Rounding error and perturbation bounds for the symplectic QR factorization

To compute the eigenvalues of a skew-symmetric matrix A, we can use a one-sided Jacobi-like algorithm to enhance accuracy. This algorithm begins by a suitable Cholesky-like factorization of A, A=G T JG . In some applications, A is given implicitly in that form and its natural Cholesky-like factor G...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 358; číslo 1; s. 255 - 279
Hlavní autoři: Singer, Sanja, Singer, Saša
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 2003
Témata:
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To compute the eigenvalues of a skew-symmetric matrix A, we can use a one-sided Jacobi-like algorithm to enhance accuracy. This algorithm begins by a suitable Cholesky-like factorization of A, A=G T JG . In some applications, A is given implicitly in that form and its natural Cholesky-like factor G is immediately available, but “tall”, i.e., not of full row rank. This factor G is unsuitable for the Jacobi-like process. To avoid explicit computation of A, and possible loss of accuracy, the factor has to be preprocessed by a QR-like factorization. In this paper we present the symplectic QR algorithm to achieve such a factorization, together with the corresponding rounding error and perturbation bounds. These bounds fit well into the relative perturbation theory for skew-symmetric matrices given in factorized form.
AbstractList To compute the eigenvalues of a skew-symmetric matrix A, we can use a one-sided Jacobi-like algorithm to enhance accuracy. This algorithm begins by a suitable Cholesky-like factorization of A, A=G T JG . In some applications, A is given implicitly in that form and its natural Cholesky-like factor G is immediately available, but “tall”, i.e., not of full row rank. This factor G is unsuitable for the Jacobi-like process. To avoid explicit computation of A, and possible loss of accuracy, the factor has to be preprocessed by a QR-like factorization. In this paper we present the symplectic QR algorithm to achieve such a factorization, together with the corresponding rounding error and perturbation bounds. These bounds fit well into the relative perturbation theory for skew-symmetric matrices given in factorized form.
Author Singer, Sanja
Singer, Saša
Author_xml – sequence: 1
  givenname: Sanja
  surname: Singer
  fullname: Singer, Sanja
  email: ssinger@math.hr, singer@math.hr
  organization: Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
– sequence: 2
  givenname: Saša
  surname: Singer
  fullname: Singer, Saša
  organization: Department of Mathematics, University of Zagreb, P.O. Box 335, 10002 Zagreb, Croatia
BookMark eNqFkEtLAzEUhYNUsK3-BCFLXYzemXSSDC5ESn1REKtCdyGTh0baSUlSof56p1Nx4aary-Wec7jnG6Be4xuD0GkOFznk9PIFoBhlhFXlGRTn7UJJNj9A_ZwzkuW8pD3U_5McoUGMnwAwYlD00ePMrxvtmndsQvABy0bjlQlpHWqZnG9wvb1HbNtb-jA4bparhVHJKfw8w1aq5IP77qTH6NDKRTQnv3OI3m4nr-P7bPp09zC-mWaKQJUyqTVUI8a4NKAsIZorwnNaMA5VbammlvK61MYSZqRisgKlyqLWrCZAZKHJEJW7XBV8jMFYsQpuKcNG5CC2QEQHRGzbCihEB0TMW9_VP59yqfs8BekWe93XO7dpq305E0RUzjTKaBdaHkJ7tyfhB_Dtfl8
CitedBy_id crossref_primary_10_1016_j_jfranklin_2015_03_038
crossref_primary_10_1016_j_laa_2020_11_011
crossref_primary_10_1016_j_laa_2008_04_008
crossref_primary_10_1007_s11766_021_4086_x
crossref_primary_10_1080_03081087_2013_845775
Cites_doi 10.1007/978-94-015-8196-7_52
10.1016/0024-3795(86)90265-X
10.1016/S0024-3795(99)00156-1
ContentType Journal Article
Copyright 2002 Elsevier Science Inc.
Copyright_xml – notice: 2002 Elsevier Science Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0024-3795(02)00263-X
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 279
ExternalDocumentID 10_1016_S0024_3795_02_00263_X
S002437950200263X
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c309t-add094778ae0cf33d8c381627809bf6d6f68b5def37eac7a90cc52bd7b303a2d3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000179330800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Sat Nov 29 06:00:06 EST 2025
Tue Nov 18 22:22:14 EST 2025
Fri Feb 23 02:30:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Skew-symmetric eigenproblem
Symplectic QR factorization
Rounding error bounds
Perturbation bounds
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-add094778ae0cf33d8c381627809bf6d6f68b5def37eac7a90cc52bd7b303a2d3
OpenAccessLink https://dx.doi.org/10.1016/S0024-3795(02)00263-X
PageCount 25
ParticipantIDs crossref_primary_10_1016_S0024_3795_02_00263_X
crossref_citationtrail_10_1016_S0024_3795_02_00263_X
elsevier_sciencedirect_doi_10_1016_S0024_3795_02_00263_X
PublicationCentury 2000
PublicationDate 2003
2003-01-00
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 2003
PublicationDecade 2000
PublicationTitle Linear algebra and its applications
PublicationYear 2003
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References S. Singer, Indefinite QR factorization and its applications, Ph.D. thesis, Department of Mathematics, University of Zagreb, 1997 (in Croatian)
Singer, Singer (BIB8) 2000; 309
E. Pietzsch, Genaue Eigenwertberechnung Nichtsingulärer Schiefsymmetrischer Matrizen, Ph.D. thesis, FernUniversität–Gesamthochschule, Hagen, 1993
Stewart, Sun (BIB10) 1990
Bunch (BIB2) 1982; 38
Higham (BIB5) 1996
I. Slapničar, Accurate symmetric eigenreduction by a Jacobi method, Ph.D. thesis, FernUniversität–Gesamthochschule, Hagen, 1992
Z. Drmač, Computing the singular and the generalized singular values, Ph.D. thesis, FernUniversität–Gesamthochschule, Hagen, 1994
Benner, Byers, Fassbender, Mehrmann, Watkins (BIB1) 2000; 11
Bunse-Gerstner (BIB3) 1986; 83
10.1016/S0024-3795(02)00263-X_BIB9
Higham (10.1016/S0024-3795(02)00263-X_BIB5) 1996
10.1016/S0024-3795(02)00263-X_BIB7
Singer (10.1016/S0024-3795(02)00263-X_BIB8) 2000; 309
Benner (10.1016/S0024-3795(02)00263-X_BIB1) 2000; 11
Bunch (10.1016/S0024-3795(02)00263-X_BIB2) 1982; 38
Bunse-Gerstner (10.1016/S0024-3795(02)00263-X_BIB3) 1986; 83
10.1016/S0024-3795(02)00263-X_BIB6
Stewart (10.1016/S0024-3795(02)00263-X_BIB10) 1990
10.1016/S0024-3795(02)00263-X_BIB4
References_xml – volume: 11
  start-page: 85
  year: 2000
  end-page: 93
  ident: BIB1
  article-title: Cholesky-like factorizations of skew-symmetric matrices
  publication-title: Electron. Trans. Numer. Anal.
– volume: 38
  start-page: 475
  year: 1982
  end-page: 479
  ident: BIB2
  article-title: A note on the stable decomposition of skew-symmetric matrices
  publication-title: Math. Comp.
– volume: 83
  start-page: 49
  year: 1986
  end-page: 77
  ident: BIB3
  article-title: Matrix factorizations for symplectic QR-like methods
  publication-title: Linear Algebra Appl.
– reference: Z. Drmač, Computing the singular and the generalized singular values, Ph.D. thesis, FernUniversität–Gesamthochschule, Hagen, 1994
– reference: S. Singer, Indefinite QR factorization and its applications, Ph.D. thesis, Department of Mathematics, University of Zagreb, 1997 (in Croatian)
– reference: I. Slapničar, Accurate symmetric eigenreduction by a Jacobi method, Ph.D. thesis, FernUniversität–Gesamthochschule, Hagen, 1992
– year: 1996
  ident: BIB5
  publication-title: Accuracy and Stability of Numerical Algorithms
– year: 1990
  ident: BIB10
  article-title: Matrix Perturbation Theory
– reference: E. Pietzsch, Genaue Eigenwertberechnung Nichtsingulärer Schiefsymmetrischer Matrizen, Ph.D. thesis, FernUniversität–Gesamthochschule, Hagen, 1993
– volume: 309
  start-page: 103
  year: 2000
  end-page: 119
  ident: BIB8
  article-title: Rounding-error and perturbation bounds for the indefinite QR factorization
  publication-title: Linear Algebra Appl.
– volume: 11
  start-page: 85
  year: 2000
  ident: 10.1016/S0024-3795(02)00263-X_BIB1
  article-title: Cholesky-like factorizations of skew-symmetric matrices
  publication-title: Electron. Trans. Numer. Anal.
– ident: 10.1016/S0024-3795(02)00263-X_BIB9
  doi: 10.1007/978-94-015-8196-7_52
– ident: 10.1016/S0024-3795(02)00263-X_BIB4
– volume: 83
  start-page: 49
  year: 1986
  ident: 10.1016/S0024-3795(02)00263-X_BIB3
  article-title: Matrix factorizations for symplectic QR-like methods
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(86)90265-X
– volume: 309
  start-page: 103
  year: 2000
  ident: 10.1016/S0024-3795(02)00263-X_BIB8
  article-title: Rounding-error and perturbation bounds for the indefinite QR factorization
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(99)00156-1
– year: 1990
  ident: 10.1016/S0024-3795(02)00263-X_BIB10
– ident: 10.1016/S0024-3795(02)00263-X_BIB7
– year: 1996
  ident: 10.1016/S0024-3795(02)00263-X_BIB5
– ident: 10.1016/S0024-3795(02)00263-X_BIB6
– volume: 38
  start-page: 475
  year: 1982
  ident: 10.1016/S0024-3795(02)00263-X_BIB2
  article-title: A note on the stable decomposition of skew-symmetric matrices
  publication-title: Math. Comp.
SSID ssj0004702
Score 1.67513
Snippet To compute the eigenvalues of a skew-symmetric matrix A, we can use a one-sided Jacobi-like algorithm to enhance accuracy. This algorithm begins by a suitable...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 255
SubjectTerms Perturbation bounds
Rounding error bounds
Skew-symmetric eigenproblem
Symplectic QR factorization
Title Rounding error and perturbation bounds for the symplectic QR factorization
URI https://dx.doi.org/10.1016/S0024-3795(02)00263-X
Volume 358
WOSCitedRecordID wos000179330800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOFU9RCsgHKoFQimsna_u4qoqggopuC8otsh1HKkJhlSyo_fedib1JVq14SVyijTeOpZkvnofnQcgL5m2aGqsT6cFWBXmcJtr5Pbg1DOvLlaILkP3yQR4dqTzXn6JDv-3aCci6VufnevFfWQ1jwGxMnf0LdvcvhQH4DUyHK7Adrn_E-Dk2SkIHgG-aGCG58A1IFht4bfH_tg8vbC-wPjBmSr0-nsf2OzE3c6y4gs2KJX-wKwjY1_2Rw_j8u3fWdJ7C4G6uv5rrhnf2s53ZnllzOYjBA7bKglkL0kQ5DxtVaJa568NGqqRIQBeYjndakakrkIr7ZpaNRDAP_WWu7O7B0XDSrwc6ONaP1WhIiiQfRFofaHgSKy5mjHcP5TfJBpeZZhOyMXt_kB8OObSSxcry4d1DttebYcGXjL-Ki12vx4x0k9O7ZDMaFXQWwHCP3PD1fXLnY1-Rt31ADlewoB0sKDCQjmFBAywowILCNDrAgh7P6RosHpLPbw9O998lsY9G4gTTywREGBjxUirjmauEKJXD42IuFdO2mpbTaqpsVvpKwBfqpNHMuYzbUlrQbwwvxSMyqb_X_jGhwEGpJbegFZvUwJ3DeoOusroqUfHZIumKKoWLReax18m3YogmBGIWSMyC8aIjZpFvkd1-2iJUWfndBLUieRFVxaACFoCVX0998u9Tt8ntLpaz88A9JZNl88M_I7fcz-VZ2zyPiLoEJECJSw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rounding+error+and+perturbation+bounds+for+the+symplectic+QR+factorization&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Singer%2C+Sanja&rft.au=Singer%2C+Sa%C5%A1a&rft.date=2003&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=358&rft.issue=1&rft.spage=255&rft.epage=279&rft_id=info:doi/10.1016%2FS0024-3795%2802%2900263-X&rft.externalDocID=S002437950200263X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon