Adaptive corrected parameters algorithm applied in cooling load prediction based on black-box model: A case study for subway station

•The optimal input for cooling load prediction of case subway station is determined.•An adaptive corrected parameters algorithm applied to black-box model is proposed.•The prediction performance of models based on proposed algorithm is enhanced.•The proposed algorithm is better than the single model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy and buildings Ročník 297; s. 113429
Hlavní autoři: Hu, Yuanyang, Qin, Luwen, Li, Shuhong, Li, Xiaohuan, Zhou, Runfa, Li, Yanjun, Sheng, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.10.2023
Témata:
ISSN:0378-7788
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The optimal input for cooling load prediction of case subway station is determined.•An adaptive corrected parameters algorithm applied to black-box model is proposed.•The prediction performance of models based on proposed algorithm is enhanced.•The proposed algorithm is better than the single model under different sample size. Black-box model is widely utilized for predicting building loads, serving as the foundation for enhancing the operational efficiency of air conditioning systems. However, the input combination is essential to its prediction accuracy and the optimal combination varies with changes in the building. Moreover, individual black-box models exhibit limited prediction accuracy, and there exist only a few methods to enhance the accuracy of any black-box model. In this study, the measured data including system variables, meteorological conditions, time, indoor parameters, and historical load are collected, fifteen kinds of combinations are compared to approach the optimal input combination for case station. Additionally, an algorithm, namely Adaptive Corrected Parameters Algorithm (ACPA) is proposed to enhance the prediction performance of the basic black-box model. The ACPA has the theoretical potential to be applied to any black-box model, enabling the development of a framework composed of basic models, this framework demonstrates enhanced prediction performance by adaptively determining the optimal correction times and hyperparameters for involved models. Three typical black-box models namely Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN) and Random Forests (RF) are employed as basic models, the prediction performance of the three models is studied based on ACPA, considering different correction references and sample sizes. The results indicate that the optimal input combination for the case station includes time, historical load, and system categories, the proposed ACPA can improve the prediction ability of three basic models which can reduce the RMSE of BPNN, RBFNN and RF by 7.10%, 21.08% and 7.08%, respectively. Besides, the ACPA can narrow the prediction gap among the basic models, which can decrease the deviation of MAE by 50% compared with basic models. The prediction performance of models based on ACPA is better than the model itself under different sample size, as a result, the ACPA is recommended for most black-box models used in building load prediction.
AbstractList •The optimal input for cooling load prediction of case subway station is determined.•An adaptive corrected parameters algorithm applied to black-box model is proposed.•The prediction performance of models based on proposed algorithm is enhanced.•The proposed algorithm is better than the single model under different sample size. Black-box model is widely utilized for predicting building loads, serving as the foundation for enhancing the operational efficiency of air conditioning systems. However, the input combination is essential to its prediction accuracy and the optimal combination varies with changes in the building. Moreover, individual black-box models exhibit limited prediction accuracy, and there exist only a few methods to enhance the accuracy of any black-box model. In this study, the measured data including system variables, meteorological conditions, time, indoor parameters, and historical load are collected, fifteen kinds of combinations are compared to approach the optimal input combination for case station. Additionally, an algorithm, namely Adaptive Corrected Parameters Algorithm (ACPA) is proposed to enhance the prediction performance of the basic black-box model. The ACPA has the theoretical potential to be applied to any black-box model, enabling the development of a framework composed of basic models, this framework demonstrates enhanced prediction performance by adaptively determining the optimal correction times and hyperparameters for involved models. Three typical black-box models namely Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN) and Random Forests (RF) are employed as basic models, the prediction performance of the three models is studied based on ACPA, considering different correction references and sample sizes. The results indicate that the optimal input combination for the case station includes time, historical load, and system categories, the proposed ACPA can improve the prediction ability of three basic models which can reduce the RMSE of BPNN, RBFNN and RF by 7.10%, 21.08% and 7.08%, respectively. Besides, the ACPA can narrow the prediction gap among the basic models, which can decrease the deviation of MAE by 50% compared with basic models. The prediction performance of models based on ACPA is better than the model itself under different sample size, as a result, the ACPA is recommended for most black-box models used in building load prediction.
ArticleNumber 113429
Author Li, Shuhong
Zhou, Runfa
Li, Xiaohuan
Li, Yanjun
Hu, Yuanyang
Sheng, Wei
Qin, Luwen
Author_xml – sequence: 1
  givenname: Yuanyang
  surname: Hu
  fullname: Hu, Yuanyang
  email: 230218606@seu.edu.cn
  organization: School of Energy and Environment, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Luwen
  surname: Qin
  fullname: Qin, Luwen
  organization: School of Energy and Environment, Southeast University, Nanjing 210096, China
– sequence: 3
  givenname: Shuhong
  surname: Li
  fullname: Li, Shuhong
  email: equart@seu.edu.cn
  organization: School of Energy and Environment, Southeast University, Nanjing 210096, China
– sequence: 4
  givenname: Xiaohuan
  surname: Li
  fullname: Li, Xiaohuan
  organization: School of Aeronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210008, China
– sequence: 5
  givenname: Runfa
  surname: Zhou
  fullname: Zhou, Runfa
  organization: School of Energy and Environment, Southeast University, Nanjing 210096, China
– sequence: 6
  givenname: Yanjun
  surname: Li
  fullname: Li, Yanjun
  organization: Jiangsu Product Quality Testing & Inspection Institute, Nanjing 210007, China
– sequence: 7
  givenname: Wei
  surname: Sheng
  fullname: Sheng, Wei
  organization: Nanjing Boson Technology Co., Ltd, Nanjing 210019, China
BookMark eNqFkMtOwzAQRb0oEm3hE5D8Aym2UzsJLFBV8ZIqsYG15VeKixNHdlrong_HUbpi09WM7tw7mjkzMGl9awC4wWiBEWa3u4Vp5d46vSCI5AuM8yWpJmCK8qLMiqIsL8Esxh1CiNECT8HvSouutwcDlQ_BqN5o2IkgGtObEKFwWx9s_9lA0XXOpqFtk9M7226h8yKZg9FW9da3UIqYDEPjhPrKpP-BjdfG3cEVVGkGY7_XR1j7AONefotjEsSQvAIXtXDRXJ_qHHw8Pb6vX7LN2_PrerXJVI6qPpNLyiiVlNVlTpNEKsySpEuNGJNEGUa1EBXRhKWvDUOFrHBdoFrkhCHN8jmg414VfIzB1LwLthHhyDHiAz6-4yd8fMDHR3wpd_8vp-x4eR-EdWfTD2PapNcO1gQelTWtStwG4Fx7e2bDH9cklT4
CitedBy_id crossref_primary_10_3390_su16062522
crossref_primary_10_3390_agriculture14010145
crossref_primary_10_1016_j_energy_2025_138012
crossref_primary_10_1016_j_jobe_2024_109656
crossref_primary_10_3390_land14051037
crossref_primary_10_1016_j_heliyon_2024_e41572
crossref_primary_10_1016_j_engappai_2024_109398
crossref_primary_10_1016_j_jobe_2024_109884
crossref_primary_10_3390_fermentation10050234
crossref_primary_10_1016_j_energy_2024_134219
crossref_primary_10_1016_j_jobe_2025_111887
Cites_doi 10.1016/j.istruc.2022.05.055
10.1016/j.egyr.2022.01.162
10.3390/en12214187
10.1111/fog.12598
10.1016/j.enbuild.2017.11.002
10.1007/s00500-021-06230-1
10.1016/j.scitotenv.2022.156685
10.1016/j.enbuild.2019.05.043
10.3390/su14031316
10.1016/j.applthermaleng.2017.09.007
10.1080/10789669.2002.10391290
10.1002/ese3.1246
10.1080/0305215X.2013.832237
10.1038/s41558-021-01249-6
10.1016/j.buildenv.2022.109576
10.1109/ACCESS.2019.2915673
10.3390/su13020935
10.1016/j.epsr.2022.108066
10.1016/j.scs.2020.102321
10.1016/j.apenergy.2019.114107
10.3390/en14030756
10.1016/j.egyr.2021.03.017
10.1007/s10661-019-7821-5
10.1016/j.enbuild.2021.110740
10.1016/j.jobe.2018.11.006
10.3390/en14061649
10.1016/j.rser.2013.03.004
10.3390/en12091626
10.1080/00031305.1996.10473566
10.1016/j.enbuild.2015.02.050
10.3390/en14051331
10.1080/15567036.2019.1604872
10.1007/s12649-022-01876-w
10.1063/1.4861782
10.1016/j.apenergy.2021.116452
10.1016/j.enbuild.2018.04.008
10.1016/j.enbuild.2016.12.016
10.1016/j.renene.2019.07.104
10.1007/s12273-022-0905-0
10.1007/s00521-016-2408-3
10.1016/j.buildenv.2023.110252
10.1038/s41467-020-19790-x
10.1109/TII.2020.2970165
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.enbuild.2023.113429
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enbuild_2023_113429
S037877882300659X
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSH
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
ID FETCH-LOGICAL-c309t-b45655b56f835c302916456d8d066b2ce65daa92d26342e607b91f70fa3260d63
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059745600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Sat Nov 29 07:08:57 EST 2025
Tue Nov 18 22:11:23 EST 2025
Sun Apr 06 06:53:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Prediction accuracy
Input combination
Black-box model
Cooling load prediction
Adaptive corrected parameters
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-b45655b56f835c302916456d8d066b2ce65daa92d26342e607b91f70fa3260d63
ParticipantIDs crossref_primary_10_1016_j_enbuild_2023_113429
crossref_citationtrail_10_1016_j_enbuild_2023_113429
elsevier_sciencedirect_doi_10_1016_j_enbuild_2023_113429
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy and buildings
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fan, Ding (b0135) 2019; 197
Shao, Li, Li, Zhou (b0015) 2022; 840
Himmetoğlu, Delice, Aydoğan (b0180) 2021; 34
Foucquier, Robert, Suard, Stéphan, Jay (b0090) 2013; 23
Kaushik, Garg, Lal (b0075) 2014; 6
Zhu, You, Liu (b0195) 2019; 7
Braun, Chaturvedi (b0085) 2002; 8
Zhang, Yu, Zhao, Zhou (b0225) 2021; 7
Akram, Mohd Zublie, Hasanuzzaman, Rahim (b0040) 2022; 14
Hyndman, Fan (b0190) 1996; 50
Hou, Ma, Kwok, Cheng (b0065) 2022; 225
Li, Zheng, Xu, Wang (b0245) 2022; 41
Al-Mukhtar (b0250) 2019; 191
Phillips, McNellis, Howell (b0010) 2022; 12
Li, Yao (b0045) 2021; 235
Chen, Guo, Chen, Chen, Ji (b0100) 2022; 8
Kapetanakis, Mangina, Finn (b0120) 2017; 137
Liu, Liu, Fang (b0165) 2016; 643
Fan, Wu, Ma, Zhou, Zhang (b0235) 2020; 145
Jang, Lee, Son, Park, Kim, Lee, Leigh (b0115) 2019; 12
Islam, Baharudin, Nallagownden (b0150) 2017; 28
Yang, Karamanoglu, He (b0230) 2014; 46
Bolandnazar, Rohani, Taki (b0205) 2020; 42
Ding, Zhang, Yuan, Yang (b0130) 2018; 159
Lee, Jung, Lee, Kim, Do (b0105) 2021; 14
Kim, Kim, Srebric (b0200) 2020; 62
Tan, Zhu, Sun, Wu (b0170) 2022; 15
Zhang, Wen, Li, Chen, Ye, Fu, Livingood (b0095) 2021; 285
Mehregan, Naminezhad, Vakili, Delpisheh (b0060) 2022; 10
Royapoor, Roskilly (b0070) 2015; 94
Liu, Tang, Pu, Mei, Sidorov (b0220) 2022; 210
Ling, Dai, Xing, Tong (b0125) 2021; 44
Mergos, Yang (b0240) 2021; 25
Moayedi, Mosavi (b0160) 2021; 14
Kim, Seong, Choi (b0185) 2019; 6535
Song, Ahn, Ahn, Kwon (b0035) 2019; 12
Sharif, Hammad (b0055) 2019; 21
Wang, Tian, Jia (b0080) 2021; 13
Kaeriyama (b0005) 2023; 32
Eseye, Lehtonen (b0110) 2020; 16
Moayedi, Mosavi (b0155) 2021; 14
Ji, Xin, Zhao (b0020) 2023; 14
Guo, Yun, Meng, He, Ye, Zhao, Jia, Yang (b0145) 2023; 236
Sun, Zhao, Xu, Zhang, Li, Wang, He, Wang (b0030) 2017; 2017
Röck, Saade, Balouktsi, Rasmussen, Birgisdottir, Frischknecht, Habert, Lützkendorf, Passer (b0025) 2020; 258
Wang, Wang, Zeng, Srinivasan, Ahrentzen (b0210) 2018; 171
Li, Sun, Sui, Nandi, Fang, Peng, Tan, Hsu (b0050) 2020; 11
Chen, Wang, Li, Zhou, Zhou (b0175) 2022; 52
Ding, Zhang, Yuan, Yang (b0215) 2018; 128
Al-Shargabi, Almhafdy, Ibrahim, Alghieth, Chiclana (b0140) 2021; 13
Song (10.1016/j.enbuild.2023.113429_b0035) 2019; 12
Zhu (10.1016/j.enbuild.2023.113429_b0195) 2019; 7
Royapoor (10.1016/j.enbuild.2023.113429_b0070) 2015; 94
Al-Shargabi (10.1016/j.enbuild.2023.113429_b0140) 2021; 13
Kaeriyama (10.1016/j.enbuild.2023.113429_b0005) 2023; 32
Braun (10.1016/j.enbuild.2023.113429_b0085) 2002; 8
Hyndman (10.1016/j.enbuild.2023.113429_b0190) 1996; 50
Al-Mukhtar (10.1016/j.enbuild.2023.113429_b0250) 2019; 191
Phillips (10.1016/j.enbuild.2023.113429_b0010) 2022; 12
Kapetanakis (10.1016/j.enbuild.2023.113429_b0120) 2017; 137
Kim (10.1016/j.enbuild.2023.113429_b0185) 2019; 6535
Kaushik (10.1016/j.enbuild.2023.113429_b0075) 2014; 6
Moayedi (10.1016/j.enbuild.2023.113429_b0155) 2021; 14
Fan (10.1016/j.enbuild.2023.113429_b0235) 2020; 145
Foucquier (10.1016/j.enbuild.2023.113429_b0090) 2013; 23
Liu (10.1016/j.enbuild.2023.113429_b0220) 2022; 210
Islam (10.1016/j.enbuild.2023.113429_b0150) 2017; 28
Lee (10.1016/j.enbuild.2023.113429_b0105) 2021; 14
Guo (10.1016/j.enbuild.2023.113429_b0145) 2023; 236
Zhang (10.1016/j.enbuild.2023.113429_b0225) 2021; 7
Sun (10.1016/j.enbuild.2023.113429_b0030) 2017; 2017
Zhang (10.1016/j.enbuild.2023.113429_b0095) 2021; 285
Tan (10.1016/j.enbuild.2023.113429_b0170) 2022; 15
Eseye (10.1016/j.enbuild.2023.113429_b0110) 2020; 16
Jang (10.1016/j.enbuild.2023.113429_b0115) 2019; 12
Moayedi (10.1016/j.enbuild.2023.113429_b0160) 2021; 14
Shao (10.1016/j.enbuild.2023.113429_b0015) 2022; 840
Hou (10.1016/j.enbuild.2023.113429_b0065) 2022; 225
Akram (10.1016/j.enbuild.2023.113429_b0040) 2022; 14
Ji (10.1016/j.enbuild.2023.113429_b0020) 2023; 14
Mergos (10.1016/j.enbuild.2023.113429_b0240) 2021; 25
Sharif (10.1016/j.enbuild.2023.113429_b0055) 2019; 21
Chen (10.1016/j.enbuild.2023.113429_b0175) 2022; 52
Li (10.1016/j.enbuild.2023.113429_b0245) 2022; 41
Liu (10.1016/j.enbuild.2023.113429_b0165) 2016; 643
Kim (10.1016/j.enbuild.2023.113429_b0200) 2020; 62
Li (10.1016/j.enbuild.2023.113429_b0045) 2021; 235
Ling (10.1016/j.enbuild.2023.113429_b0125) 2021; 44
Bolandnazar (10.1016/j.enbuild.2023.113429_b0205) 2020; 42
Yang (10.1016/j.enbuild.2023.113429_b0230) 2014; 46
Wang (10.1016/j.enbuild.2023.113429_b0080) 2021; 13
Li (10.1016/j.enbuild.2023.113429_b0050) 2020; 11
Röck (10.1016/j.enbuild.2023.113429_b0025) 2020; 258
Wang (10.1016/j.enbuild.2023.113429_b0210) 2018; 171
Ding (10.1016/j.enbuild.2023.113429_b0215) 2018; 128
Himmetoğlu (10.1016/j.enbuild.2023.113429_b0180) 2021; 34
Fan (10.1016/j.enbuild.2023.113429_b0135) 2019; 197
Chen (10.1016/j.enbuild.2023.113429_b0100) 2022; 8
Ding (10.1016/j.enbuild.2023.113429_b0130) 2018; 159
Mehregan (10.1016/j.enbuild.2023.113429_b0060) 2022; 10
References_xml – volume: 12
  start-page: 1626
  year: 2019
  ident: b0035
  article-title: Development of an energy saving strategy model for retrofitting existing buildings: a Korean case study
  publication-title: Energies
– volume: 235
  year: 2021
  ident: b0045
  article-title: Modelling heating and cooling energy demand for building stock using a hybrid approach
  publication-title: Energ. Build.
– volume: 7
  start-page: 1588
  year: 2021
  end-page: 1597
  ident: b0225
  article-title: Predictive model of cooling load for ice storage air-conditioning system by using GBDT
  publication-title: Energy Rep.
– volume: 14
  start-page: 1316
  year: 2022
  ident: b0040
  article-title: Global Prospects, Advance technologies and policies of energy-saving and sustainable building systems: A review
  publication-title: Sustainability-Basel
– volume: 210
  year: 2022
  ident: b0220
  article-title: Short-term load forecasting of multi-energy in integrated energy system based on multivariate phase space reconstruction and support vector regression mode
  publication-title: Electr. Pow. Syst. Res.
– volume: 28
  start-page: 877
  year: 2017
  end-page: 891
  ident: b0150
  article-title: Development of chaotically improved meta-heuristics and modified BP neural network-based model for electrical energy demand prediction in smart grid
  publication-title: Neural Comput. & Applic.
– volume: 6
  start-page: 13107
  year: 2014
  ident: b0075
  article-title: Thermal performance prediction and energy conservation potential of earth air tunnel heat exchanger for thermal comfort in building
  publication-title: J. Renew. Sustain. Ener.
– volume: 7
  start-page: 61628
  year: 2019
  end-page: 61638
  ident: b0195
  article-title: Multiple ant colony optimization based on Pearson correlation coefficient
  publication-title: IEEE Access
– volume: 32
  start-page: 121
  year: 2023
  end-page: 132
  ident: b0005
  article-title: Warming climate impacts on production dynamics of southern populations of Pacific salmon in the North Pacific Ocean
  publication-title: Fish. Oceanogr.
– volume: 23
  start-page: 272
  year: 2013
  end-page: 288
  ident: b0090
  article-title: State of the art in building modelling and energy performances prediction: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 8
  start-page: 73
  year: 2002
  end-page: 99
  ident: b0085
  article-title: An inverse gray-box model for transient building load prediction
  publication-title: Hvac&R Res.
– volume: 12
  start-page: 4187
  year: 2019
  ident: b0115
  article-title: Development of an improved model to predict building thermal energy consumption by utilizing feature selection
  publication-title: Energies
– volume: 94
  start-page: 109
  year: 2015
  end-page: 120
  ident: b0070
  article-title: Building model calibration using energy and environmental data
  publication-title: Energ. Build.
– volume: 44
  year: 2021
  ident: b0125
  article-title: An improved input variable selection method of the data-driven model for building heating load prediction
  publication-title: J. Build. Eng.
– volume: 128
  start-page: 225
  year: 2018
  end-page: 234
  ident: b0215
  article-title: Effect of input variables on cooling load prediction accuracy of an office building
  publication-title: Appl. Therm. Eng.
– volume: 52
  year: 2022
  ident: b0175
  article-title: A training pattern recognition algorithm based on weight clustering for improving cooling load prediction accuracy of HVAC system
  publication-title: J. Build. Eng.
– volume: 16
  start-page: 7743
  year: 2020
  end-page: 7755
  ident: b0110
  article-title: Short-term forecasting of heat demand of buildings for efficient and optimal energy management based on integrated machine learning models
  publication-title: IEEE T Ind. Inform.
– volume: 41
  start-page: 943
  year: 2022
  end-page: 956
  ident: b0245
  article-title: Artificial neural network model for predicting the local compression capacity of stirrups-confined concrete
  publication-title: Structures
– volume: 14
  start-page: 365
  year: 2023
  end-page: 375
  ident: b0020
  article-title: Energy consumption and carbon emissions: measurement and analysis—the case of Shanghai in China
  publication-title: Waste Biomass Valori.
– volume: 258
  year: 2020
  ident: b0025
  article-title: Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation
  publication-title: Appl. Energy
– volume: 10
  start-page: 3638
  year: 2022
  end-page: 3649
  ident: b0060
  article-title: Building energy model validation and estimation using heating and cooling degree days (HDD–CDD) based on accurate base temperature
  publication-title: Energy Sci. Eng.
– volume: 171
  start-page: 11
  year: 2018
  end-page: 25
  ident: b0210
  article-title: Random Forest based hourly building energy prediction
  publication-title: Energ. Build.
– volume: 840
  year: 2022
  ident: b0015
  article-title: Intraspecific responses of plant productivity and crop yield to experimental warming: a global synthesis
  publication-title: Sci. Total Environ.
– volume: 197
  start-page: 7
  year: 2019
  end-page: 17
  ident: b0135
  article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model
  publication-title: Energ. Build.
– volume: 15
  start-page: 1989
  year: 2022
  end-page: 2002
  ident: b0170
  article-title: Room thermal load prediction based on analytic hierarchy process and back-propagation neural networks
  publication-title: Build. Simul.-China
– volume: 46
  start-page: 1222
  year: 2014
  end-page: 1237
  ident: b0230
  article-title: Flower pollination algorithm: a novel approach for multiobjective optimization
  publication-title: Eng. Optimization
– volume: 14
  start-page: 756
  year: 2021
  ident: b0105
  article-title: Prediction performance analysis of artificial neural network model by input variable combination for residential heating loads
  publication-title: Energies
– volume: 34
  year: 2021
  ident: b0180
  article-title: PSACONN mining algorithm for multi-factor thermal energy-efficient public building design
  publication-title: J Build Eng.
– volume: 12
  start-page: 71
  year: 2022
  end-page: 76
  ident: b0010
  article-title: Biocrusts mediate a new mechanism for land degradation under a changing climate
  publication-title: Nat. Clim. Chang.
– volume: 25
  start-page: 14429
  year: 2021
  end-page: 14447
  ident: b0240
  article-title: Flower pollination algorithm parameters tuning
  publication-title: Soft. Comput.
– volume: 11
  start-page: 6101
  year: 2020
  ident: b0050
  article-title: Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings
  publication-title: Nat. Commun.
– volume: 62
  year: 2020
  ident: b0200
  article-title: Impact of correlation of plug load data, occupancy rates and local weather conditions on electricity consumption in a building using four back-propagation neural network models
  publication-title: Sustain. Cities Soc.
– volume: 14
  start-page: 1649
  year: 2021
  ident: b0155
  article-title: Suggesting a stochastic fractal search paradigm in combination with artificial neural network for early prediction of cooling load in residential buildings
  publication-title: Energies
– volume: 225
  year: 2022
  ident: b0065
  article-title: Prediction and optimization of thermal comfort, IAQ and energy consumption of typical air-conditioned rooms based on a hybrid prediction model
  publication-title: Build. Environ.
– volume: 137
  start-page: 13
  year: 2017
  end-page: 26
  ident: b0120
  article-title: Input variable selection for thermal load predictive models of commercial buildings
  publication-title: Energ. Build.
– volume: 8
  start-page: 2656
  year: 2022
  end-page: 2671
  ident: b0100
  article-title: Physical energy and data-driven models in building energy prediction: a review
  publication-title: Energy Rep.
– volume: 13
  start-page: 12442
  year: 2021
  ident: b0140
  article-title: Tuning deep neural networks for predicting energy consumption in arid climate based on buildings characteristics
  publication-title: Sustainability (Basel, Switzerland)
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0030
  article-title: A solar heating and cooling system in a nearly zero-energy building: a case study in China
  publication-title: Int. J. Photoenergy
– volume: 21
  start-page: 429
  year: 2019
  end-page: 445
  ident: b0055
  article-title: Simulation-based multi-objective optimization of institutional building renovation considering energy consumption, life-cycle cost and life-cycle assessment
  publication-title: J Build Eng.
– volume: 14
  start-page: 1331
  year: 2021
  ident: b0160
  article-title: Double-target based neural networks in predicting energy consumption in residential buildings
  publication-title: Energies
– volume: 13
  start-page: 935
  year: 2021
  ident: b0080
  article-title: Numerical study on performance optimization of an energy-saving insulated window
  publication-title: Sustainability-Basel
– volume: 236
  year: 2023
  ident: b0145
  article-title: Prediction of heating and cooling loads based on light gradient boosting machine algorithms
  publication-title: Build. Environ.
– volume: 159
  start-page: 254
  year: 2018
  end-page: 270
  ident: b0130
  article-title: Model input selection for building heating load prediction: A case study for an office building in Tianjin
  publication-title: Energ. Build.
– volume: 50
  start-page: 361
  year: 1996
  end-page: 365
  ident: b0190
  article-title: Sample quantiles in statistical packages
  publication-title: Am. Statistician
– volume: 285
  year: 2021
  ident: b0095
  article-title: A review of machine learning in building load prediction
  publication-title: Appl. Energy
– volume: 6535
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0185
  article-title: Cooling load forecasting via predictive optimization of a Nonlinear Autoregressive Exogenous (NARX) neural network model
  publication-title: Sustainability-Basel
– volume: 191
  start-page: 673
  year: 2019
  ident: b0250
  article-title: Random Forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad
  publication-title: Environ. Monit. Assess.
– volume: 145
  start-page: 2034
  year: 2020
  end-page: 2045
  ident: b0235
  article-title: Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions
  publication-title: Renew. Energy
– volume: 643
  start-page: 146
  year: 2016
  end-page: 155
  ident: b0165
  article-title: A hybrid model of AR and PNN method for building thermal load forecasting
  publication-title: Asian Simulation Conference
– volume: 42
  start-page: 1618
  year: 2020
  end-page: 1632
  ident: b0205
  article-title: Energy consumption forecasting in agriculture by artificial intelligence and mathematical models
  publication-title: Energy Sources. Part a, Recovery, Utilization, and Environmental Effects
– volume: 41
  start-page: 943
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0245
  article-title: Artificial neural network model for predicting the local compression capacity of stirrups-confined concrete
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.05.055
– volume: 8
  start-page: 2656
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0100
  article-title: Physical energy and data-driven models in building energy prediction: a review
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.01.162
– volume: 12
  start-page: 4187
  year: 2019
  ident: 10.1016/j.enbuild.2023.113429_b0115
  article-title: Development of an improved model to predict building thermal energy consumption by utilizing feature selection
  publication-title: Energies
  doi: 10.3390/en12214187
– volume: 32
  start-page: 121
  year: 2023
  ident: 10.1016/j.enbuild.2023.113429_b0005
  article-title: Warming climate impacts on production dynamics of southern populations of Pacific salmon in the North Pacific Ocean
  publication-title: Fish. Oceanogr.
  doi: 10.1111/fog.12598
– volume: 159
  start-page: 254
  year: 2018
  ident: 10.1016/j.enbuild.2023.113429_b0130
  article-title: Model input selection for building heating load prediction: A case study for an office building in Tianjin
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2017.11.002
– volume: 25
  start-page: 14429
  issue: 22
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0240
  article-title: Flower pollination algorithm parameters tuning
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-021-06230-1
– volume: 840
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0015
  article-title: Intraspecific responses of plant productivity and crop yield to experimental warming: a global synthesis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.156685
– volume: 197
  start-page: 7
  year: 2019
  ident: 10.1016/j.enbuild.2023.113429_b0135
  article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2019.05.043
– volume: 44
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0125
  article-title: An improved input variable selection method of the data-driven model for building heating load prediction
  publication-title: J. Build. Eng.
– volume: 14
  start-page: 1316
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0040
  article-title: Global Prospects, Advance technologies and policies of energy-saving and sustainable building systems: A review
  publication-title: Sustainability-Basel
  doi: 10.3390/su14031316
– volume: 128
  start-page: 225
  year: 2018
  ident: 10.1016/j.enbuild.2023.113429_b0215
  article-title: Effect of input variables on cooling load prediction accuracy of an office building
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.09.007
– volume: 8
  start-page: 73
  issue: 1
  year: 2002
  ident: 10.1016/j.enbuild.2023.113429_b0085
  article-title: An inverse gray-box model for transient building load prediction
  publication-title: Hvac&R Res.
  doi: 10.1080/10789669.2002.10391290
– volume: 10
  start-page: 3638
  issue: 9
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0060
  article-title: Building energy model validation and estimation using heating and cooling degree days (HDD–CDD) based on accurate base temperature
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.1246
– volume: 46
  start-page: 1222
  issue: 9
  year: 2014
  ident: 10.1016/j.enbuild.2023.113429_b0230
  article-title: Flower pollination algorithm: a novel approach for multiobjective optimization
  publication-title: Eng. Optimization
  doi: 10.1080/0305215X.2013.832237
– volume: 12
  start-page: 71
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0010
  article-title: Biocrusts mediate a new mechanism for land degradation under a changing climate
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-021-01249-6
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.enbuild.2023.113429_b0030
  article-title: A solar heating and cooling system in a nearly zero-energy building: a case study in China
  publication-title: Int. J. Photoenergy
– volume: 225
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0065
  article-title: Prediction and optimization of thermal comfort, IAQ and energy consumption of typical air-conditioned rooms based on a hybrid prediction model
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109576
– volume: 7
  start-page: 61628
  year: 2019
  ident: 10.1016/j.enbuild.2023.113429_b0195
  article-title: Multiple ant colony optimization based on Pearson correlation coefficient
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915673
– volume: 13
  start-page: 935
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0080
  article-title: Numerical study on performance optimization of an energy-saving insulated window
  publication-title: Sustainability-Basel
  doi: 10.3390/su13020935
– volume: 210
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0220
  article-title: Short-term load forecasting of multi-energy in integrated energy system based on multivariate phase space reconstruction and support vector regression mode
  publication-title: Electr. Pow. Syst. Res.
  doi: 10.1016/j.epsr.2022.108066
– volume: 62
  year: 2020
  ident: 10.1016/j.enbuild.2023.113429_b0200
  article-title: Impact of correlation of plug load data, occupancy rates and local weather conditions on electricity consumption in a building using four back-propagation neural network models
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102321
– volume: 258
  year: 2020
  ident: 10.1016/j.enbuild.2023.113429_b0025
  article-title: Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114107
– volume: 14
  start-page: 756
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0105
  article-title: Prediction performance analysis of artificial neural network model by input variable combination for residential heating loads
  publication-title: Energies
  doi: 10.3390/en14030756
– volume: 7
  start-page: 1588
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0225
  article-title: Predictive model of cooling load for ice storage air-conditioning system by using GBDT
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.03.017
– volume: 191
  start-page: 673
  year: 2019
  ident: 10.1016/j.enbuild.2023.113429_b0250
  article-title: Random Forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7821-5
– volume: 235
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0045
  article-title: Modelling heating and cooling energy demand for building stock using a hybrid approach
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2021.110740
– volume: 21
  start-page: 429
  year: 2019
  ident: 10.1016/j.enbuild.2023.113429_b0055
  article-title: Simulation-based multi-objective optimization of institutional building renovation considering energy consumption, life-cycle cost and life-cycle assessment
  publication-title: J Build Eng.
  doi: 10.1016/j.jobe.2018.11.006
– volume: 14
  start-page: 1649
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0155
  article-title: Suggesting a stochastic fractal search paradigm in combination with artificial neural network for early prediction of cooling load in residential buildings
  publication-title: Energies
  doi: 10.3390/en14061649
– volume: 23
  start-page: 272
  year: 2013
  ident: 10.1016/j.enbuild.2023.113429_b0090
  article-title: State of the art in building modelling and energy performances prediction: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.03.004
– volume: 12
  start-page: 1626
  year: 2019
  ident: 10.1016/j.enbuild.2023.113429_b0035
  article-title: Development of an energy saving strategy model for retrofitting existing buildings: a Korean case study
  publication-title: Energies
  doi: 10.3390/en12091626
– volume: 50
  start-page: 361
  year: 1996
  ident: 10.1016/j.enbuild.2023.113429_b0190
  article-title: Sample quantiles in statistical packages
  publication-title: Am. Statistician
  doi: 10.1080/00031305.1996.10473566
– volume: 6535
  start-page: 1
  year: 2019
  ident: 10.1016/j.enbuild.2023.113429_b0185
  article-title: Cooling load forecasting via predictive optimization of a Nonlinear Autoregressive Exogenous (NARX) neural network model
  publication-title: Sustainability-Basel
– volume: 94
  start-page: 109
  year: 2015
  ident: 10.1016/j.enbuild.2023.113429_b0070
  article-title: Building model calibration using energy and environmental data
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2015.02.050
– volume: 14
  start-page: 1331
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0160
  article-title: Double-target based neural networks in predicting energy consumption in residential buildings
  publication-title: Energies
  doi: 10.3390/en14051331
– volume: 42
  start-page: 1618
  year: 2020
  ident: 10.1016/j.enbuild.2023.113429_b0205
  article-title: Energy consumption forecasting in agriculture by artificial intelligence and mathematical models
  publication-title: Energy Sources. Part a, Recovery, Utilization, and Environmental Effects
  doi: 10.1080/15567036.2019.1604872
– volume: 14
  start-page: 365
  year: 2023
  ident: 10.1016/j.enbuild.2023.113429_b0020
  article-title: Energy consumption and carbon emissions: measurement and analysis—the case of Shanghai in China
  publication-title: Waste Biomass Valori.
  doi: 10.1007/s12649-022-01876-w
– volume: 643
  start-page: 146
  year: 2016
  ident: 10.1016/j.enbuild.2023.113429_b0165
  article-title: A hybrid model of AR and PNN method for building thermal load forecasting
  publication-title: Asian Simulation Conference
– volume: 6
  start-page: 13107
  year: 2014
  ident: 10.1016/j.enbuild.2023.113429_b0075
  article-title: Thermal performance prediction and energy conservation potential of earth air tunnel heat exchanger for thermal comfort in building
  publication-title: J. Renew. Sustain. Ener.
  doi: 10.1063/1.4861782
– volume: 285
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0095
  article-title: A review of machine learning in building load prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116452
– volume: 171
  start-page: 11
  year: 2018
  ident: 10.1016/j.enbuild.2023.113429_b0210
  article-title: Random Forest based hourly building energy prediction
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2018.04.008
– volume: 34
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0180
  article-title: PSACONN mining algorithm for multi-factor thermal energy-efficient public building design
  publication-title: J Build Eng.
– volume: 137
  start-page: 13
  year: 2017
  ident: 10.1016/j.enbuild.2023.113429_b0120
  article-title: Input variable selection for thermal load predictive models of commercial buildings
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2016.12.016
– volume: 145
  start-page: 2034
  year: 2020
  ident: 10.1016/j.enbuild.2023.113429_b0235
  article-title: Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.104
– volume: 15
  start-page: 1989
  issue: 11
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0170
  article-title: Room thermal load prediction based on analytic hierarchy process and back-propagation neural networks
  publication-title: Build. Simul.-China
  doi: 10.1007/s12273-022-0905-0
– volume: 28
  start-page: 877
  issue: S1
  year: 2017
  ident: 10.1016/j.enbuild.2023.113429_b0150
  article-title: Development of chaotically improved meta-heuristics and modified BP neural network-based model for electrical energy demand prediction in smart grid
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-016-2408-3
– volume: 236
  year: 2023
  ident: 10.1016/j.enbuild.2023.113429_b0145
  article-title: Prediction of heating and cooling loads based on light gradient boosting machine algorithms
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.110252
– volume: 11
  start-page: 6101
  year: 2020
  ident: 10.1016/j.enbuild.2023.113429_b0050
  article-title: Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19790-x
– volume: 16
  start-page: 7743
  issue: 12
  year: 2020
  ident: 10.1016/j.enbuild.2023.113429_b0110
  article-title: Short-term forecasting of heat demand of buildings for efficient and optimal energy management based on integrated machine learning models
  publication-title: IEEE T Ind. Inform.
  doi: 10.1109/TII.2020.2970165
– volume: 13
  start-page: 12442
  year: 2021
  ident: 10.1016/j.enbuild.2023.113429_b0140
  article-title: Tuning deep neural networks for predicting energy consumption in arid climate based on buildings characteristics
  publication-title: Sustainability (Basel, Switzerland)
– volume: 52
  year: 2022
  ident: 10.1016/j.enbuild.2023.113429_b0175
  article-title: A training pattern recognition algorithm based on weight clustering for improving cooling load prediction accuracy of HVAC system
  publication-title: J. Build. Eng.
SSID ssj0006571
Score 2.4885764
Snippet •The optimal input for cooling load prediction of case subway station is determined.•An adaptive corrected parameters algorithm applied to black-box model is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113429
SubjectTerms Adaptive corrected parameters
Black-box model
Cooling load prediction
Input combination
Prediction accuracy
Title Adaptive corrected parameters algorithm applied in cooling load prediction based on black-box model: A case study for subway station
URI https://dx.doi.org/10.1016/j.enbuild.2023.113429
Volume 297
WOSCitedRecordID wos001059745600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006571
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65SQ_toepTSV-aQ28RLgGzC71ZVaq2iqJKSSVuaJeFmsgByzaJc8mpP7wzuwukStSX1AtCY-9i833szgzzYOwN9xMdc554kYp8amEWenGgI6_Iy_1CcVFo5ZtmE-LoKE7T5MtodNXlwpzPRV3Hm02y-K9QowzBptTZv4C7nxQFeI6g4xFhx-MfAT_VcmHigXJqvJGTRkn1vc8o7mW1J-ffmmW1np3tSad_mkD0xmSlzxtpqgboyjYQpy1O0-sERW4-TzUb2znHprPn-KktT2tiFVetupCX5Jvose48_ja_kFz0ynXhXg10MptAi2uSdJsouWFtZYPD9mLIVDs0cQfHs3bWDF-0wrSSzax1PHcujMAEw9kkTutXu5FbY_O50L4Vwjb969bqwAbz3lj3rQvidEz1IvB_jOkq1K5m4twpP5fUPqa5aWq0v-i9cnqHbQciSnBh355-Okg_93s5j4zJ3v-WIQfs7a0Xu127uaaxnDxkD5ypAVNLkUdsVNSP2f1rBSifsO8dWaAnCwxkgZ4s4MgCVQ2OLEBkgYEsYMgCdNKRBQxZ3sEUiCpgqAJIFbBUAUeVp-zrh4OT9x8915fDy0M_WXuKrAB8tnmJ6juKAjQxUKRjjfqrCvKCR1rKJNABx3tScF-oZL8UfinRVvA1D5-xrbqpix0GZSgDKbRQXKqJ9H1VhqUUeaR5IaKJFLts0t3PLHdF66l3yjzrohNPMwdDRjBkFoZdNu6HLWzVlt8NiDuwMqd6WpUyQ4b9eujzfx_6gt0bHoeXbGu9bItX7G5-vq5Wy9eOiz8AYjSwIg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+corrected+parameters+algorithm+applied+in+cooling+load+prediction+based+on+black-box+model%3A+A+case+study+for+subway+station&rft.jtitle=Energy+and+buildings&rft.au=Hu%2C+Yuanyang&rft.au=Qin%2C+Luwen&rft.au=Li%2C+Shuhong&rft.au=Li%2C+Xiaohuan&rft.date=2023-10-15&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=297&rft_id=info:doi/10.1016%2Fj.enbuild.2023.113429&rft.externalDocID=S037877882300659X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon