1109/TASE.2019.2961258
– ident: ref16
  doi: 10.1109/TIE.2022.3165305
– ident: ref8
  doi: 10.1109/TASE.2021.3133138
– ident: ref14
  doi: 10.1109/TASE.2021.3088004
– ident: ref26
  doi: 10.1016/j.automatica.2018.02.011
– ident: ref11
  doi: 10.1109/TMECH.2019.2899016
– ident: ref4
  doi: 10.1115/1.4053219
– ident: ref7
  doi: 10.1109/TMECH.2022.3187460
– ident: ref27
  doi: 10.1109/TFUZZ.2018.2864940
– ident: ref22
  doi: 10.1109/ICICICT.2014.6781368
– ident: ref13
  doi: 10.1109/TII.2018.2876605
– ident: ref18
  doi: 10.1016/j.fss.2004.11.012
SSID ssj0024890
Score 2.4887965
Snippet This paper proposes a fuzzy proportion integration differentiation (PID) control strategy based on an adaptive whale optimization algorithm (FPID-AWOA) for...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 5149
SubjectTerms Cable-driven parallel robot
Fuzzy control
Kinematics
Optimization
Particle swarm optimization
particle swarm optimization algorithm
PD control
PI control
Robots
Trajectory tracking
whale optimization algorithm
Whale optimization algorithms
Title Fuzzy Adaptive Whale Optimization Control Algorithm for Trajectory Tracking of a Cable-Driven Parallel Robot
URI https://ieeexplore.ieee.org/document/10267913
Volume 21
WOSCitedRecordID wos001082404300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCdqPOjBzxm_w8GTCZO2tMCxmS4ejBqdcbcGCriZbjW1M9G_XqBVd9HEG23gpe0r74v3fg-AE8oDhiPBUSQijQgxAgnJEyRirgiTgWbCo-tf0etrNhzy27ZY3dfCaK198pnuuqE_y1dlPnOhMrvDw8QSjxbBIqW0Kdb6AdZjPqDiTAIU8zhujzADzM8G6f1F1_UJ71rvnWOHmzmnhOa6qnil0l__5-NsgLXWeoRpw-5NsKCnW2B1DlNwGxT92cfHO0yVeHGSDD6OrAqAN_Zi0pZcwl6Tng7T4qmsxvVoAq3lCq3WevYh_Hc3zF0IHZYGCthz1VXovHJyEd6KynVfKeBdKcu6Ax76F4PeJWpbKqDcvnmNdJIoEyiFSR5yKTCn1qWJhN3ZVHFpGAm1YblRRAsdRhLHhnMTxVwHXMkg1NEOWJqWU70LoBRBTLUlhiUhVkwxQZlUUiqDiSWi9gD--sZZ3uKNu7YXReb9Dswzx5bMsSVr2bIHTr-XvDRgG39N7jiWzE1suLH_y_0DsGKXkyYR7xAs1dVMH4Hl_K0ev1bH_l_6BDn3yGs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgGCc6TdSDzxnnk4MnEyZt6QrHZW7ROOeiM3proICbmaupnYn-9QKtuosm3mhDv5T-yvfiewBwHDGP4oAzFPBAIUI0R1ywBuIhk4QKT1Huqut3o16PPjywfpms7nJhlFIu-EzV7dCd5cs0mVpXmdnhfsMQD-bBQkiI7xXpWj-l9ahzqVilAIUsDMtDTA-z00Hztl23ncLrxn5n2FbOnBFDM31VnFjprP3zhdbBaqk_wmYB-AaYU5NNsDJTVXALjDvTj4932JT8xfIyeD80QgBem4vnMukStooAddgcP6bZKB8-Q6O7QiO3npwT_90OE-tEh6mGHLZsfhU6yyxnhH2e2f4rY3iTijSvgrtOe9A6R2VTBZSYledINRpSe1JikvhMcMwiY9QE3OztSDKhKfGVpomWRHHlBwKHmjEdhEx5TArPV8E2qEzSidoBUHAvjJQhhgUhhlFRHlEhhZAaE0NE1gD--sZxUlYct40vxrGzPDCLLSyxhSUuYamBk-9HXopyG39NrlpIZiYWaOz-cv8ILJ0Prrpx96J3uQeWDSlShOXtg0qeTdUBWEze8tFrduj-q0_QA8uy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Adaptive+Whale+Optimization+Control+Algorithm+for+Trajectory+Tracking+of+a+Cable-Driven+Parallel+Robot&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhou%2C+Bin&rft.au=Wang%2C+Yuhang&rft.au=Zi%2C+Bin&rft.au=Zhu%2C+Weidong&rft.date=2024-10-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=4&rft.spage=5149&rft.epage=5160&rft_id=info:doi/10.1109%2FTASE.2023.3309049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2023_3309049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon