Predicting total phosphorus levels as indicators for shallow lake management

The discusser thanks the authors for investigating the ability of modified random forest algorithm to predicting total phosphorus levels as indicators for shallow lake management. The abilities of machine learning techniques such as optimization algorithms today have been well documented in engineer...

Full description

Saved in:
Bibliographic Details
Published in:Ecological indicators Vol. 107; p. 105664
Main Author: Mohammadi, Babak
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2019
Subjects:
ISSN:1470-160X, 1872-7034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The discusser thanks the authors for investigating the ability of modified random forest algorithm to predicting total phosphorus levels as indicators for shallow lake management. The abilities of machine learning techniques such as optimization algorithms today have been well documented in engineering sciences. In this discussion, the discusser has tried to clarify the process of the paper of “Predicting total phosphorus levels as indicators for shallow lake management”(doi: https://doi.org/10.1016/j.ecolind.2018.09.002). The discusser would like to call attention to some important points, which may be taken into consideration by the authors and other potential researchers.
AbstractList The discusser thanks the authors for investigating the ability of modified random forest algorithm to predicting total phosphorus levels as indicators for shallow lake management. The abilities of machine learning techniques such as optimization algorithms today have been well documented in engineering sciences. In this discussion, the discusser has tried to clarify the process of the paper of “Predicting total phosphorus levels as indicators for shallow lake management”(doi: https://doi.org/10.1016/j.ecolind.2018.09.002). The discusser would like to call attention to some important points, which may be taken into consideration by the authors and other potential researchers.
ArticleNumber 105664
Author Mohammadi, Babak
Author_xml – sequence: 1
  givenname: Babak
  orcidid: 0000-0001-8427-5965
  surname: Mohammadi
  fullname: Mohammadi, Babak
  email: Babakmohammadi@aol.com, Babak@hhu.edu.cn
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
BookMark eNqFkE1LAzEQQINUsK3-BCF_YGuyu00aPIgUv6CgBwVvIclO2tQ0KUms-O_d0p689DDMMPDe4Y3QIMQACF1TMqGEspv1BEz0LnSTmlDR_6aMtWdoSGe8rjhp2kF_t5xUlJHPCzTKeU16Tgg2RIu3BJ0zxYUlLrEoj7ermPtJ3xl72IHPWGXcy51RJaaMbUw4r5T38Qd79QV4o4JawgZCuUTnVvkMV8c9Rh-PD-_z52rx-vQyv19UpiGiVDClTDdWGGqFVrxVNdHAO6Z5TVpo69ooS2czBnpKLeso5ZoJxrTVoubASDNGtwevSTHnBFYaV1RxMZSknJeUyH0YuZbHMHIfRh7C9PT0H71NbqPS70nu7sD1TWDnIMlsHATT90tgiuyiO2H4AwNHhCg
CitedBy_id crossref_primary_10_1007_s00704_020_03283_4
crossref_primary_10_1007_s11269_020_02619_z
crossref_primary_10_3390_hydrology7030059
crossref_primary_10_1007_s11356_020_07837_x
crossref_primary_10_1016_j_knosys_2025_113857
crossref_primary_10_1007_s00500_021_06095_4
crossref_primary_10_1007_s11053_023_10284_3
crossref_primary_10_1080_02626667_2020_1758703
crossref_primary_10_1016_j_measurement_2020_108127
crossref_primary_10_1007_s11356_020_07868_4
crossref_primary_10_2166_hydro_2024_328
crossref_primary_10_1016_j_scitotenv_2020_138015
crossref_primary_10_1007_s12517_020_05355_1
crossref_primary_10_1007_s11356_020_08666_8
crossref_primary_10_1007_s12053_019_09836_5
crossref_primary_10_1016_j_ecolind_2019_106010
crossref_primary_10_1016_j_jngse_2020_103316
crossref_primary_10_1007_s00500_020_05058_5
crossref_primary_10_1088_1742_6596_2865_1_012019
Cites_doi 10.1016/j.ecolind.2019.02.013
10.1016/j.ecolind.2019.04.055
10.1016/j.ecolind.2018.09.002
10.1016/j.geoderma.2019.06.028
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ecolind.2019.105664
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1872-7034
ExternalDocumentID 10_1016_j_ecolind_2019_105664
S1470160X19306570
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c309t-e516b3f9c1f9ba74a20be7d6b7204e422caf1886eb51f6d117b6966bfb927e603
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490757500106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-160X
IngestDate Sat Nov 29 02:49:34 EST 2025
Tue Nov 18 22:18:44 EST 2025
Fri Feb 23 02:18:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data mining technique
Random forest
Algorithm’s parameters
Variable selection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-e516b3f9c1f9ba74a20be7d6b7204e422caf1886eb51f6d117b6966bfb927e603
ORCID 0000-0001-8427-5965
ParticipantIDs crossref_citationtrail_10_1016_j_ecolind_2019_105664
crossref_primary_10_1016_j_ecolind_2019_105664
elsevier_sciencedirect_doi_10_1016_j_ecolind_2019_105664
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Ecological indicators
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jahani, Mohammadi (b0010) 2018; 137
Moazenzadeh, Mohammadi (b0015) 2019; 353
Vitense, Hanson, Herwig, Zimmer, Fieberg (b0035) 2019; 96
Mohammadi (b0020) 2019; 1–2
Mohammadi (b0030) 2019; 103
Mohammadi (b0025) 2019; 101
Aghelpour, Mohammadi, Biazar (b0005) 2019
Aghelpour (10.1016/j.ecolind.2019.105664_b0005) 2019
Mohammadi (10.1016/j.ecolind.2019.105664_b0020) 2019; 1–2
Moazenzadeh (10.1016/j.ecolind.2019.105664_b0015) 2019; 353
Jahani (10.1016/j.ecolind.2019.105664_b0010) 2018; 137
Mohammadi (10.1016/j.ecolind.2019.105664_b0025) 2019; 101
Vitense (10.1016/j.ecolind.2019.105664_b0035) 2019; 96
Mohammadi (10.1016/j.ecolind.2019.105664_b0030) 2019; 103
References_xml – volume: 103
  start-page: 493
  year: 2019
  ident: b0030
  article-title: Letter to the Editor “Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China” by Xiangying Xu, Ping Gao, Xinkai Zhu, Wenshan Guo, Jinfeng Ding, Chunyan Li, Min Zhu, Xuanwei Wu
  publication-title: Ecol. Indic.
– volume: 96
  start-page: 278
  year: 2019
  end-page: 287
  ident: b0035
  article-title: Predicting total phosphorus levels as indicators for shallow lake management
  publication-title: Ecol. Indic.
– start-page: 1
  year: 2019
  end-page: 10
  ident: b0005
  article-title: Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA
  publication-title: Theor. Appl. Climatol.
– volume: 1–2
  year: 2019
  ident: b0020
  article-title: Letter to the editor “Estimation of sodium adsorption ratio indicator using data mining methods: a case study in Urmia Lake basin, Iran” by Mohammad Taghi Sattari, Arya Farkhondeh, and John Patrick Abraham
  publication-title: Environ. Sci. Pollut. Res.
– volume: 101
  start-page: 973
  year: 2019
  end-page: 974
  ident: b0025
  article-title: “Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through genetic algorithm in Punjab, Pakistan” by Asmat Ullah, Nasrin Salehnia, Sohrab Kolsoumi, Ashfaq Ahmad, Tasneem Khaliq
  publication-title: Ecol. Indic.
– volume: 137
  start-page: 1257
  year: 2018
  end-page: 1269
  ident: b0010
  article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran
  publication-title: Theor. Appl. Climatol.
– volume: 353
  start-page: 152
  year: 2019
  end-page: 171
  ident: b0015
  article-title: Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature
  publication-title: Geoderma
– volume: 101
  start-page: 973
  year: 2019
  ident: 10.1016/j.ecolind.2019.105664_b0025
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.02.013
– volume: 103
  start-page: 493
  year: 2019
  ident: 10.1016/j.ecolind.2019.105664_b0030
  article-title: Letter to the Editor “Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China” by Xiangying Xu, Ping Gao, Xinkai Zhu, Wenshan Guo, Jinfeng Ding, Chunyan Li, Min Zhu, Xuanwei Wu
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.04.055
– volume: 137
  start-page: 1257
  issue: 1–2
  year: 2018
  ident: 10.1016/j.ecolind.2019.105664_b0010
  article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran
  publication-title: Theor. Appl. Climatol.
– volume: 96
  start-page: 278
  issue: 1
  year: 2019
  ident: 10.1016/j.ecolind.2019.105664_b0035
  article-title: Predicting total phosphorus levels as indicators for shallow lake management
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.09.002
– volume: 1–2
  year: 2019
  ident: 10.1016/j.ecolind.2019.105664_b0020
  article-title: Letter to the editor “Estimation of sodium adsorption ratio indicator using data mining methods: a case study in Urmia Lake basin, Iran” by Mohammad Taghi Sattari, Arya Farkhondeh, and John Patrick Abraham
  publication-title: Environ. Sci. Pollut. Res.
– volume: 353
  start-page: 152
  year: 2019
  ident: 10.1016/j.ecolind.2019.105664_b0015
  article-title: Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.028
– start-page: 1
  year: 2019
  ident: 10.1016/j.ecolind.2019.105664_b0005
  article-title: Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA
  publication-title: Theor. Appl. Climatol.
SSID ssj0016996
Score 2.3570662
Snippet The discusser thanks the authors for investigating the ability of modified random forest algorithm to predicting total phosphorus levels as indicators for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105664
SubjectTerms Algorithm’s parameters
Data mining technique
Random forest
Variable selection
Title Predicting total phosphorus levels as indicators for shallow lake management
URI https://dx.doi.org/10.1016/j.ecolind.2019.105664
Volume 107
WOSCitedRecordID wos000490757500106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7034
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0016996
  issn: 1470-160X
  databaseCode: AIEXJ
  dateStart: 20010801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kMvpa_Q9IUOvQWnki3rcQxlS1tKCDSFvRlJlshjYy_rTZuf39FKtkIa-oIebIzMWGY-eTySZuZD6A2tWM2MtYXXpSmYUbQwTNKiraSrJFfMV3pDNiEOD-V8ro4Spd-woRMQXSevrtTyv0INbQB2SJ39C7inh0IDXAPocAbY4fxHwB-twt5L5H_oQ6rj8qQf4FhdDnuLECI0BG6ZsFVt9YZqJwQaDoFTpf--t9DnY0TrFBIzrtvbyU5m4Qmv_kRfXOj2NO5hGH1-fTmBqhuhGVOeSw4qCmaRCVJQTubxrxHbpADfnKSlyNGWRgrbn-xyXCI424cpNXjPoUIrVYFimMcS5jdKXn8J_YXuwLskITbnLtouRa3Aam0ffJzNP037RFypmD-W3i_naL29tbPbvY9rHsXxQ_QgTQXwQYTwEbrjusdoZ5YzD-FmMr3DE_Q544o3uOKMK464Yj3gDA0GXHHCFQdcccb1Kfr6fnb87kORqDAKWxG1LlxNuam8stQrowXTJTFOtNwEjiHHytJqT6XkztTU85ZSYThMZI03qhSOk2oHbXV9554h7ODvRkzNW_gWmS-9ts545TRxvHSOyF3ERhU1NtWJD3Qli2YMCDxrkmaboNkmanYX7U9iy1go5XcCctR_k7y96MU1MGh-Lfr830VfoPt51L9EW-vVpXuF7tlv69Nh9ToNrx9uUX97
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+total+phosphorus+levels+as+indicators+for+shallow+lake+management&rft.jtitle=Ecological+indicators&rft.au=Mohammadi%2C+Babak&rft.date=2019-12-01&rft.pub=Elsevier+Ltd&rft.issn=1470-160X&rft.eissn=1872-7034&rft.volume=107&rft_id=info:doi/10.1016%2Fj.ecolind.2019.105664&rft.externalDocID=S1470160X19306570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon