Application of deep learning and near infrared spectroscopy in cereal analysis

•A method for quickly analyzing cereal characteristics.•The method is based on deep learning and near infrared spectroscopy.•Uses stacked sparse autoencoder to extract features of near infrared spectral data.•A near infrared spectroscopy analysis model was proposed.•Compared with other methods, the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Vibrational spectroscopy Ročník 106; s. 103009
Hlavný autor: Le, Ba Tuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2020
Predmet:
ISSN:0924-2031, 1873-3697
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A method for quickly analyzing cereal characteristics.•The method is based on deep learning and near infrared spectroscopy.•Uses stacked sparse autoencoder to extract features of near infrared spectral data.•A near infrared spectroscopy analysis model was proposed.•Compared with other methods, the method proposed has better predictive ability. Deep learning is an important research achievement of artificial intelligence in recent years and has received special attention from scientists around the world. This study applies deep learning to spectral analysis techniques and proposes a rapid analysis method for cereals. First, the advanced features of the near infrared spectroscopy (NIR) were extracted by the deep learning-stacked sparse autoencoder (SSAE) method, and then the prediction model is built using the affine transformation (AT) and the extreme learning machine (ELM). Experiments were conducted on corn and rice data sets to verify the effectiveness of the method. The results show that the proposed method achieves good prediction results and is superior to other typical NIR analysis methods.
AbstractList •A method for quickly analyzing cereal characteristics.•The method is based on deep learning and near infrared spectroscopy.•Uses stacked sparse autoencoder to extract features of near infrared spectral data.•A near infrared spectroscopy analysis model was proposed.•Compared with other methods, the method proposed has better predictive ability. Deep learning is an important research achievement of artificial intelligence in recent years and has received special attention from scientists around the world. This study applies deep learning to spectral analysis techniques and proposes a rapid analysis method for cereals. First, the advanced features of the near infrared spectroscopy (NIR) were extracted by the deep learning-stacked sparse autoencoder (SSAE) method, and then the prediction model is built using the affine transformation (AT) and the extreme learning machine (ELM). Experiments were conducted on corn and rice data sets to verify the effectiveness of the method. The results show that the proposed method achieves good prediction results and is superior to other typical NIR analysis methods.
ArticleNumber 103009
Author Le, Ba Tuan
Author_xml – sequence: 1
  givenname: Ba Tuan
  surname: Le
  fullname: Le, Ba Tuan
  email: lebatuan1@duytan.edu.vn
  organization: Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
BookMark eNqFkN1KAzEQhYMo2FYfQcgLbJ1s9i94IaX4B0Vv9DrMZieSsmaXZCn07U1tr7zp1TCHOWdmvjm79IMnxu4ELAWI6n673Lk2jmSWOQiVNAmgLthMNLXMZKXqSzYDlRdZDlJcs3mMWwCoSiFn7H01jr0zOLnB88HyjmjkPWHwzn9z9B33qeHO24CBOn5YM4UhmmHcJ5UbCoR9GsR-H128YVcW-0i3p7pgX89Pn-vXbPPx8rZebTIjQU2ZUQ1SVzY5NU0tLHXpnLYscyBDhRGIIHJjayyqtiCjpC1NVUibK4VQYtXKBXs45pp0SwxktXHT3xNTQNdrAfqARm_1CY0-oNFHNMld_nOPwf1g2J_1PR59lF7bOQo6GkfeUOdCwqK7wZ1J-AWbRYSq
CitedBy_id crossref_primary_10_1016_j_foohum_2024_100474
crossref_primary_10_1080_10408398_2022_2066062
crossref_primary_10_1364_AO_533050
crossref_primary_10_1016_j_measurement_2024_115217
crossref_primary_10_1002_bit_28681
crossref_primary_10_1016_j_jfca_2023_105585
crossref_primary_10_3390_e23101293
crossref_primary_10_1002_ansa_202000162
crossref_primary_10_3390_s20236982
crossref_primary_10_56530_spectroscopy_js8781e3
crossref_primary_10_1007_s12161_025_02880_1
crossref_primary_10_3390_pr10122494
crossref_primary_10_1016_j_biosystemseng_2024_01_016
crossref_primary_10_1016_j_jpba_2020_113686
crossref_primary_10_1016_j_saa_2023_122828
crossref_primary_10_1016_j_tifs_2024_104377
crossref_primary_10_1111_jfpe_13821
crossref_primary_10_3390_molecules28073215
crossref_primary_10_1016_j_rser_2022_112608
crossref_primary_10_1016_j_agwat_2020_106303
crossref_primary_10_1111_ijfs_15137
crossref_primary_10_36899_japs_2025_4_0077
crossref_primary_10_1038_s41598_025_97347_y
crossref_primary_10_1007_s00723_023_01531_0
crossref_primary_10_1016_j_microc_2021_106642
crossref_primary_10_1016_j_vibspec_2022_103450
crossref_primary_10_1139_cjfas_2023_0045
crossref_primary_10_3390_app13010152
crossref_primary_10_1186_s12870_024_05776_0
crossref_primary_10_1080_05704928_2020_1859525
crossref_primary_10_3390_foods11152210
crossref_primary_10_1016_j_geoderma_2021_114967
crossref_primary_10_1016_j_saa_2021_120757
crossref_primary_10_3389_fpls_2022_836488
crossref_primary_10_3390_s22249764
crossref_primary_10_3390_foods13010011
crossref_primary_10_1088_1755_1315_951_1_012112
crossref_primary_10_3390_app13148494
crossref_primary_10_3390_app14209189
crossref_primary_10_1016_j_trac_2021_116459
crossref_primary_10_7717_peerj_cs_1266
crossref_primary_10_1080_00032719_2023_2199215
crossref_primary_10_1016_j_fishres_2024_107116
crossref_primary_10_1016_j_tifs_2023_104286
crossref_primary_10_1016_j_compag_2021_106657
crossref_primary_10_1016_j_microc_2024_110391
Cites_doi 10.1155/2018/8032831
10.1016/j.saa.2017.10.076
10.1016/j.foodchem.2017.09.058
10.1016/j.foodchem.2017.11.015
10.1016/j.neucom.2005.12.126
10.1016/j.infrared.2018.09.001
10.2527/msasas2016-165
10.1016/0003-2670(86)80028-9
10.1016/j.engappai.2018.12.005
10.1002/ejlt.201600459
10.1016/j.foodcont.2018.11.037
10.1016/j.jfoodeng.2017.11.030
10.1016/j.jcs.2018.06.010
10.1109/TNNLS.2018.2877468
10.1016/j.vibspec.2018.07.011
10.1109/TMI.2015.2458702
10.1016/j.vibspec.2019.102964
10.1016/j.infrared.2018.07.027
10.1016/j.infrared.2016.01.022
10.1109/LGRS.2015.2482520
10.1016/j.aca.2018.04.004
10.1111/jfpe.12810
10.1016/j.chemolab.2016.10.019
10.1007/s13197-018-3033-1
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.vibspec.2019.103009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3697
ExternalDocumentID 10_1016_j_vibspec_2019_103009
S0924203119302565
GroupedDBID --K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYJJ
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
H~9
IHE
J1W
KFR
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
T9H
TN5
UNMZH
WH7
WUQ
XFK
XPP
YK3
YNT
ZCG
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c309t-c98aed582e8871fed006b5520ece4c1aa012cf7a46b4ec93f5c643f299a05a6b3
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507463100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-2031
IngestDate Tue Nov 18 21:33:01 EST 2025
Sat Nov 29 07:08:11 EST 2025
Fri Feb 23 02:47:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Near-Infrared spectroscopy
Cereal analysis
Extreme learning machine
sTacked sparse autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-c98aed582e8871fed006b5520ece4c1aa012cf7a46b4ec93f5c643f299a05a6b3
ParticipantIDs crossref_citationtrail_10_1016_j_vibspec_2019_103009
crossref_primary_10_1016_j_vibspec_2019_103009
elsevier_sciencedirect_doi_10_1016_j_vibspec_2019_103009
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Vibrational spectroscopy
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cheng, Vella, Stasiewicz (bib0060) 2019; 98
Chen, Tan, Lin (bib0045) 2018; 2018
Geladi, Kowalski (bib0125) 1986; 185
Power, Chapman, Chandra, Roberts, Cozzolino (bib0010) 2018; 98
Xu, Xiang, Liu, Gilmore, Wu, Tang, Madabhushi (bib0085) 2015; 35
Wang, Wang, Zhao, Miao, Wang (bib0015) 2018; 94
Zhu, Tian (bib0130) 2018; 41
Pasquini (bib0005) 2018; 1026
Genisheva, Quintelas, Mesquita, Ferreira, Oliveira, Amaral (bib0025) 2018; 246
Zhang, Ma, Pan, Shao, Liu, Wu (bib0020) 2019; 104
Yang, Dong, Sun, Yang, Liu, Du (bib0075) 2017; 119
Shen, Wu, Shao, Zhang (bib0040) 2018; 55
Criado, Piotrowski, Wilcock, Bradley, Haberl, Smith (bib0065) 2016; 94
Zhang, Bian, Liu, Tan, Fan, Liu, Lin (bib0140) 2017; 161
Zhang, Liu, Hu, Pan, Hu, Qi (bib0100) 2018
Yang, Luo, Jiang, Zhang, Yin (bib0095) 2016; 36
Henriquez, Ruz (bib0135) 2019; 79
Deng, Wang, Zhong, Yu (bib0035) 2018; 93
Sampaio, Soares, Castanho, Almeida, Oliveira, Brites (bib0120) 2018; 242
Huang, Zhu, Siew (bib0105) 2006; 70
.
Huang, Lu, Chen (bib0030) 2018; 222
Das, Sahoo, Pargal, Krishna, Verma, Chinnusamy (bib0055) 2018; 192
Lyu, Chen, Pan, Yao, Han, Yu (bib0070) 2016; 76
Ng (bib0080) 2011; 72
Zhu, Sun, Wu, Wang, Zhang, Wang (bib0050) 2018; 82
Cao, Zhang, Yong, Lai, Chen, Lin (bib0110) 2018; 30
Tao, Pan, Li, Zou (bib0090) 2015; 12
Pasquini (10.1016/j.vibspec.2019.103009_bib0005) 2018; 1026
Zhu (10.1016/j.vibspec.2019.103009_bib0050) 2018; 82
Shen (10.1016/j.vibspec.2019.103009_bib0040) 2018; 55
Xu (10.1016/j.vibspec.2019.103009_bib0085) 2015; 35
Henriquez (10.1016/j.vibspec.2019.103009_bib0135) 2019; 79
Zhang (10.1016/j.vibspec.2019.103009_bib0020) 2019; 104
Power (10.1016/j.vibspec.2019.103009_bib0010) 2018; 98
Sampaio (10.1016/j.vibspec.2019.103009_bib0120) 2018; 242
10.1016/j.vibspec.2019.103009_bib0115
Geladi (10.1016/j.vibspec.2019.103009_bib0125) 1986; 185
Zhang (10.1016/j.vibspec.2019.103009_bib0140) 2017; 161
Cheng (10.1016/j.vibspec.2019.103009_bib0060) 2019; 98
Wang (10.1016/j.vibspec.2019.103009_bib0015) 2018; 94
Criado (10.1016/j.vibspec.2019.103009_bib0065) 2016; 94
Tao (10.1016/j.vibspec.2019.103009_bib0090) 2015; 12
Ng (10.1016/j.vibspec.2019.103009_bib0080) 2011; 72
Deng (10.1016/j.vibspec.2019.103009_bib0035) 2018; 93
Das (10.1016/j.vibspec.2019.103009_bib0055) 2018; 192
Cao (10.1016/j.vibspec.2019.103009_bib0110) 2018; 30
Genisheva (10.1016/j.vibspec.2019.103009_bib0025) 2018; 246
Chen (10.1016/j.vibspec.2019.103009_bib0045) 2018; 2018
Zhang (10.1016/j.vibspec.2019.103009_bib0100) 2018
Huang (10.1016/j.vibspec.2019.103009_bib0030) 2018; 222
Lyu (10.1016/j.vibspec.2019.103009_bib0070) 2016; 76
Yang (10.1016/j.vibspec.2019.103009_bib0075) 2017; 119
Huang (10.1016/j.vibspec.2019.103009_bib0105) 2006; 70
Yang (10.1016/j.vibspec.2019.103009_bib0095) 2016; 36
Zhu (10.1016/j.vibspec.2019.103009_bib0130) 2018; 41
References_xml – volume: 55
  start-page: 1175
  year: 2018
  end-page: 1184
  ident: bib0040
  article-title: Non-destructive and rapid evaluation of aflatoxins in brown rice by using near-infrared and mid-infrared spectroscopic techniques
  publication-title: J. Food Sci. Technol.
– volume: 72
  start-page: 1
  year: 2011
  end-page: 19
  ident: bib0080
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture notes
– volume: 36
  start-page: 2774
  year: 2016
  end-page: 2779
  ident: bib0095
  article-title: Sparse denoising autoencoder application in identification of counterfeit pharmaceutical
  publication-title: Spectroscopy and Spectral Analysis
– volume: 82
  start-page: 175
  year: 2018
  end-page: 182
  ident: bib0050
  article-title: Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy
  publication-title: J. Cereal Sci.
– volume: 79
  start-page: 13
  year: 2019
  end-page: 22
  ident: bib0135
  article-title: Noise reduction for near-infrared spectroscopy data using extreme learning machines
  publication-title: Eng. Appl. Artif. Intell.
– volume: 98
  start-page: 64
  year: 2018
  end-page: 68
  ident: bib0010
  article-title: Illuminating the flesh of bone identification–An application of near infrared spectroscopy
  publication-title: Vib. Spectrosc.
– volume: 94
  start-page: 96
  year: 2018
  end-page: 101
  ident: bib0015
  article-title: The influence of spectral characteristics on the accuracy of concentration quantitatively analysis by near infrared spectroscopy
  publication-title: Infrared Phys. Technol.
– volume: 161
  start-page: 43
  year: 2017
  end-page: 48
  ident: bib0140
  article-title: Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 104
  year: 2019
  ident: bib0020
  article-title: Quantitative real-time release testing of rhubarb based on near-infrared spectroscopy and method validation
  publication-title: Vib. Spectrosc.
– volume: 98
  start-page: 253
  year: 2019
  end-page: 261
  ident: bib0060
  article-title: Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy
  publication-title: Food Control
– volume: 1026
  start-page: 8
  year: 2018
  end-page: 36
  ident: bib0005
  article-title: Near infrared spectroscopy: a mature analytical technique with new perspectives–a review
  publication-title: Anal. Chim. Acta
– volume: 119
  year: 2017
  ident: bib0075
  article-title: Discrimination of sesame oil adulterated with corn oil using information fusion of synchronous and asynchronous two‐dimensional near‐mid infrared spectroscopy
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 192
  start-page: 41
  year: 2018
  end-page: 51
  ident: bib0055
  article-title: Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics
  publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc.
– volume: 93
  start-page: 124
  year: 2018
  end-page: 129
  ident: bib0035
  article-title: Simultaneous quantitative analysis of protein, carbohydrate and fat in nutritionally complete formulas of medical foods by near-infrared spectroscopy
  publication-title: Infrared Phys. Technol.
– volume: 242
  start-page: 196
  year: 2018
  end-page: 204
  ident: bib0120
  article-title: Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms
  publication-title: Food Chem.
– volume: 41
  start-page: e12810
  year: 2018
  ident: bib0130
  article-title: Determining sugar content and firmness of ‘Fuji’apples by using portable near‐infrared spectrometer and diffuse transmittance spectroscopy
  publication-title: J. Food Process Eng.
– volume: 222
  start-page: 185
  year: 2018
  end-page: 198
  ident: bib0030
  article-title: Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy
  publication-title: J. Food Eng.
– start-page: 203
  year: 2018
  end-page: 211
  ident: bib0100
  article-title: Near infrared spectroscopy drug discrimination method based on stacked sparse auto-encoders extreme learning machine
  publication-title: Artificial Intelligence and Robotics
– reference: .
– volume: 12
  start-page: 2438
  year: 2015
  end-page: 2442
  ident: bib0090
  article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: Ieee Geosci. Remote. Sens. Lett.
– volume: 76
  start-page: 648
  year: 2016
  end-page: 654
  ident: bib0070
  article-title: Near-infrared spectroscopy combined with equidistant combination partial least squares applied to multi-index analysis of corn
  publication-title: Infrared Phys. Technol.
– volume: 94
  start-page: 77
  year: 2016
  end-page: 78
  ident: bib0065
  article-title: 165 To determine if hand held near infrared spectroscopy can be used to measure corn particle size, corn particle distribution and corn moisture
  publication-title: J. Anim. Sci.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib0105
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 30
  start-page: 2093
  year: 2018
  end-page: 2107
  ident: bib0110
  article-title: Extreme learning machine with affine transformation inputs in an activation function
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: bib0125
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
– volume: 2018
  year: 2018
  ident: bib0045
  article-title: Authenticity detection of black rice by near-infrared spectroscopy and support vector data description
  publication-title: Int. J. Anal. Chem.
– volume: 246
  start-page: 172
  year: 2018
  end-page: 178
  ident: bib0025
  article-title: New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR)
  publication-title: Food Chem.
– volume: 35
  start-page: 119
  year: 2015
  end-page: 130
  ident: bib0085
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
– volume: 2018
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0045
  article-title: Authenticity detection of black rice by near-infrared spectroscopy and support vector data description
  publication-title: Int. J. Anal. Chem.
  doi: 10.1155/2018/8032831
– volume: 192
  start-page: 41
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0055
  article-title: Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics
  publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2017.10.076
– volume: 242
  start-page: 196
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0120
  article-title: Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.09.058
– volume: 246
  start-page: 172
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0025
  article-title: New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR)
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.11.015
– volume: 70
  start-page: 489
  issue: 1-3
  year: 2006
  ident: 10.1016/j.vibspec.2019.103009_bib0105
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 94
  start-page: 96
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0015
  article-title: The influence of spectral characteristics on the accuracy of concentration quantitatively analysis by near infrared spectroscopy
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.09.001
– volume: 94
  start-page: 77
  issue: suppl_2
  year: 2016
  ident: 10.1016/j.vibspec.2019.103009_bib0065
  article-title: 165 To determine if hand held near infrared spectroscopy can be used to measure corn particle size, corn particle distribution and corn moisture
  publication-title: J. Anim. Sci.
  doi: 10.2527/msasas2016-165
– volume: 185
  start-page: 1
  year: 1986
  ident: 10.1016/j.vibspec.2019.103009_bib0125
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– volume: 79
  start-page: 13
  year: 2019
  ident: 10.1016/j.vibspec.2019.103009_bib0135
  article-title: Noise reduction for near-infrared spectroscopy data using extreme learning machines
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.12.005
– volume: 119
  issue: 9
  year: 2017
  ident: 10.1016/j.vibspec.2019.103009_bib0075
  article-title: Discrimination of sesame oil adulterated with corn oil using information fusion of synchronous and asynchronous two‐dimensional near‐mid infrared spectroscopy
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201600459
– volume: 98
  start-page: 253
  year: 2019
  ident: 10.1016/j.vibspec.2019.103009_bib0060
  article-title: Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.11.037
– volume: 222
  start-page: 185
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0030
  article-title: Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2017.11.030
– volume: 82
  start-page: 175
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0050
  article-title: Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy
  publication-title: J. Cereal Sci.
  doi: 10.1016/j.jcs.2018.06.010
– start-page: 203
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0100
  article-title: Near infrared spectroscopy drug discrimination method based on stacked sparse auto-encoders extreme learning machine
– volume: 36
  start-page: 2774
  issue: 9
  year: 2016
  ident: 10.1016/j.vibspec.2019.103009_bib0095
  article-title: Sparse denoising autoencoder application in identification of counterfeit pharmaceutical
  publication-title: Spectroscopy and Spectral Analysis
– volume: 30
  start-page: 2093
  issue: 7
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0110
  article-title: Extreme learning machine with affine transformation inputs in an activation function
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2877468
– volume: 98
  start-page: 64
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0010
  article-title: Illuminating the flesh of bone identification–An application of near infrared spectroscopy
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2018.07.011
– volume: 35
  start-page: 119
  issue: 1
  year: 2015
  ident: 10.1016/j.vibspec.2019.103009_bib0085
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2458702
– ident: 10.1016/j.vibspec.2019.103009_bib0115
– volume: 104
  year: 2019
  ident: 10.1016/j.vibspec.2019.103009_bib0020
  article-title: Quantitative real-time release testing of rhubarb based on near-infrared spectroscopy and method validation
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2019.102964
– volume: 93
  start-page: 124
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0035
  article-title: Simultaneous quantitative analysis of protein, carbohydrate and fat in nutritionally complete formulas of medical foods by near-infrared spectroscopy
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.07.027
– volume: 76
  start-page: 648
  year: 2016
  ident: 10.1016/j.vibspec.2019.103009_bib0070
  article-title: Near-infrared spectroscopy combined with equidistant combination partial least squares applied to multi-index analysis of corn
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2016.01.022
– volume: 12
  start-page: 2438
  issue: 12
  year: 2015
  ident: 10.1016/j.vibspec.2019.103009_bib0090
  article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: Ieee Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2015.2482520
– volume: 1026
  start-page: 8
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0005
  article-title: Near infrared spectroscopy: a mature analytical technique with new perspectives–a review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.04.004
– volume: 41
  start-page: e12810
  issue: 6
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0130
  article-title: Determining sugar content and firmness of ‘Fuji’apples by using portable near‐infrared spectrometer and diffuse transmittance spectroscopy
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.12810
– volume: 161
  start-page: 43
  year: 2017
  ident: 10.1016/j.vibspec.2019.103009_bib0140
  article-title: Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.10.019
– volume: 55
  start-page: 1175
  issue: 3
  year: 2018
  ident: 10.1016/j.vibspec.2019.103009_bib0040
  article-title: Non-destructive and rapid evaluation of aflatoxins in brown rice by using near-infrared and mid-infrared spectroscopic techniques
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-018-3033-1
– volume: 72
  start-page: 1
  issue: 2011
  year: 2011
  ident: 10.1016/j.vibspec.2019.103009_bib0080
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture notes
SSID ssj0006513
Score 2.455927
Snippet •A method for quickly analyzing cereal characteristics.•The method is based on deep learning and near infrared spectroscopy.•Uses stacked sparse autoencoder to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103009
SubjectTerms Cereal analysis
Deep learning
Extreme learning machine
Near-Infrared spectroscopy
sTacked sparse autoencoder
Title Application of deep learning and near infrared spectroscopy in cereal analysis
URI https://dx.doi.org/10.1016/j.vibspec.2019.103009
Volume 106
WOSCitedRecordID wos000507463100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3697
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006513
  issn: 0924-2031
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA4-0Yv4xDc5eJOu3bZpm-MiioosHlbZW0nSKSjSXfYh_nwnTbKtD3wcvJQlbNI0X5h8nc58Q8iJwDPDFzL3Eh0qHslYeDISueczqUSeQiorIe2H26TbTft9fmfLso-rcgJJWaavr3z4r1BjG4KtU2f_APdsUGzA3wg6XhF2vP4K-E79SVozwRxg6GpDmHTEUmv34J1GVex5lWqpJS0HwyoFUMEIKv0AI1bSJK8P-tXa-g6b3eqgHvMF47Q3tXvOuhMCv-FOsH7BIML1tKbZmUi_aeR0ZbJK0-Cz_TWugKfWy6PU89Chc7xV__-93vWHc2gWHegCz54yO0ymh8nMMPNkMUgYRwO22Lm-6N_Mjt2YmVrYbv51utbZl_P5mog0yEVvnazZtwLaMWhukDkoN8nKuSvGt0mWq0hdNd4i3Qa-dFBQjS91-FLEl2p8qcOXNoHCVmrwpQ7fbXJ_edE7v_JsUQxPhT6feIqnAnKWBoDHQ7uAHJ9cMhb4oCBSbSGQcagiEVEsI1A8LJhC0lkg6xA-E7EMd8hCOShhl9ACqXfYRgaPdjtivC1CyQUoBiqGQCm-RyK3QpmyivG6cMlz9i1Ce6Q16zY0kik_dUjd8meW9xk-l-G2-r7r_l_vdUBW611_SBYmoykckSX1Mnkcj47tnnoD-kd86w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+and+near+infrared+spectroscopy+in+cereal+analysis&rft.jtitle=Vibrational+spectroscopy&rft.au=Le%2C+Ba+Tuan&rft.date=2020-01-01&rft.issn=0924-2031&rft.volume=106&rft.spage=103009&rft_id=info:doi/10.1016%2Fj.vibspec.2019.103009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vibspec_2019_103009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2031&client=summon