Discontinuous Nature of the Exchange-Correlation Functional in Strongly Correlated Systems

Standard approximations for the exchange-correlation functional have been found to give big errors for the linearity condition of fractional charges, leading to delocalization error, and the constancy condition of fractional spins, leading to static correlation error. These two conditions are now un...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review letters Ročník 102; číslo 6; s. 066403
Hlavní autori: Mori-Sánchez, Paula, Cohen, Aron J., Yang, Weitao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 13.02.2009
ISSN:0031-9007, 1079-7114
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Standard approximations for the exchange-correlation functional have been found to give big errors for the linearity condition of fractional charges, leading to delocalization error, and the constancy condition of fractional spins, leading to static correlation error. These two conditions are now unified and extended to states with both fractional charge and fractional spin to give a much more stringent condition: the exact energy functional is a plane, linear along the fractional charge coordinate and constant along the fractional spin coordinate with a line of discontinuity at the integer. Violation of this condition underlies the failure of all known approximate functionals to describe the gaps in strongly correlated systems. It is shown that explicitly discontinuous functionals of the density or orbitals that go beyond these currently used smooth approximations is the key for the application of density functional theory to strongly correlated systems.
AbstractList Standard approximations for the exchange-correlation functional have been found to give big errors for the linearity condition of fractional charges, leading to delocalization error, and the constancy condition of fractional spins, leading to static correlation error. These two conditions are now unified and extended to states with both fractional charge and fractional spin to give a much more stringent condition: the exact energy functional is a plane, linear along the fractional charge coordinate and constant along the fractional spin coordinate with a line of discontinuity at the integer. Violation of this condition underlies the failure of all known approximate functionals to describe the gaps in strongly correlated systems. It is shown that explicitly discontinuous functionals of the density or orbitals that go beyond these currently used smooth approximations is the key for the application of density functional theory to strongly correlated systems.Standard approximations for the exchange-correlation functional have been found to give big errors for the linearity condition of fractional charges, leading to delocalization error, and the constancy condition of fractional spins, leading to static correlation error. These two conditions are now unified and extended to states with both fractional charge and fractional spin to give a much more stringent condition: the exact energy functional is a plane, linear along the fractional charge coordinate and constant along the fractional spin coordinate with a line of discontinuity at the integer. Violation of this condition underlies the failure of all known approximate functionals to describe the gaps in strongly correlated systems. It is shown that explicitly discontinuous functionals of the density or orbitals that go beyond these currently used smooth approximations is the key for the application of density functional theory to strongly correlated systems.
Standard approximations for the exchange-correlation functional have been found to give big errors for the linearity condition of fractional charges, leading to delocalization error, and the constancy condition of fractional spins, leading to static correlation error. These two conditions are now unified and extended to states with both fractional charge and fractional spin to give a much more stringent condition: the exact energy functional is a plane, linear along the fractional charge coordinate and constant along the fractional spin coordinate with a line of discontinuity at the integer. Violation of this condition underlies the failure of all known approximate functionals to describe the gaps in strongly correlated systems. It is shown that explicitly discontinuous functionals of the density or orbitals that go beyond these currently used smooth approximations is the key for the application of density functional theory to strongly correlated systems.
ArticleNumber 066403
Author Mori-Sánchez, Paula
Yang, Weitao
Cohen, Aron J.
Author_xml – sequence: 1
  givenname: Paula
  surname: Mori-Sánchez
  fullname: Mori-Sánchez, Paula
– sequence: 2
  givenname: Aron J.
  surname: Cohen
  fullname: Cohen, Aron J.
– sequence: 3
  givenname: Weitao
  surname: Yang
  fullname: Yang, Weitao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19257614$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1LAzEQxYNUtFX_BcnJ29ZJss0a8CL1E4qKHxcvIZvO2pVtUpOs2P_e1VYRD55mePzeDO8NSM95h4TsMxgyBuLwdraMd_g2wZSGDPgQpMxBbJA-g0JlBWN5j_QBBMsUQLFNBjG-AADj8miLbDPFR4VkeZ88ndbRepdq1_o20muT2oDUVzTNkJ6925lxz5iNfQjYmFR7R89bZz8X09Da0fsUvHtulvQbwSm9X8aE87hLNivTRNxbzx3yeH72ML7MJjcXV-OTSWYFqJSVla1ywxXjFSsMK0trC8ulMNVI5QqlMgKg4lwIY0Snc4V8pMoplAKkYFzskIPV3UXwry3GpOddJmwa47DLpKVUivMi78D9NdiWc5zqRajnJiz1dxsdcLwCbPAxBqy0rdNX6hRM3WgG-rN8_av8TuN6VX5nl3_sPx_-N34AWTeNtQ
CitedBy_id crossref_primary_10_1016_j_comptc_2020_112911
crossref_primary_10_1088_0953_8984_27_39_393001
crossref_primary_10_1007_s00214_014_1559_5
crossref_primary_10_1103_PhysRevMaterials_7_093803
crossref_primary_10_1002_adts_202200614
crossref_primary_10_1016_j_cplett_2011_03_001
crossref_primary_10_1038_s41524_025_01709_z
crossref_primary_10_1021_acs_jpca_4c07353
crossref_primary_10_1039_C6CP08704C
crossref_primary_10_1039_C5CP06317E
crossref_primary_10_1146_annurev_chembioeng_061010_114108
crossref_primary_10_1016_j_comptc_2013_07_021
crossref_primary_10_1002_pssb_201349181
crossref_primary_10_1103_PhysRevResearch_5_013160
crossref_primary_10_3390_computation5040042
crossref_primary_10_1246_bcsj_20160006
crossref_primary_10_1016_j_saa_2025_125775
crossref_primary_10_1002_qua_24375
crossref_primary_10_1016_j_comptc_2012_05_005
crossref_primary_10_1039_C3CS60481K
crossref_primary_10_1140_epjb_e2018_90083_y
crossref_primary_10_1039_C4CP04109G
crossref_primary_10_1080_00268976_2021_2008037
crossref_primary_10_1088_0953_8984_24_14_145504
crossref_primary_10_1039_C4CP01987C
crossref_primary_10_1063_5_0231101
crossref_primary_10_1002_wcms_1490
crossref_primary_10_1007_s00894_011_1248_4
crossref_primary_10_1039_C4CP01170H
crossref_primary_10_1063_1_4932206
crossref_primary_10_1016_j_comptc_2021_113188
crossref_primary_10_1073_pnas_1621352114
crossref_primary_10_1088_2516_1075_ad3124
crossref_primary_10_1007_s00214_020_2546_7
crossref_primary_10_1039_c3cp50736j
crossref_primary_10_1007_s00214_016_1995_5
crossref_primary_10_1139_V09_057
crossref_primary_10_1002_pssb_201900161
crossref_primary_10_1021_jacs_5b05174
crossref_primary_10_1016_j_molstruc_2023_135862
crossref_primary_10_1140_epjb_e2018_90110_1
crossref_primary_10_1038_s41524_020_00360_0
crossref_primary_10_1016_j_jpcs_2014_01_019
crossref_primary_10_1038_s41524_025_01685_4
crossref_primary_10_1080_00268976_2015_1129462
crossref_primary_10_1039_D5CP00866B
crossref_primary_10_1016_j_physleta_2012_01_028
crossref_primary_10_1039_C6CP08108H
crossref_primary_10_1021_acs_jpca_7b07045
crossref_primary_10_1039_c3cp50441g
crossref_primary_10_1103_PhysRevA_111_042803
crossref_primary_10_1073_pnas_1807095115
crossref_primary_10_1080_00268976_2016_1213910
crossref_primary_10_1080_00268976_2014_968650
crossref_primary_10_1002_qua_24593
crossref_primary_10_1080_00268976_2018_1430386
crossref_primary_10_1039_c2cp24118h
crossref_primary_10_1021_acs_jctc_5c00699
crossref_primary_10_1039_C8CP03616K
crossref_primary_10_1039_D4NR05503A
crossref_primary_10_1140_epjb_e2018_90162_1
crossref_primary_10_1103_PhysRevA_101_012510
crossref_primary_10_1016_j_spmi_2015_12_021
crossref_primary_10_1103_PhysRevB_106_035147
crossref_primary_10_1007_s10910_011_9860_1
crossref_primary_10_1007_s10853_010_4338_2
Cites_doi 10.1103/PhysRevB.77.115123
10.1126/science.1158722
10.1063/1.1712502
10.1103/PhysRevA.26.1200
10.1103/PhysRevA.76.040501
10.1063/1.1589733
10.1103/PhysRevLett.84.5172
10.1103/PhysRevB.78.201103
10.1103/PhysRevB.44.943
10.1103/PhysRevLett.49.1691
10.1103/PhysRevLett.100.146401
10.1002/qua.560240302
10.1063/1.2741248
10.1103/PhysRevLett.79.2089
10.1209/epl/i2002-00261-y
10.1063/1.2987202
10.1103/PhysRev.140.A1133
10.1103/PhysRevLett.51.1888
10.1103/PhysRevLett.51.1884
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1103/PhysRevLett.102.066403
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 19257614
10_1103_PhysRevLett_102_066403
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
7X8
ID FETCH-LOGICAL-c309t-bfcf4a2912f17a1bbcc7c263af5949e69a300f2233aa326329e259bd0b3063123
IEDL.DBID 3MX
ISICitedReferencesCount 223
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263389500047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
IngestDate Thu Jul 10 17:17:58 EDT 2025
Thu Apr 03 06:49:26 EDT 2025
Tue Nov 18 19:54:09 EST 2025
Sat Nov 29 06:24:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://link.aps.org/licenses/aps-default-license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-bfcf4a2912f17a1bbcc7c263af5949e69a300f2233aa326329e259bd0b3063123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19257614
PQID 66992274
PQPubID 23479
ParticipantIDs proquest_miscellaneous_66992274
pubmed_primary_19257614
crossref_citationtrail_10_1103_PhysRevLett_102_066403
crossref_primary_10_1103_PhysRevLett_102_066403
PublicationCentury 2000
PublicationDate 2009-02-13
PublicationDateYYYYMMDD 2009-02-13
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-13
  day: 13
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2009
References PhysRevLett.102.066403Cc5R1
PhysRevLett.102.066403Cc16R1
PhysRevLett.102.066403Cc6R1
PhysRevLett.102.066403Cc17R1
PhysRevLett.102.066403Cc3R1
PhysRevLett.102.066403Cc14R1
PhysRevLett.102.066403Cc4R1
PhysRevLett.102.066403Cc15R1
PhysRevLett.102.066403Cc1R1
PhysRevLett.102.066403Cc2R1
PhysRevLett.102.066403Cc18R1
PhysRevLett.102.066403Cc19R1
PhysRevLett.102.066403Cc20R1
PhysRevLett.102.066403Cc10R1
J. P. Perdew (PhysRevLett.102.066403Cc13R1) 1986; 19
PhysRevLett.102.066403Cc21R1
PhysRevLett.102.066403Cc11R1
PhysRevLett.102.066403Cc9R1
PhysRevLett.102.066403Cc7R1
PhysRevLett.102.066403Cc8R1
References_xml – ident: PhysRevLett.102.066403Cc15R1
  doi: 10.1103/PhysRevB.77.115123
– ident: PhysRevLett.102.066403Cc2R1
  doi: 10.1126/science.1158722
– ident: PhysRevLett.102.066403Cc4R1
  doi: 10.1063/1.1712502
– ident: PhysRevLett.102.066403Cc10R1
  doi: 10.1103/PhysRevA.26.1200
– ident: PhysRevLett.102.066403Cc19R1
  doi: 10.1103/PhysRevA.76.040501
– ident: PhysRevLett.102.066403Cc18R1
  doi: 10.1063/1.1589733
– volume: 19
  start-page: 497
  issn: 0161-3642
  year: 1986
  ident: PhysRevLett.102.066403Cc13R1
  publication-title: Int. J. Quantum Chem. Symp.
– ident: PhysRevLett.102.066403Cc9R1
  doi: 10.1103/PhysRevLett.84.5172
– ident: PhysRevLett.102.066403Cc17R1
  doi: 10.1103/PhysRevB.78.201103
– ident: PhysRevLett.102.066403Cc3R1
  doi: 10.1103/PhysRevB.44.943
– ident: PhysRevLett.102.066403Cc5R1
  doi: 10.1103/PhysRevLett.49.1691
– ident: PhysRevLett.102.066403Cc14R1
  doi: 10.1103/PhysRevLett.100.146401
– ident: PhysRevLett.102.066403Cc11R1
  doi: 10.1002/qua.560240302
– ident: PhysRevLett.102.066403Cc16R1
  doi: 10.1063/1.2741248
– ident: PhysRevLett.102.066403Cc20R1
  doi: 10.1103/PhysRevLett.79.2089
– ident: PhysRevLett.102.066403Cc21R1
  doi: 10.1209/epl/i2002-00261-y
– ident: PhysRevLett.102.066403Cc6R1
  doi: 10.1063/1.2987202
– ident: PhysRevLett.102.066403Cc1R1
  doi: 10.1103/PhysRev.140.A1133
– ident: PhysRevLett.102.066403Cc8R1
  doi: 10.1103/PhysRevLett.51.1888
– ident: PhysRevLett.102.066403Cc7R1
  doi: 10.1103/PhysRevLett.51.1884
SSID ssj0001268
Score 2.436794
Snippet Standard approximations for the exchange-correlation functional have been found to give big errors for the linearity condition of fractional charges, leading...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 066403
Title Discontinuous Nature of the Exchange-Correlation Functional in Strongly Correlated Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/19257614
https://www.proquest.com/docview/66992274
Volume 102
WOSCitedRecordID wos000263389500047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7LouDF92N95uC1btKkTXOUdRcvLuIDipeSpoksSFf2hf57M013VXCRvfQQmrRMHjNfZuYbhC6TpBAa7jVIaCJIySGBtIYGItaWKXC8KVUVmxD9fpKm8r6ByN8efEpYGyIhH8wMsluAZ-DK6Uju6T0TDgub3aWLo5eGsT96GcQdEFGnBC8f5rc2WmJiVqqmt7X6T26jzdqsxNd-Heyghil30XoV3qnHe-jlZjCGoPRBOXVIH_crNk88tNiZf7j74bN_gw5U6vCxcbjn9J2_JsSDEj_Chfnr2yeev2IKXHOd76PnXvepcxvUVRUCzYicBLnVlqtQ0tBSoWieaw2zxZSNJJcmlooRYp3VwJRiwOYujYNIeUFyhy6YU3QHqFkOS3OEsHHbPQGMEUWGF6FRPC5EFDnQmQMrjmihaC7dTNeU41D54i2roAdh2Q-5ubYw83Jrofai37sn3fi3x8V88jK3P8DpoUrjJJrFMTDvCt5Ch35Ov0eUALYoP175aydowzuVwoCyU9ScjKbmDK3p2WQwHp1XS9I9RZp8Ace73y4
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discontinuous+Nature+of+the+Exchange-Correlation+Functional+in+Strongly+Correlated+Systems&rft.jtitle=Physical+review+letters&rft.au=Mori-S%C3%A1nchez%2C+Paula&rft.au=Cohen%2C+Aron+J.&rft.au=Yang%2C+Weitao&rft.date=2009-02-13&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=102&rft.issue=6&rft_id=info:doi/10.1103%2FPhysRevLett.102.066403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_102_066403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon