Multiple Tasks for Multiple Objectives: A New Multiobjective Optimization Method via Multitask Optimization

Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems (MOPs). Inspired by the efficiency of multitask optimization (MTO) in finding multiple optimal solutions of MTO problem (MTOP), we propose to treat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 29; H. 1; S. 172 - 186
Hauptverfasser: Li, Jian-Yu, Zhan, Zhi-Hui, Li, Yun, Zhang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.02.2025
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems (MOPs). Inspired by the efficiency of multitask optimization (MTO) in finding multiple optimal solutions of MTO problem (MTOP), we propose to treat MOP as a MTOP and solve it by using MTO. By transforming the MOP into a MTOP, not only that the difficulty in handling conflicting objectives can be avoided, but also that MTO can help efficiently find well-distributed multiple optimal solutions for MOP. With the above idea, this article proposes a new multiobjective optimization method via MTO, with the following three contributions: 1) a theorem is proposed to theoretically show the relationship between MOP and MTOP and how MOP can be transformed into a MTOP; 2) based on the theoretical analysis, a multiple tasks for multiple objectives (MTMOs) framework is proposed for solving MOP efficiently; and 3) a MTMO-based evolutionary algorithm is developed to solve MOP, together with two novel strategies. One is a target point estimation strategy for transforming the MOP into a MTOP automatically and accurately. The other is an archive-based implicit knowledge transfer strategy for efficiently transferring knowledge across multiple tasks to enhance the optimization results of multiple tasks together. The superiority of the proposed algorithm is validated in extensive experiments on 15 MOPs with objective numbers varying from 3 to 20 and with six state-of-the-art algorithms as competitors. Therefore, solving MOP and even many-objective optimization problem via MTO is a new, promising, and efficient method.
AbstractList Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems (MOPs). Inspired by the efficiency of multitask optimization (MTO) in finding multiple optimal solutions of MTO problem (MTOP), we propose to treat MOP as a MTOP and solve it by using MTO. By transforming the MOP into a MTOP, not only that the difficulty in handling conflicting objectives can be avoided, but also that MTO can help efficiently find well-distributed multiple optimal solutions for MOP. With the above idea, this article proposes a new multiobjective optimization method via MTO, with the following three contributions: 1) a theorem is proposed to theoretically show the relationship between MOP and MTOP and how MOP can be transformed into a MTOP; 2) based on the theoretical analysis, a multiple tasks for multiple objectives (MTMOs) framework is proposed for solving MOP efficiently; and 3) a MTMO-based evolutionary algorithm is developed to solve MOP, together with two novel strategies. One is a target point estimation strategy for transforming the MOP into a MTOP automatically and accurately. The other is an archive-based implicit knowledge transfer strategy for efficiently transferring knowledge across multiple tasks to enhance the optimization results of multiple tasks together. The superiority of the proposed algorithm is validated in extensive experiments on 15 MOPs with objective numbers varying from 3 to 20 and with six state-of-the-art algorithms as competitors. Therefore, solving MOP and even many-objective optimization problem via MTO is a new, promising, and efficient method.
Author Li, Yun
Zhan, Zhi-Hui
Li, Jian-Yu
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jian-Yu
  orcidid: 0000-0002-6143-9207
  surname: Li
  fullname: Li, Jian-Yu
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
– sequence: 2
  givenname: Zhi-Hui
  orcidid: 0000-0003-0862-0514
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  email: zhanapollo@163.com
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
– sequence: 3
  givenname: Yun
  orcidid: 0000-0002-6575-1839
  surname: Li
  fullname: Li, Yun
  organization: Industrial Artificial Intelligence Centre, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0003-4148-4294
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhang@ieee.org
  organization: College of Artificial Intelligence, Nankai University, Tianjin, China
BookMark eNp9kE1OwzAQhS0EEm3hAEgsfIEUj53GMbuqKj9SSzcFsYtsxxZu06aKTRGcHkcpCFiwmtHzezOer4-Ot_XWIHQBZAhAxNVy-jQZUkLZkFGRMsKPUA9ECgkhNDuOPclFwnn-fIr63q8IgXQEoofW89cquF1l8FL6tce2bvC3tFAro4PbG3-Nx_jBvHVP9ZeMF7vgNu5DRm2L5ya81CXeO9nZQhz4y3GGTqysvDk_1AF6vJkuJ3fJbHF7PxnPEs2ICEmpbJqC0mAtMSVIJQhVeZZS0DYarDKKlppJLvlIG6njVZbloIjMcsWzERsg6Obqpva-MbbYNW4jm_cCSNHSKlpaRUurONCKGf4no-MB7a9DI131b_KySzpjzI9NwPPInn0CAld9Dg
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129580
crossref_primary_10_3390_app15169055
crossref_primary_10_1038_s41598_025_97651_7
crossref_primary_10_3390_biomimetics8060486
crossref_primary_10_1109_TCYB_2025_3535722
crossref_primary_10_1038_s41598_025_06385_z
crossref_primary_10_3390_cryst14110927
crossref_primary_10_1007_s10462_025_11325_4
crossref_primary_10_1016_j_swevo_2025_102115
crossref_primary_10_1007_s11831_025_10243_6
Cites_doi 10.1109/TEVC.2021.3119933
10.1162/EVCO_a_00009
10.1109/TCYB.2022.3153964
10.1109/TCYB.2016.2554622
10.1080/0305215X.2010.548863
10.1109/TITS.2022.3180760
10.1109/TSMCB.2012.2209115
10.1109/TEVC.2018.2875430
10.1109/TEVC.2014.2378512
10.1109/TEVC.2007.892759
10.1016/j.cor.2022.105857
10.1007/s40747-022-00650-8
10.1109/CEC.2017.7969530
10.1109/TEVC.2019.2893614
10.1145/3376916
10.1109/TCYB.2020.3028070
10.1109/TEVC.2018.2884133
10.1109/TEVC.2018.2866854
10.1109/TCYB.2023.3234969
10.1109/TCYB.2020.2974100
10.1109/TPDS.2016.2597826
10.1137/s1052623496307510
10.1109/TEVC.2017.2767023
10.1109/TEVC.2020.2981949
10.1007/s12559-018-9620-7
10.1109/TSMC.2019.2898456
10.1109/TETCI.2017.2769104
10.1109/TEVC.2005.861417
10.1109/TEVC.2022.3212058
10.1109/TCYB.2023.3273625
10.1109/TEVC.2017.2749619
10.1109/TEVC.2016.2631279
10.1109/TCYB.2021.3082200
10.1007/1-84628-137-7_6
10.1109/TEVC.2022.3160196
10.1109/TCYB.2018.2819360
10.1109/iccss52145.2020.9336923
10.1109/TEVC.2018.2791283
10.1007/s10462-021-10042-y
10.1109/TEVC.2019.2906927
10.1109/TITS.2020.2994779
10.1109/MCI.2022.3155332
10.1109/TSMC.2018.2853719
10.1109/TCYB.2018.2832640
10.1109/4235.996017
10.1109/CEC.2002.1004388
10.1109/TEVC.2021.3131236
10.1109/TEVC.2016.2519378
10.1109/TEVC.2016.2549267
10.1109/TEVC.2012.2227145
10.1145/3449726.3459456
10.1109/TEVC.2017.2785351
10.1007/s11633-022-1317-4
10.1109/TKDE.2023.3251897
10.1109/TCYB.2019.2944873
10.1109/TEVC.2016.2587749
10.1109/TCYB.2021.3102642
10.1109/TEVC.2020.3013290
10.1109/TEVC.2022.3232776
10.1007/s40747-017-0039-7
10.1109/TEVC.2015.2458037
10.1109/TEVC.2022.3175065
10.1109/TEVC.2020.2978158
10.1162/106365602760234108
10.1109/TEVC.2021.3051608
10.1109/TEVC.2020.3008877
10.1109/TEVC.2015.2443001
10.1109/TEVC.2022.3210783
10.1007/s00500-018-3631-x
10.1109/MCI.2020.3039066
10.1016/j.ejor.2018.06.009
10.1080/01969722.2020.1827797
10.1109/TCYB.2018.2845361
10.1109/TEVC.2013.2281535
10.1109/TEVC.2021.3097339
10.1109/TEVC.2014.2373386
10.1049/cit2.12106
10.1109/MCI.2017.2742868
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2023.3294307
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 186
ExternalDocumentID 10_1109_TEVC_2023_3294307
10178002
Genre orig-research
GrantInformation_xml – fundername: Tianjin Top Scientist Studio Project
  grantid: 24JRRCRC00030
– fundername: Key Program of the Natural Science Foundation of Guangdong Province
  grantid: 2021B1515120078
– fundername: National Research Foundation of Korea
  grantid: HY-202300000003465; HY-202400000001955
  funderid: 10.13039/501100003725
– fundername: Ministry of Science and Technology of China
  grantid: G2022032012L
– fundername: National Natural Science Foundations of China
  grantid: 62176094; 92270105
  funderid: 10.13039/501100001809
– fundername: Key-Area Research and Development of Guangdong Province
  grantid: 2020B010166002
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c309t-dbf441bc1ff0ed1ab902b86421cf309fbeb2dc3a7a75ceac778f381b0a68b7653
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001413496000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Tue Nov 18 22:26:22 EST 2025
Sat Nov 29 03:13:50 EST 2025
Wed Aug 27 01:54:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-dbf441bc1ff0ed1ab902b86421cf309fbeb2dc3a7a75ceac778f381b0a68b7653
ORCID 0000-0002-6143-9207
0000-0003-0862-0514
0000-0003-4148-4294
0000-0002-6575-1839
OpenAccessLink https://ieeexplore.ieee.org/document/10178002
PageCount 15
ParticipantIDs crossref_primary_10_1109_TEVC_2023_3294307
crossref_citationtrail_10_1109_TEVC_2023_3294307
ieee_primary_10178002
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref5
ref40
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
Deb (ref67) 1996; 26
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref26
ref25
ref69
ref20
ref64
Zitzler (ref6) 2001
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref25
  doi: 10.1109/TEVC.2021.3119933
– ident: ref41
  doi: 10.1162/EVCO_a_00009
– ident: ref74
  doi: 10.1109/TCYB.2022.3153964
– ident: ref23
  doi: 10.1109/TCYB.2016.2554622
– ident: ref15
  doi: 10.1080/0305215X.2010.548863
– ident: ref47
  doi: 10.1109/TITS.2022.3180760
– ident: ref12
  doi: 10.1109/TSMCB.2012.2209115
– ident: ref48
  doi: 10.1109/TEVC.2018.2875430
– ident: ref52
  doi: 10.1109/TEVC.2014.2378512
– ident: ref8
  doi: 10.1109/TEVC.2007.892759
– ident: ref28
  doi: 10.1016/j.cor.2022.105857
– ident: ref24
  doi: 10.1007/s40747-022-00650-8
– ident: ref51
  doi: 10.1109/CEC.2017.7969530
– ident: ref57
  doi: 10.1109/TEVC.2019.2893614
– ident: ref10
  doi: 10.1145/3376916
– ident: ref79
  doi: 10.1109/TCYB.2020.3028070
– ident: ref14
  doi: 10.1109/TEVC.2018.2884133
– ident: ref33
  doi: 10.1109/TEVC.2018.2866854
– ident: ref61
  doi: 10.1109/TCYB.2023.3234969
– ident: ref59
  doi: 10.1109/TCYB.2020.2974100
– ident: ref77
  doi: 10.1109/TPDS.2016.2597826
– ident: ref70
  doi: 10.1137/s1052623496307510
– ident: ref13
  doi: 10.1109/TEVC.2017.2767023
– ident: ref34
  doi: 10.1109/TEVC.2020.2981949
– ident: ref21
  doi: 10.1007/s12559-018-9620-7
– ident: ref35
  doi: 10.1109/TSMC.2019.2898456
– ident: ref72
  doi: 10.1109/TETCI.2017.2769104
– ident: ref69
  doi: 10.1109/TEVC.2005.861417
– ident: ref49
  doi: 10.1109/TEVC.2022.3212058
– ident: ref64
  doi: 10.1109/TCYB.2023.3273625
– ident: ref65
  doi: 10.1109/TEVC.2017.2749619
– ident: ref50
  doi: 10.1109/TEVC.2016.2631279
– ident: ref54
  doi: 10.1109/TCYB.2021.3082200
– ident: ref68
  doi: 10.1007/1-84628-137-7_6
– ident: ref63
  doi: 10.1109/TEVC.2022.3160196
– ident: ref39
  doi: 10.1109/TCYB.2018.2819360
– ident: ref80
  doi: 10.1109/iccss52145.2020.9336923
– ident: ref40
  doi: 10.1109/TEVC.2018.2791283
– ident: ref2
  doi: 10.1007/s10462-021-10042-y
– volume: 26
  start-page: 30
  issue: 4
  year: 1996
  ident: ref67
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Informat.
– ident: ref18
  doi: 10.1109/TEVC.2019.2906927
– ident: ref46
  doi: 10.1109/TITS.2020.2994779
– ident: ref22
  doi: 10.1109/MCI.2022.3155332
– ident: ref60
  doi: 10.1109/TSMC.2018.2853719
– ident: ref43
  doi: 10.1109/TCYB.2018.2832640
– ident: ref5
  doi: 10.1109/4235.996017
– ident: ref7
  doi: 10.1109/CEC.2002.1004388
– ident: ref20
  doi: 10.1109/TEVC.2021.3131236
– ident: ref37
  doi: 10.1109/TEVC.2016.2519378
– ident: ref42
  doi: 10.1109/TEVC.2016.2549267
– ident: ref32
  doi: 10.1109/TEVC.2012.2227145
– ident: ref56
  doi: 10.1145/3449726.3459456
– ident: ref58
  doi: 10.1109/TEVC.2017.2785351
– ident: ref3
  doi: 10.1007/s11633-022-1317-4
– ident: ref55
  doi: 10.1109/TKDE.2023.3251897
– ident: ref73
  doi: 10.1109/TCYB.2019.2944873
– ident: ref38
  doi: 10.1109/TEVC.2016.2587749
– ident: ref45
  doi: 10.1109/TCYB.2021.3102642
– ident: ref11
  doi: 10.1109/TEVC.2020.3013290
– ident: ref71
  doi: 10.1109/TEVC.2022.3232776
– ident: ref27
  doi: 10.1007/s40747-017-0039-7
– ident: ref4
  doi: 10.1109/TEVC.2015.2458037
– ident: ref26
  doi: 10.1109/TEVC.2022.3175065
– ident: ref9
  doi: 10.1109/TEVC.2020.2978158
– ident: ref31
  doi: 10.1162/106365602760234108
– ident: ref75
  doi: 10.1109/TEVC.2021.3051608
– ident: ref53
  doi: 10.1109/TEVC.2020.3008877
– ident: ref36
  doi: 10.1109/TEVC.2015.2443001
– ident: ref62
  doi: 10.1109/TEVC.2022.3210783
– year: 2001
  ident: ref6
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref30
  doi: 10.1007/s00500-018-3631-x
– ident: ref1
  doi: 10.1109/MCI.2020.3039066
– ident: ref29
  doi: 10.1016/j.ejor.2018.06.009
– ident: ref78
  doi: 10.1080/01969722.2020.1827797
– ident: ref19
  doi: 10.1109/TCYB.2018.2845361
– ident: ref16
  doi: 10.1109/TEVC.2013.2281535
– ident: ref44
  doi: 10.1109/TEVC.2021.3097339
– ident: ref17
  doi: 10.1109/TEVC.2014.2373386
– ident: ref76
  doi: 10.1049/cit2.12106
– ident: ref66
  doi: 10.1109/MCI.2017.2742868
SSID ssj0014519
Score 2.5730667
Snippet Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 172
SubjectTerms Evolutionary computation
Evolutionary computation (EC)
Knowledge transfer
Minimization
multiobjective optimization problem (MOP)
multiple tasks for multiple objectives (MTMOs)
multitask optimization problem (MTOP)
Optimization
Pareto optimization
Task analysis
transforming
Transforms
Title Multiple Tasks for Multiple Objectives: A New Multiobjective Optimization Method via Multitask Optimization
URI https://ieeexplore.ieee.org/document/10178002
Volume 29
WOSCitedRecordID wos001413496000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UeNCDKGLEr_TgyWRQ9tXWGyEQDwIe0HBb2q5NEAXDBn-__YLAQRNvS_e2LP1t772u7_1-ADxwFIpccRyIKBZBLJAKaBzTIBShiiIm9YrAsuu_4OGQTCb01Ter214YKaUtPpNNc2j38vOFWJlfZS3z-hBLHXmIceqatbZbBoYnxVXTU50ykonfwmwj2hr33rtNoxPejEJDN473gtCOqooNKv3qPx_nDJz67BF2HNzn4EDOa6C6UWaA_kOtgZMdmsELMBv4qkE4ZsWsgDpPhduhEf9wPq94gh2ofZ47tdgMw5F2Kl--WxMOrOA0XE-ZMyv1Dfcs6uCt3xt3nwMvsqDRQbQMcq50RsRFWykk8zbjFIWcmPZXobSB4nrpnYuIYYYTob20nlqlozxHLCUcp0l0CSrzxVxeAYgEpTomslTGKk64YDmRVrAqsbCTBkCbWc-EZyA3QhifmV2JIJoZoDIDVOaBaoDH7SXfjn7jL-O6AWnH0OFz_cv4DTgOjZqvrcG-BZVyuZJ34Eisy2mxvLdv1w9Nec_A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MmqgHUcSInz14MhmUrWOrN0IgGPnwgIbb0nZtgigYNvj77RcEDpp4W7q3Zelve-91fe_3A-CBIZ-nkkUeDzD3MEfSIxgTz-e-DAIq1IrAsOv3osEgHo_Jq2tWN70wQghTfCaq-tDs5adzvtS_ymr69YkNdeR-iLGPbLvWZtNAM6XYenqiksZ47DYx64jURu33VlUrhVcDXxOORzthaEtXxYSVTvGfD3QKTlz-CJsW8DOwJ2YlUFxrM0D3qZbA8RbR4DmY9l3dIBzRbJpBlanCzdCQfVivlz3BJlRez56ar4fhULmVL9evCftGchquJtSa5eqGOxZl8NZpj1pdz8ksKHwQyb2USZUTMV6XEom0ThlBPot1AyyXykAytfhOeUAjGoVc-Wk1tVLFeYZoI2ZRIwwuQGE2n4lLABEnREVF2hBY4pBxmsbCSFaFBvi4AtB61hPuOMi1FMZnYtYiiCQaqEQDlTigKuBxc8m3JeD4y7isQdoytPhc_TJ-Dw67o34v6T0PXq7Bka-1fU1F9g0o5IuluAUHfJVPssWdedN-AEI20wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Tasks+for+Multiple+Objectives%3A+A+New+Multiobjective+Optimization+Method+via+Multitask+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Li%2C+Jian-Yu&rft.au=Zhan%2C+Zhi-Hui&rft.au=Li%2C+Yun&rft.au=Zhang%2C+Jun&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=1&rft.spage=172&rft.epage=186&rft_id=info:doi/10.1109%2FTEVC.2023.3294307&rft.externalDocID=10178002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon