Multiple Tasks for Multiple Objectives: A New Multiobjective Optimization Method via Multitask Optimization
Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems (MOPs). Inspired by the efficiency of multitask optimization (MTO) in finding multiple optimal solutions of MTO problem (MTOP), we propose to treat...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 29; H. 1; S. 172 - 186 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.02.2025
|
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems (MOPs). Inspired by the efficiency of multitask optimization (MTO) in finding multiple optimal solutions of MTO problem (MTOP), we propose to treat MOP as a MTOP and solve it by using MTO. By transforming the MOP into a MTOP, not only that the difficulty in handling conflicting objectives can be avoided, but also that MTO can help efficiently find well-distributed multiple optimal solutions for MOP. With the above idea, this article proposes a new multiobjective optimization method via MTO, with the following three contributions: 1) a theorem is proposed to theoretically show the relationship between MOP and MTOP and how MOP can be transformed into a MTOP; 2) based on the theoretical analysis, a multiple tasks for multiple objectives (MTMOs) framework is proposed for solving MOP efficiently; and 3) a MTMO-based evolutionary algorithm is developed to solve MOP, together with two novel strategies. One is a target point estimation strategy for transforming the MOP into a MTOP automatically and accurately. The other is an archive-based implicit knowledge transfer strategy for efficiently transferring knowledge across multiple tasks to enhance the optimization results of multiple tasks together. The superiority of the proposed algorithm is validated in extensive experiments on 15 MOPs with objective numbers varying from 3 to 20 and with six state-of-the-art algorithms as competitors. Therefore, solving MOP and even many-objective optimization problem via MTO is a new, promising, and efficient method. |
|---|---|
| AbstractList | Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems (MOPs). Inspired by the efficiency of multitask optimization (MTO) in finding multiple optimal solutions of MTO problem (MTOP), we propose to treat MOP as a MTOP and solve it by using MTO. By transforming the MOP into a MTOP, not only that the difficulty in handling conflicting objectives can be avoided, but also that MTO can help efficiently find well-distributed multiple optimal solutions for MOP. With the above idea, this article proposes a new multiobjective optimization method via MTO, with the following three contributions: 1) a theorem is proposed to theoretically show the relationship between MOP and MTOP and how MOP can be transformed into a MTOP; 2) based on the theoretical analysis, a multiple tasks for multiple objectives (MTMOs) framework is proposed for solving MOP efficiently; and 3) a MTMO-based evolutionary algorithm is developed to solve MOP, together with two novel strategies. One is a target point estimation strategy for transforming the MOP into a MTOP automatically and accurately. The other is an archive-based implicit knowledge transfer strategy for efficiently transferring knowledge across multiple tasks to enhance the optimization results of multiple tasks together. The superiority of the proposed algorithm is validated in extensive experiments on 15 MOPs with objective numbers varying from 3 to 20 and with six state-of-the-art algorithms as competitors. Therefore, solving MOP and even many-objective optimization problem via MTO is a new, promising, and efficient method. |
| Author | Li, Yun Zhan, Zhi-Hui Li, Jian-Yu Zhang, Jun |
| Author_xml | – sequence: 1 givenname: Jian-Yu orcidid: 0000-0002-6143-9207 surname: Li fullname: Li, Jian-Yu organization: College of Artificial Intelligence, Nankai University, Tianjin, China – sequence: 2 givenname: Zhi-Hui orcidid: 0000-0003-0862-0514 surname: Zhan fullname: Zhan, Zhi-Hui email: zhanapollo@163.com organization: College of Artificial Intelligence, Nankai University, Tianjin, China – sequence: 3 givenname: Yun orcidid: 0000-0002-6575-1839 surname: Li fullname: Li, Yun organization: Industrial Artificial Intelligence Centre, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China – sequence: 4 givenname: Jun orcidid: 0000-0003-4148-4294 surname: Zhang fullname: Zhang, Jun email: junzhang@ieee.org organization: College of Artificial Intelligence, Nankai University, Tianjin, China |
| BookMark | eNp9kE1OwzAQhS0EEm3hAEgsfIEUj53GMbuqKj9SSzcFsYtsxxZu06aKTRGcHkcpCFiwmtHzezOer4-Ot_XWIHQBZAhAxNVy-jQZUkLZkFGRMsKPUA9ECgkhNDuOPclFwnn-fIr63q8IgXQEoofW89cquF1l8FL6tce2bvC3tFAro4PbG3-Nx_jBvHVP9ZeMF7vgNu5DRm2L5ya81CXeO9nZQhz4y3GGTqysvDk_1AF6vJkuJ3fJbHF7PxnPEs2ICEmpbJqC0mAtMSVIJQhVeZZS0DYarDKKlppJLvlIG6njVZbloIjMcsWzERsg6Obqpva-MbbYNW4jm_cCSNHSKlpaRUurONCKGf4no-MB7a9DI131b_KySzpjzI9NwPPInn0CAld9Dg |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129580 crossref_primary_10_3390_app15169055 crossref_primary_10_1038_s41598_025_97651_7 crossref_primary_10_3390_biomimetics8060486 crossref_primary_10_1109_TCYB_2025_3535722 crossref_primary_10_1038_s41598_025_06385_z crossref_primary_10_3390_cryst14110927 crossref_primary_10_1007_s10462_025_11325_4 crossref_primary_10_1016_j_swevo_2025_102115 crossref_primary_10_1007_s11831_025_10243_6 |
| Cites_doi | 10.1109/TEVC.2021.3119933 10.1162/EVCO_a_00009 10.1109/TCYB.2022.3153964 10.1109/TCYB.2016.2554622 10.1080/0305215X.2010.548863 10.1109/TITS.2022.3180760 10.1109/TSMCB.2012.2209115 10.1109/TEVC.2018.2875430 10.1109/TEVC.2014.2378512 10.1109/TEVC.2007.892759 10.1016/j.cor.2022.105857 10.1007/s40747-022-00650-8 10.1109/CEC.2017.7969530 10.1109/TEVC.2019.2893614 10.1145/3376916 10.1109/TCYB.2020.3028070 10.1109/TEVC.2018.2884133 10.1109/TEVC.2018.2866854 10.1109/TCYB.2023.3234969 10.1109/TCYB.2020.2974100 10.1109/TPDS.2016.2597826 10.1137/s1052623496307510 10.1109/TEVC.2017.2767023 10.1109/TEVC.2020.2981949 10.1007/s12559-018-9620-7 10.1109/TSMC.2019.2898456 10.1109/TETCI.2017.2769104 10.1109/TEVC.2005.861417 10.1109/TEVC.2022.3212058 10.1109/TCYB.2023.3273625 10.1109/TEVC.2017.2749619 10.1109/TEVC.2016.2631279 10.1109/TCYB.2021.3082200 10.1007/1-84628-137-7_6 10.1109/TEVC.2022.3160196 10.1109/TCYB.2018.2819360 10.1109/iccss52145.2020.9336923 10.1109/TEVC.2018.2791283 10.1007/s10462-021-10042-y 10.1109/TEVC.2019.2906927 10.1109/TITS.2020.2994779 10.1109/MCI.2022.3155332 10.1109/TSMC.2018.2853719 10.1109/TCYB.2018.2832640 10.1109/4235.996017 10.1109/CEC.2002.1004388 10.1109/TEVC.2021.3131236 10.1109/TEVC.2016.2519378 10.1109/TEVC.2016.2549267 10.1109/TEVC.2012.2227145 10.1145/3449726.3459456 10.1109/TEVC.2017.2785351 10.1007/s11633-022-1317-4 10.1109/TKDE.2023.3251897 10.1109/TCYB.2019.2944873 10.1109/TEVC.2016.2587749 10.1109/TCYB.2021.3102642 10.1109/TEVC.2020.3013290 10.1109/TEVC.2022.3232776 10.1007/s40747-017-0039-7 10.1109/TEVC.2015.2458037 10.1109/TEVC.2022.3175065 10.1109/TEVC.2020.2978158 10.1162/106365602760234108 10.1109/TEVC.2021.3051608 10.1109/TEVC.2020.3008877 10.1109/TEVC.2015.2443001 10.1109/TEVC.2022.3210783 10.1007/s00500-018-3631-x 10.1109/MCI.2020.3039066 10.1016/j.ejor.2018.06.009 10.1080/01969722.2020.1827797 10.1109/TCYB.2018.2845361 10.1109/TEVC.2013.2281535 10.1109/TEVC.2021.3097339 10.1109/TEVC.2014.2373386 10.1049/cit2.12106 10.1109/MCI.2017.2742868 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2023.3294307 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 186 |
| ExternalDocumentID | 10_1109_TEVC_2023_3294307 10178002 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Tianjin Top Scientist Studio Project grantid: 24JRRCRC00030 – fundername: Key Program of the Natural Science Foundation of Guangdong Province grantid: 2021B1515120078 – fundername: National Research Foundation of Korea grantid: HY-202300000003465; HY-202400000001955 funderid: 10.13039/501100003725 – fundername: Ministry of Science and Technology of China grantid: G2022032012L – fundername: National Natural Science Foundations of China grantid: 62176094; 92270105 funderid: 10.13039/501100001809 – fundername: Key-Area Research and Development of Guangdong Province grantid: 2020B010166002 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c309t-dbf441bc1ff0ed1ab902b86421cf309fbeb2dc3a7a75ceac778f381b0a68b7653 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001413496000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Tue Nov 18 22:26:22 EST 2025 Sat Nov 29 03:13:50 EST 2025 Wed Aug 27 01:54:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c309t-dbf441bc1ff0ed1ab902b86421cf309fbeb2dc3a7a75ceac778f381b0a68b7653 |
| ORCID | 0000-0002-6143-9207 0000-0003-0862-0514 0000-0003-4148-4294 0000-0002-6575-1839 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10178002 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2023_3294307 crossref_citationtrail_10_1109_TEVC_2023_3294307 ieee_primary_10178002 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref5 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 Deb (ref67) 1996; 26 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref64 Zitzler (ref6) 2001 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref25 doi: 10.1109/TEVC.2021.3119933 – ident: ref41 doi: 10.1162/EVCO_a_00009 – ident: ref74 doi: 10.1109/TCYB.2022.3153964 – ident: ref23 doi: 10.1109/TCYB.2016.2554622 – ident: ref15 doi: 10.1080/0305215X.2010.548863 – ident: ref47 doi: 10.1109/TITS.2022.3180760 – ident: ref12 doi: 10.1109/TSMCB.2012.2209115 – ident: ref48 doi: 10.1109/TEVC.2018.2875430 – ident: ref52 doi: 10.1109/TEVC.2014.2378512 – ident: ref8 doi: 10.1109/TEVC.2007.892759 – ident: ref28 doi: 10.1016/j.cor.2022.105857 – ident: ref24 doi: 10.1007/s40747-022-00650-8 – ident: ref51 doi: 10.1109/CEC.2017.7969530 – ident: ref57 doi: 10.1109/TEVC.2019.2893614 – ident: ref10 doi: 10.1145/3376916 – ident: ref79 doi: 10.1109/TCYB.2020.3028070 – ident: ref14 doi: 10.1109/TEVC.2018.2884133 – ident: ref33 doi: 10.1109/TEVC.2018.2866854 – ident: ref61 doi: 10.1109/TCYB.2023.3234969 – ident: ref59 doi: 10.1109/TCYB.2020.2974100 – ident: ref77 doi: 10.1109/TPDS.2016.2597826 – ident: ref70 doi: 10.1137/s1052623496307510 – ident: ref13 doi: 10.1109/TEVC.2017.2767023 – ident: ref34 doi: 10.1109/TEVC.2020.2981949 – ident: ref21 doi: 10.1007/s12559-018-9620-7 – ident: ref35 doi: 10.1109/TSMC.2019.2898456 – ident: ref72 doi: 10.1109/TETCI.2017.2769104 – ident: ref69 doi: 10.1109/TEVC.2005.861417 – ident: ref49 doi: 10.1109/TEVC.2022.3212058 – ident: ref64 doi: 10.1109/TCYB.2023.3273625 – ident: ref65 doi: 10.1109/TEVC.2017.2749619 – ident: ref50 doi: 10.1109/TEVC.2016.2631279 – ident: ref54 doi: 10.1109/TCYB.2021.3082200 – ident: ref68 doi: 10.1007/1-84628-137-7_6 – ident: ref63 doi: 10.1109/TEVC.2022.3160196 – ident: ref39 doi: 10.1109/TCYB.2018.2819360 – ident: ref80 doi: 10.1109/iccss52145.2020.9336923 – ident: ref40 doi: 10.1109/TEVC.2018.2791283 – ident: ref2 doi: 10.1007/s10462-021-10042-y – volume: 26 start-page: 30 issue: 4 year: 1996 ident: ref67 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Comput. Sci. Informat. – ident: ref18 doi: 10.1109/TEVC.2019.2906927 – ident: ref46 doi: 10.1109/TITS.2020.2994779 – ident: ref22 doi: 10.1109/MCI.2022.3155332 – ident: ref60 doi: 10.1109/TSMC.2018.2853719 – ident: ref43 doi: 10.1109/TCYB.2018.2832640 – ident: ref5 doi: 10.1109/4235.996017 – ident: ref7 doi: 10.1109/CEC.2002.1004388 – ident: ref20 doi: 10.1109/TEVC.2021.3131236 – ident: ref37 doi: 10.1109/TEVC.2016.2519378 – ident: ref42 doi: 10.1109/TEVC.2016.2549267 – ident: ref32 doi: 10.1109/TEVC.2012.2227145 – ident: ref56 doi: 10.1145/3449726.3459456 – ident: ref58 doi: 10.1109/TEVC.2017.2785351 – ident: ref3 doi: 10.1007/s11633-022-1317-4 – ident: ref55 doi: 10.1109/TKDE.2023.3251897 – ident: ref73 doi: 10.1109/TCYB.2019.2944873 – ident: ref38 doi: 10.1109/TEVC.2016.2587749 – ident: ref45 doi: 10.1109/TCYB.2021.3102642 – ident: ref11 doi: 10.1109/TEVC.2020.3013290 – ident: ref71 doi: 10.1109/TEVC.2022.3232776 – ident: ref27 doi: 10.1007/s40747-017-0039-7 – ident: ref4 doi: 10.1109/TEVC.2015.2458037 – ident: ref26 doi: 10.1109/TEVC.2022.3175065 – ident: ref9 doi: 10.1109/TEVC.2020.2978158 – ident: ref31 doi: 10.1162/106365602760234108 – ident: ref75 doi: 10.1109/TEVC.2021.3051608 – ident: ref53 doi: 10.1109/TEVC.2020.3008877 – ident: ref36 doi: 10.1109/TEVC.2015.2443001 – ident: ref62 doi: 10.1109/TEVC.2022.3210783 – year: 2001 ident: ref6 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref30 doi: 10.1007/s00500-018-3631-x – ident: ref1 doi: 10.1109/MCI.2020.3039066 – ident: ref29 doi: 10.1016/j.ejor.2018.06.009 – ident: ref78 doi: 10.1080/01969722.2020.1827797 – ident: ref19 doi: 10.1109/TCYB.2018.2845361 – ident: ref16 doi: 10.1109/TEVC.2013.2281535 – ident: ref44 doi: 10.1109/TEVC.2021.3097339 – ident: ref17 doi: 10.1109/TEVC.2014.2373386 – ident: ref76 doi: 10.1049/cit2.12106 – ident: ref66 doi: 10.1109/MCI.2017.2742868 |
| SSID | ssj0014519 |
| Score | 2.5730667 |
| Snippet | Handling conflicting objectives and finding multiple Pareto optimal solutions are two challenging issues in solving multiobjective optimization problems... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 172 |
| SubjectTerms | Evolutionary computation Evolutionary computation (EC) Knowledge transfer Minimization multiobjective optimization problem (MOP) multiple tasks for multiple objectives (MTMOs) multitask optimization problem (MTOP) Optimization Pareto optimization Task analysis transforming Transforms |
| Title | Multiple Tasks for Multiple Objectives: A New Multiobjective Optimization Method via Multitask Optimization |
| URI | https://ieeexplore.ieee.org/document/10178002 |
| Volume | 29 |
| WOSCitedRecordID | wos001413496000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UeNCDKGLEr_TgyWRQ9tXWGyEQDwIe0HBb2q5NEAXDBn-__YLAQRNvS_e2LP1t772u7_1-ADxwFIpccRyIKBZBLJAKaBzTIBShiiIm9YrAsuu_4OGQTCb01Ter214YKaUtPpNNc2j38vOFWJlfZS3z-hBLHXmIceqatbZbBoYnxVXTU50ykonfwmwj2hr33rtNoxPejEJDN473gtCOqooNKv3qPx_nDJz67BF2HNzn4EDOa6C6UWaA_kOtgZMdmsELMBv4qkE4ZsWsgDpPhduhEf9wPq94gh2ofZ47tdgMw5F2Kl--WxMOrOA0XE-ZMyv1Dfcs6uCt3xt3nwMvsqDRQbQMcq50RsRFWykk8zbjFIWcmPZXobSB4nrpnYuIYYYTob20nlqlozxHLCUcp0l0CSrzxVxeAYgEpTomslTGKk64YDmRVrAqsbCTBkCbWc-EZyA3QhifmV2JIJoZoDIDVOaBaoDH7SXfjn7jL-O6AWnH0OFz_cv4DTgOjZqvrcG-BZVyuZJ34Eisy2mxvLdv1w9Nec_A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MmqgHUcSInz14MhmUrWOrN0IgGPnwgIbb0nZtgigYNvj77RcEDpp4W7q3Zelve-91fe_3A-CBIZ-nkkUeDzD3MEfSIxgTz-e-DAIq1IrAsOv3osEgHo_Jq2tWN70wQghTfCaq-tDs5adzvtS_ymr69YkNdeR-iLGPbLvWZtNAM6XYenqiksZ47DYx64jURu33VlUrhVcDXxOORzthaEtXxYSVTvGfD3QKTlz-CJsW8DOwJ2YlUFxrM0D3qZbA8RbR4DmY9l3dIBzRbJpBlanCzdCQfVivlz3BJlRez56ar4fhULmVL9evCftGchquJtSa5eqGOxZl8NZpj1pdz8ksKHwQyb2USZUTMV6XEom0ThlBPot1AyyXykAytfhOeUAjGoVc-Wk1tVLFeYZoI2ZRIwwuQGE2n4lLABEnREVF2hBY4pBxmsbCSFaFBvi4AtB61hPuOMi1FMZnYtYiiCQaqEQDlTigKuBxc8m3JeD4y7isQdoytPhc_TJ-Dw67o34v6T0PXq7Bka-1fU1F9g0o5IuluAUHfJVPssWdedN-AEI20wc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Tasks+for+Multiple+Objectives%3A+A+New+Multiobjective+Optimization+Method+via+Multitask+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Li%2C+Jian-Yu&rft.au=Zhan%2C+Zhi-Hui&rft.au=Li%2C+Yun&rft.au=Zhang%2C+Jun&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=1&rft.spage=172&rft.epage=186&rft_id=info:doi/10.1109%2FTEVC.2023.3294307&rft.externalDocID=10178002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |