Seismic random noise suppression using deep convolutional autoencoder neural network

Due to human or environmental factors, random noise will inevitably be introduced during seismic data acquisition. Contaminated seismic data seriously affect subsequent seismic data processing and imaging. In this paper, we propose a deep convolutional autoencoder neural network for denoising, which...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied geophysics Ročník 178; s. 104071
Hlavní autoři: Song, Hui, Gao, Yang, Chen, Wei, Xue, Ya-juan, Zhang, Hua, Zhang, Xiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2020
Témata:
ISSN:0926-9851, 1879-1859
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Due to human or environmental factors, random noise will inevitably be introduced during seismic data acquisition. Contaminated seismic data seriously affect subsequent seismic data processing and imaging. In this paper, we propose a deep convolutional autoencoder neural network for denoising, which consists of encoding and decoding frameworks. The encoding framework consisting of convolution layers and pooling layers captures features of seismic data while eliminating noise. The decoding framework consisting of convolution layers and upsampling layers is capable of enlarging the feature map and recovering the small scale features of the seismic data. In order to represent the characteristics of seismic data optimally, we introduce L1 regularization to constrain the weights. In order to learn multi-scale features of seismic data, we use the multiple filters with different sizes in both encoding and decoding frameworks. The proposed method is tested on synthetic and field cases. The experimental results show that the proposed denoising method can suppress random noise effectively. •Convolutional autoencoder neural network is extended to attenuate seismic random noise based on patch-extraction method.
ISSN:0926-9851
1879-1859
DOI:10.1016/j.jappgeo.2020.104071