Application of deep learning and near infrared spectroscopy in cereal analysis
•A method for quickly analyzing cereal characteristics.•The method is based on deep learning and near infrared spectroscopy.•Uses stacked sparse autoencoder to extract features of near infrared spectral data.•A near infrared spectroscopy analysis model was proposed.•Compared with other methods, the...
Uložené v:
| Vydané v: | Vibrational spectroscopy Ročník 106; s. 103009 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.01.2020
|
| Predmet: | |
| ISSN: | 0924-2031, 1873-3697 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A method for quickly analyzing cereal characteristics.•The method is based on deep learning and near infrared spectroscopy.•Uses stacked sparse autoencoder to extract features of near infrared spectral data.•A near infrared spectroscopy analysis model was proposed.•Compared with other methods, the method proposed has better predictive ability.
Deep learning is an important research achievement of artificial intelligence in recent years and has received special attention from scientists around the world. This study applies deep learning to spectral analysis techniques and proposes a rapid analysis method for cereals. First, the advanced features of the near infrared spectroscopy (NIR) were extracted by the deep learning-stacked sparse autoencoder (SSAE) method, and then the prediction model is built using the affine transformation (AT) and the extreme learning machine (ELM). Experiments were conducted on corn and rice data sets to verify the effectiveness of the method. The results show that the proposed method achieves good prediction results and is superior to other typical NIR analysis methods. |
|---|---|
| AbstractList | •A method for quickly analyzing cereal characteristics.•The method is based on deep learning and near infrared spectroscopy.•Uses stacked sparse autoencoder to extract features of near infrared spectral data.•A near infrared spectroscopy analysis model was proposed.•Compared with other methods, the method proposed has better predictive ability.
Deep learning is an important research achievement of artificial intelligence in recent years and has received special attention from scientists around the world. This study applies deep learning to spectral analysis techniques and proposes a rapid analysis method for cereals. First, the advanced features of the near infrared spectroscopy (NIR) were extracted by the deep learning-stacked sparse autoencoder (SSAE) method, and then the prediction model is built using the affine transformation (AT) and the extreme learning machine (ELM). Experiments were conducted on corn and rice data sets to verify the effectiveness of the method. The results show that the proposed method achieves good prediction results and is superior to other typical NIR analysis methods. |
| ArticleNumber | 103009 |
| Author | Le, Ba Tuan |
| Author_xml | – sequence: 1 givenname: Ba Tuan surname: Le fullname: Le, Ba Tuan email: lebatuan1@duytan.edu.vn organization: Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam |
| BookMark | eNqFkN1KAzEQhYMo2FYfQcgLbJ1s9i94IaX4B0Vv9DrMZieSsmaXZCn07U1tr7zp1TCHOWdmvjm79IMnxu4ELAWI6n673Lk2jmSWOQiVNAmgLthMNLXMZKXqSzYDlRdZDlJcs3mMWwCoSiFn7H01jr0zOLnB88HyjmjkPWHwzn9z9B33qeHO24CBOn5YM4UhmmHcJ5UbCoR9GsR-H128YVcW-0i3p7pgX89Pn-vXbPPx8rZebTIjQU2ZUQ1SVzY5NU0tLHXpnLYscyBDhRGIIHJjayyqtiCjpC1NVUibK4VQYtXKBXs45pp0SwxktXHT3xNTQNdrAfqARm_1CY0-oNFHNMld_nOPwf1g2J_1PR59lF7bOQo6GkfeUOdCwqK7wZ1J-AWbRYSq |
| CitedBy_id | crossref_primary_10_1016_j_foohum_2024_100474 crossref_primary_10_1080_10408398_2022_2066062 crossref_primary_10_1364_AO_533050 crossref_primary_10_1016_j_measurement_2024_115217 crossref_primary_10_1002_bit_28681 crossref_primary_10_1016_j_jfca_2023_105585 crossref_primary_10_3390_e23101293 crossref_primary_10_1002_ansa_202000162 crossref_primary_10_3390_s20236982 crossref_primary_10_56530_spectroscopy_js8781e3 crossref_primary_10_1007_s12161_025_02880_1 crossref_primary_10_3390_pr10122494 crossref_primary_10_1016_j_biosystemseng_2024_01_016 crossref_primary_10_1016_j_jpba_2020_113686 crossref_primary_10_1016_j_saa_2023_122828 crossref_primary_10_1016_j_tifs_2024_104377 crossref_primary_10_1111_jfpe_13821 crossref_primary_10_3390_molecules28073215 crossref_primary_10_1016_j_rser_2022_112608 crossref_primary_10_1016_j_agwat_2020_106303 crossref_primary_10_1111_ijfs_15137 crossref_primary_10_36899_japs_2025_4_0077 crossref_primary_10_1038_s41598_025_97347_y crossref_primary_10_1007_s00723_023_01531_0 crossref_primary_10_1016_j_microc_2021_106642 crossref_primary_10_1016_j_vibspec_2022_103450 crossref_primary_10_1139_cjfas_2023_0045 crossref_primary_10_3390_app13010152 crossref_primary_10_1186_s12870_024_05776_0 crossref_primary_10_1080_05704928_2020_1859525 crossref_primary_10_3390_foods11152210 crossref_primary_10_1016_j_geoderma_2021_114967 crossref_primary_10_1016_j_saa_2021_120757 crossref_primary_10_3389_fpls_2022_836488 crossref_primary_10_3390_s22249764 crossref_primary_10_3390_foods13010011 crossref_primary_10_1088_1755_1315_951_1_012112 crossref_primary_10_3390_app13148494 crossref_primary_10_3390_app14209189 crossref_primary_10_1016_j_trac_2021_116459 crossref_primary_10_7717_peerj_cs_1266 crossref_primary_10_1080_00032719_2023_2199215 crossref_primary_10_1016_j_fishres_2024_107116 crossref_primary_10_1016_j_tifs_2023_104286 crossref_primary_10_1016_j_compag_2021_106657 crossref_primary_10_1016_j_microc_2024_110391 |
| Cites_doi | 10.1155/2018/8032831 10.1016/j.saa.2017.10.076 10.1016/j.foodchem.2017.09.058 10.1016/j.foodchem.2017.11.015 10.1016/j.neucom.2005.12.126 10.1016/j.infrared.2018.09.001 10.2527/msasas2016-165 10.1016/0003-2670(86)80028-9 10.1016/j.engappai.2018.12.005 10.1002/ejlt.201600459 10.1016/j.foodcont.2018.11.037 10.1016/j.jfoodeng.2017.11.030 10.1016/j.jcs.2018.06.010 10.1109/TNNLS.2018.2877468 10.1016/j.vibspec.2018.07.011 10.1109/TMI.2015.2458702 10.1016/j.vibspec.2019.102964 10.1016/j.infrared.2018.07.027 10.1016/j.infrared.2016.01.022 10.1109/LGRS.2015.2482520 10.1016/j.aca.2018.04.004 10.1111/jfpe.12810 10.1016/j.chemolab.2016.10.019 10.1007/s13197-018-3033-1 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.vibspec.2019.103009 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1873-3697 |
| ExternalDocumentID | 10_1016_j_vibspec_2019_103009 S0924203119302565 |
| GroupedDBID | --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYJJ ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ H~9 IHE J1W KFR KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SES SEW SPC SPCBC SSK SSZ T5K T9H TN5 UNMZH WH7 WUQ XFK XPP YK3 YNT ZCG ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c309t-c98aed582e8871fed006b5520ece4c1aa012cf7a46b4ec93f5c643f299a05a6b3 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507463100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-2031 |
| IngestDate | Tue Nov 18 21:33:01 EST 2025 Sat Nov 29 07:08:11 EST 2025 Fri Feb 23 02:47:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Near-Infrared spectroscopy Cereal analysis Extreme learning machine sTacked sparse autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-c98aed582e8871fed006b5520ece4c1aa012cf7a46b4ec93f5c643f299a05a6b3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_vibspec_2019_103009 crossref_primary_10_1016_j_vibspec_2019_103009 elsevier_sciencedirect_doi_10_1016_j_vibspec_2019_103009 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Vibrational spectroscopy |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cheng, Vella, Stasiewicz (bib0060) 2019; 98 Chen, Tan, Lin (bib0045) 2018; 2018 Geladi, Kowalski (bib0125) 1986; 185 Power, Chapman, Chandra, Roberts, Cozzolino (bib0010) 2018; 98 Xu, Xiang, Liu, Gilmore, Wu, Tang, Madabhushi (bib0085) 2015; 35 Wang, Wang, Zhao, Miao, Wang (bib0015) 2018; 94 Zhu, Tian (bib0130) 2018; 41 Pasquini (bib0005) 2018; 1026 Genisheva, Quintelas, Mesquita, Ferreira, Oliveira, Amaral (bib0025) 2018; 246 Zhang, Ma, Pan, Shao, Liu, Wu (bib0020) 2019; 104 Yang, Dong, Sun, Yang, Liu, Du (bib0075) 2017; 119 Shen, Wu, Shao, Zhang (bib0040) 2018; 55 Criado, Piotrowski, Wilcock, Bradley, Haberl, Smith (bib0065) 2016; 94 Zhang, Bian, Liu, Tan, Fan, Liu, Lin (bib0140) 2017; 161 Zhang, Liu, Hu, Pan, Hu, Qi (bib0100) 2018 Yang, Luo, Jiang, Zhang, Yin (bib0095) 2016; 36 Henriquez, Ruz (bib0135) 2019; 79 Deng, Wang, Zhong, Yu (bib0035) 2018; 93 Sampaio, Soares, Castanho, Almeida, Oliveira, Brites (bib0120) 2018; 242 Huang, Zhu, Siew (bib0105) 2006; 70 . Huang, Lu, Chen (bib0030) 2018; 222 Das, Sahoo, Pargal, Krishna, Verma, Chinnusamy (bib0055) 2018; 192 Lyu, Chen, Pan, Yao, Han, Yu (bib0070) 2016; 76 Ng (bib0080) 2011; 72 Zhu, Sun, Wu, Wang, Zhang, Wang (bib0050) 2018; 82 Cao, Zhang, Yong, Lai, Chen, Lin (bib0110) 2018; 30 Tao, Pan, Li, Zou (bib0090) 2015; 12 Pasquini (10.1016/j.vibspec.2019.103009_bib0005) 2018; 1026 Zhu (10.1016/j.vibspec.2019.103009_bib0050) 2018; 82 Shen (10.1016/j.vibspec.2019.103009_bib0040) 2018; 55 Xu (10.1016/j.vibspec.2019.103009_bib0085) 2015; 35 Henriquez (10.1016/j.vibspec.2019.103009_bib0135) 2019; 79 Zhang (10.1016/j.vibspec.2019.103009_bib0020) 2019; 104 Power (10.1016/j.vibspec.2019.103009_bib0010) 2018; 98 Sampaio (10.1016/j.vibspec.2019.103009_bib0120) 2018; 242 10.1016/j.vibspec.2019.103009_bib0115 Geladi (10.1016/j.vibspec.2019.103009_bib0125) 1986; 185 Zhang (10.1016/j.vibspec.2019.103009_bib0140) 2017; 161 Cheng (10.1016/j.vibspec.2019.103009_bib0060) 2019; 98 Wang (10.1016/j.vibspec.2019.103009_bib0015) 2018; 94 Criado (10.1016/j.vibspec.2019.103009_bib0065) 2016; 94 Tao (10.1016/j.vibspec.2019.103009_bib0090) 2015; 12 Ng (10.1016/j.vibspec.2019.103009_bib0080) 2011; 72 Deng (10.1016/j.vibspec.2019.103009_bib0035) 2018; 93 Das (10.1016/j.vibspec.2019.103009_bib0055) 2018; 192 Cao (10.1016/j.vibspec.2019.103009_bib0110) 2018; 30 Genisheva (10.1016/j.vibspec.2019.103009_bib0025) 2018; 246 Chen (10.1016/j.vibspec.2019.103009_bib0045) 2018; 2018 Zhang (10.1016/j.vibspec.2019.103009_bib0100) 2018 Huang (10.1016/j.vibspec.2019.103009_bib0030) 2018; 222 Lyu (10.1016/j.vibspec.2019.103009_bib0070) 2016; 76 Yang (10.1016/j.vibspec.2019.103009_bib0075) 2017; 119 Huang (10.1016/j.vibspec.2019.103009_bib0105) 2006; 70 Yang (10.1016/j.vibspec.2019.103009_bib0095) 2016; 36 Zhu (10.1016/j.vibspec.2019.103009_bib0130) 2018; 41 |
| References_xml | – volume: 55 start-page: 1175 year: 2018 end-page: 1184 ident: bib0040 article-title: Non-destructive and rapid evaluation of aflatoxins in brown rice by using near-infrared and mid-infrared spectroscopic techniques publication-title: J. Food Sci. Technol. – volume: 72 start-page: 1 year: 2011 end-page: 19 ident: bib0080 article-title: Sparse autoencoder publication-title: CS294A Lecture notes – volume: 36 start-page: 2774 year: 2016 end-page: 2779 ident: bib0095 article-title: Sparse denoising autoencoder application in identification of counterfeit pharmaceutical publication-title: Spectroscopy and Spectral Analysis – volume: 82 start-page: 175 year: 2018 end-page: 182 ident: bib0050 article-title: Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy publication-title: J. Cereal Sci. – volume: 79 start-page: 13 year: 2019 end-page: 22 ident: bib0135 article-title: Noise reduction for near-infrared spectroscopy data using extreme learning machines publication-title: Eng. Appl. Artif. Intell. – volume: 98 start-page: 64 year: 2018 end-page: 68 ident: bib0010 article-title: Illuminating the flesh of bone identification–An application of near infrared spectroscopy publication-title: Vib. Spectrosc. – volume: 94 start-page: 96 year: 2018 end-page: 101 ident: bib0015 article-title: The influence of spectral characteristics on the accuracy of concentration quantitatively analysis by near infrared spectroscopy publication-title: Infrared Phys. Technol. – volume: 161 start-page: 43 year: 2017 end-page: 48 ident: bib0140 article-title: Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples publication-title: Chemom. Intell. Lab. Syst. – volume: 104 year: 2019 ident: bib0020 article-title: Quantitative real-time release testing of rhubarb based on near-infrared spectroscopy and method validation publication-title: Vib. Spectrosc. – volume: 98 start-page: 253 year: 2019 end-page: 261 ident: bib0060 article-title: Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy publication-title: Food Control – volume: 1026 start-page: 8 year: 2018 end-page: 36 ident: bib0005 article-title: Near infrared spectroscopy: a mature analytical technique with new perspectives–a review publication-title: Anal. Chim. Acta – volume: 119 year: 2017 ident: bib0075 article-title: Discrimination of sesame oil adulterated with corn oil using information fusion of synchronous and asynchronous two‐dimensional near‐mid infrared spectroscopy publication-title: Eur. J. Lipid Sci. Technol. – volume: 192 start-page: 41 year: 2018 end-page: 51 ident: bib0055 article-title: Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc. – volume: 93 start-page: 124 year: 2018 end-page: 129 ident: bib0035 article-title: Simultaneous quantitative analysis of protein, carbohydrate and fat in nutritionally complete formulas of medical foods by near-infrared spectroscopy publication-title: Infrared Phys. Technol. – volume: 242 start-page: 196 year: 2018 end-page: 204 ident: bib0120 article-title: Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms publication-title: Food Chem. – volume: 41 start-page: e12810 year: 2018 ident: bib0130 article-title: Determining sugar content and firmness of ‘Fuji’apples by using portable near‐infrared spectrometer and diffuse transmittance spectroscopy publication-title: J. Food Process Eng. – volume: 222 start-page: 185 year: 2018 end-page: 198 ident: bib0030 article-title: Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy publication-title: J. Food Eng. – start-page: 203 year: 2018 end-page: 211 ident: bib0100 article-title: Near infrared spectroscopy drug discrimination method based on stacked sparse auto-encoders extreme learning machine publication-title: Artificial Intelligence and Robotics – reference: . – volume: 12 start-page: 2438 year: 2015 end-page: 2442 ident: bib0090 article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification publication-title: Ieee Geosci. Remote. Sens. Lett. – volume: 76 start-page: 648 year: 2016 end-page: 654 ident: bib0070 article-title: Near-infrared spectroscopy combined with equidistant combination partial least squares applied to multi-index analysis of corn publication-title: Infrared Phys. Technol. – volume: 94 start-page: 77 year: 2016 end-page: 78 ident: bib0065 article-title: 165 To determine if hand held near infrared spectroscopy can be used to measure corn particle size, corn particle distribution and corn moisture publication-title: J. Anim. Sci. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib0105 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 30 start-page: 2093 year: 2018 end-page: 2107 ident: bib0110 article-title: Extreme learning machine with affine transformation inputs in an activation function publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 185 start-page: 1 year: 1986 end-page: 17 ident: bib0125 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta – volume: 2018 year: 2018 ident: bib0045 article-title: Authenticity detection of black rice by near-infrared spectroscopy and support vector data description publication-title: Int. J. Anal. Chem. – volume: 246 start-page: 172 year: 2018 end-page: 178 ident: bib0025 article-title: New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR) publication-title: Food Chem. – volume: 35 start-page: 119 year: 2015 end-page: 130 ident: bib0085 article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans. Med. Imaging – volume: 2018 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0045 article-title: Authenticity detection of black rice by near-infrared spectroscopy and support vector data description publication-title: Int. J. Anal. Chem. doi: 10.1155/2018/8032831 – volume: 192 start-page: 41 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0055 article-title: Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2017.10.076 – volume: 242 start-page: 196 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0120 article-title: Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.09.058 – volume: 246 start-page: 172 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0025 article-title: New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR) publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.11.015 – volume: 70 start-page: 489 issue: 1-3 year: 2006 ident: 10.1016/j.vibspec.2019.103009_bib0105 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 94 start-page: 96 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0015 article-title: The influence of spectral characteristics on the accuracy of concentration quantitatively analysis by near infrared spectroscopy publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2018.09.001 – volume: 94 start-page: 77 issue: suppl_2 year: 2016 ident: 10.1016/j.vibspec.2019.103009_bib0065 article-title: 165 To determine if hand held near infrared spectroscopy can be used to measure corn particle size, corn particle distribution and corn moisture publication-title: J. Anim. Sci. doi: 10.2527/msasas2016-165 – volume: 185 start-page: 1 year: 1986 ident: 10.1016/j.vibspec.2019.103009_bib0125 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 – volume: 79 start-page: 13 year: 2019 ident: 10.1016/j.vibspec.2019.103009_bib0135 article-title: Noise reduction for near-infrared spectroscopy data using extreme learning machines publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.12.005 – volume: 119 issue: 9 year: 2017 ident: 10.1016/j.vibspec.2019.103009_bib0075 article-title: Discrimination of sesame oil adulterated with corn oil using information fusion of synchronous and asynchronous two‐dimensional near‐mid infrared spectroscopy publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.201600459 – volume: 98 start-page: 253 year: 2019 ident: 10.1016/j.vibspec.2019.103009_bib0060 article-title: Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy publication-title: Food Control doi: 10.1016/j.foodcont.2018.11.037 – volume: 222 start-page: 185 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0030 article-title: Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2017.11.030 – volume: 82 start-page: 175 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0050 article-title: Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2018.06.010 – start-page: 203 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0100 article-title: Near infrared spectroscopy drug discrimination method based on stacked sparse auto-encoders extreme learning machine – volume: 36 start-page: 2774 issue: 9 year: 2016 ident: 10.1016/j.vibspec.2019.103009_bib0095 article-title: Sparse denoising autoencoder application in identification of counterfeit pharmaceutical publication-title: Spectroscopy and Spectral Analysis – volume: 30 start-page: 2093 issue: 7 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0110 article-title: Extreme learning machine with affine transformation inputs in an activation function publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2877468 – volume: 98 start-page: 64 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0010 article-title: Illuminating the flesh of bone identification–An application of near infrared spectroscopy publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2018.07.011 – volume: 35 start-page: 119 issue: 1 year: 2015 ident: 10.1016/j.vibspec.2019.103009_bib0085 article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2458702 – ident: 10.1016/j.vibspec.2019.103009_bib0115 – volume: 104 year: 2019 ident: 10.1016/j.vibspec.2019.103009_bib0020 article-title: Quantitative real-time release testing of rhubarb based on near-infrared spectroscopy and method validation publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2019.102964 – volume: 93 start-page: 124 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0035 article-title: Simultaneous quantitative analysis of protein, carbohydrate and fat in nutritionally complete formulas of medical foods by near-infrared spectroscopy publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2018.07.027 – volume: 76 start-page: 648 year: 2016 ident: 10.1016/j.vibspec.2019.103009_bib0070 article-title: Near-infrared spectroscopy combined with equidistant combination partial least squares applied to multi-index analysis of corn publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2016.01.022 – volume: 12 start-page: 2438 issue: 12 year: 2015 ident: 10.1016/j.vibspec.2019.103009_bib0090 article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification publication-title: Ieee Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2015.2482520 – volume: 1026 start-page: 8 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0005 article-title: Near infrared spectroscopy: a mature analytical technique with new perspectives–a review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.04.004 – volume: 41 start-page: e12810 issue: 6 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0130 article-title: Determining sugar content and firmness of ‘Fuji’apples by using portable near‐infrared spectrometer and diffuse transmittance spectroscopy publication-title: J. Food Process Eng. doi: 10.1111/jfpe.12810 – volume: 161 start-page: 43 year: 2017 ident: 10.1016/j.vibspec.2019.103009_bib0140 article-title: Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.10.019 – volume: 55 start-page: 1175 issue: 3 year: 2018 ident: 10.1016/j.vibspec.2019.103009_bib0040 article-title: Non-destructive and rapid evaluation of aflatoxins in brown rice by using near-infrared and mid-infrared spectroscopic techniques publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-018-3033-1 – volume: 72 start-page: 1 issue: 2011 year: 2011 ident: 10.1016/j.vibspec.2019.103009_bib0080 article-title: Sparse autoencoder publication-title: CS294A Lecture notes |
| SSID | ssj0006513 |
| Score | 2.455927 |
| Snippet | •A method for quickly analyzing cereal characteristics.•The method is based on deep learning and near infrared spectroscopy.•Uses stacked sparse autoencoder to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103009 |
| SubjectTerms | Cereal analysis Deep learning Extreme learning machine Near-Infrared spectroscopy sTacked sparse autoencoder |
| Title | Application of deep learning and near infrared spectroscopy in cereal analysis |
| URI | https://dx.doi.org/10.1016/j.vibspec.2019.103009 |
| Volume | 106 |
| WOSCitedRecordID | wos000507463100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3697 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006513 issn: 0924-2031 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA4-0Yv4xDc5eJOu3bZpm-MiioosHlbZW0nSKSjSXfYh_nwnTbKtD3wcvJQlbNI0X5h8nc58Q8iJwDPDFzL3Eh0qHslYeDISueczqUSeQiorIe2H26TbTft9fmfLso-rcgJJWaavr3z4r1BjG4KtU2f_APdsUGzA3wg6XhF2vP4K-E79SVozwRxg6GpDmHTEUmv34J1GVex5lWqpJS0HwyoFUMEIKv0AI1bSJK8P-tXa-g6b3eqgHvMF47Q3tXvOuhMCv-FOsH7BIML1tKbZmUi_aeR0ZbJK0-Cz_TWugKfWy6PU89Chc7xV__-93vWHc2gWHegCz54yO0ymh8nMMPNkMUgYRwO22Lm-6N_Mjt2YmVrYbv51utbZl_P5mog0yEVvnazZtwLaMWhukDkoN8nKuSvGt0mWq0hdNd4i3Qa-dFBQjS91-FLEl2p8qcOXNoHCVmrwpQ7fbXJ_edE7v_JsUQxPhT6feIqnAnKWBoDHQ7uAHJ9cMhb4oCBSbSGQcagiEVEsI1A8LJhC0lkg6xA-E7EMd8hCOShhl9ACqXfYRgaPdjtivC1CyQUoBiqGQCm-RyK3QpmyivG6cMlz9i1Ce6Q16zY0kik_dUjd8meW9xk-l-G2-r7r_l_vdUBW611_SBYmoykckSX1Mnkcj47tnnoD-kd86w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+and+near+infrared+spectroscopy+in+cereal+analysis&rft.jtitle=Vibrational+spectroscopy&rft.au=Le%2C+Ba+Tuan&rft.date=2020-01-01&rft.issn=0924-2031&rft.volume=106&rft.spage=103009&rft_id=info:doi/10.1016%2Fj.vibspec.2019.103009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vibspec_2019_103009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2031&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2031&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2031&client=summon |