Recent advances in shape memory superhydrophobic surfaces: Concepts, mechanism, classification, applications and challenges
Smart control of surface wettability has attracted widespread attention, especially for superhydrophobic surfaces. Based on the shape memory effect (SME) of the shape memory polymers (SMPs), shape memory superhydrophobic surfaces can intelligently control the surface topographies and wettability and...
Uloženo v:
| Vydáno v: | Polymer (Guilford) Ročník 256; s. 125193 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
21.09.2022
|
| Témata: | |
| ISSN: | 0032-3861, 1873-2291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Smart control of surface wettability has attracted widespread attention, especially for superhydrophobic surfaces. Based on the shape memory effect (SME) of the shape memory polymers (SMPs), shape memory superhydrophobic surfaces can intelligently control the surface topographies and wettability and have motivated great interest for extensive application prospects. Here, recent achievements and corresponding applications of shape memory superhydrophobic surfaces were reviewed. The research background, concepts and significance were firstly introduced. Following, the fundamental wetting theory and models, evaluation of SME and mechanism was revealed. Then recent advances including of magnetic, photo, electrical, thermo and chemical-induced shape memory superhydrophobic surfaces were reviewed with an advanced perspective. Subsequently, the major representative applications including wettability control, droplet manipulation, self-healing and other smart applications were summarized. Finally, the problems and perspectives on future research directions were proposed. It is wished that this review can inspire the development of shape memory superhydrophobic surfaces for its following realistic applications.
Based on the shape memory effect (SME) of the shape memory polymers (SMPs), shape memory superhydrophobic surfaces can intelligently control the surface topographies and wettability and have motivated great interest for extensive application prospects. The recent advances including of magnetic, photo, electrical, thermo and chemical-induced shape memory superhydrophobic surfaces were reviewed with an advanced perspective. The major representative applications including wettability control, droplet manipulation, self-healing and other smart applications were summarized. [Display omitted] |
|---|---|
| AbstractList | Smart control of surface wettability has attracted widespread attention, especially for superhydrophobic surfaces. Based on the shape memory effect (SME) of the shape memory polymers (SMPs), shape memory superhydrophobic surfaces can intelligently control the surface topographies and wettability and have motivated great interest for extensive application prospects. Here, recent achievements and corresponding applications of shape memory superhydrophobic surfaces were reviewed. The research background, concepts and significance were firstly introduced. Following, the fundamental wetting theory and models, evaluation of SME and mechanism was revealed. Then recent advances including of magnetic, photo, electrical, thermo and chemical-induced shape memory superhydrophobic surfaces were reviewed with an advanced perspective. Subsequently, the major representative applications including wettability control, droplet manipulation, self-healing and other smart applications were summarized. Finally, the problems and perspectives on future research directions were proposed. It is wished that this review can inspire the development of shape memory superhydrophobic surfaces for its following realistic applications.
Based on the shape memory effect (SME) of the shape memory polymers (SMPs), shape memory superhydrophobic surfaces can intelligently control the surface topographies and wettability and have motivated great interest for extensive application prospects. The recent advances including of magnetic, photo, electrical, thermo and chemical-induced shape memory superhydrophobic surfaces were reviewed with an advanced perspective. The major representative applications including wettability control, droplet manipulation, self-healing and other smart applications were summarized. [Display omitted] |
| ArticleNumber | 125193 |
| Author | Amirfazli, Alidad Yu, Sirong Li, Wen Zhan, Yanlong |
| Author_xml | – sequence: 1 givenname: Yanlong orcidid: 0000-0003-1356-422X surname: Zhan fullname: Zhan, Yanlong organization: School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China – sequence: 2 givenname: Wen surname: Li fullname: Li, Wen organization: School of Materials and Engineering, Jiangsu University of Technology, Changzhou, 213001, China – sequence: 3 givenname: Alidad surname: Amirfazli fullname: Amirfazli, Alidad organization: School of Materials and Engineering, Jiangsu University of Technology, Changzhou, 213001, China – sequence: 4 givenname: Sirong surname: Yu fullname: Yu, Sirong email: b19140003@s.upc.edu.cn organization: School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China |
| BookMark | eNqFkM9KAzEQh4MoWKuPIOQBujXJbraNHkSK_0AQRM_LbDKxKbvJkqxC8eWNticvnoaZ-X0D852QQx88EnLO2ZwzXl9s5kPotj3GuWBCzLmQXJUHZMKXi7IQQvFDMmGsFEW5rPkxOUlpwxgTUlQT8vWCGv1IwXyC15io8zStYUDaYx_ilqaPAeN6a2IY1qF1Og-ihZy8pKuQiWFMs5zVa_Au9TOqO0jJWadhdMHPKAxDt28SBW9oTnYd-ndMp-TIQpfwbF-n5O3u9nX1UDw93z-ubp4KXTI1FgDc1pWtUNW1rnGhWAkKhJGtakFiJZcIktVWsdxpo6RZGGjNwurKMqnackrk7q6OIaWIthmi6yFuG86aH4PNptkbbH4MNjuDmbv6w2k3_n4yRnDdv_T1jsb82qfL26QdZmPGRdRjY4L758I3aeOXFg |
| CitedBy_id | crossref_primary_10_1016_j_colsurfa_2022_130675 crossref_primary_10_1016_j_apsusc_2023_157546 crossref_primary_10_1002_app_56665 crossref_primary_10_3390_s25051377 crossref_primary_10_1007_s40430_024_04844_8 crossref_primary_10_3390_ijms24119675 crossref_primary_10_3390_biomimetics8020196 crossref_primary_10_1016_j_ces_2023_118941 crossref_primary_10_1016_j_jcis_2024_06_121 crossref_primary_10_1039_D4RA02742F crossref_primary_10_3390_polym16060862 crossref_primary_10_1016_j_surfin_2025_106794 crossref_primary_10_1002_adem_202401415 crossref_primary_10_1016_j_apmt_2025_102754 crossref_primary_10_1016_j_surfin_2024_104060 crossref_primary_10_1108_ACMM_08_2023_2888 crossref_primary_10_1063_5_0188227 crossref_primary_10_3390_coatings15090985 |
| Cites_doi | 10.1039/C9TA03264A 10.1016/j.colsurfa.2019.124028 10.1021/acs.langmuir.1c02355 10.1088/0964-1726/19/7/075021 10.1088/0964-1726/18/2/024002 10.1039/C5PY00172B 10.1039/D1PY00984B 10.1080/15583724.2012.756519 10.1007/s42235-019-0001-z 10.1016/j.cej.2021.129862 10.1002/ange.201800416 10.1039/C7TB03069J 10.1039/C7LC00918F 10.1021/acsami.1c08319 10.1016/j.colsurfa.2017.09.018 10.1021/acsnano.7b04494 10.1002/pat.3338 10.1021/jp0473568 10.1002/adma.202001718 10.1073/pnas.0600079103 10.1007/s004250050096 10.1007/s10971-021-05483-4 10.1016/j.cej.2019.04.108 10.1016/j.colsurfa.2021.128220 10.1002/marc.200400492 10.1002/app.50118 10.1126/sciadv.aao3865 10.1063/5.0040990 10.1002/macp.201900356 10.1002/chem.201804192 10.1016/j.cocis.2006.06.002 10.1002/adma.200501961 10.1016/j.polymer.2013.02.023 10.1038/natrevmats.2017.36 10.1038/s41427-021-00315-x 10.1021/acsami.0c13627 10.1063/1.2829388 10.1038/s41578-018-0078-8 10.1080/00222348.2018.1558593 10.1038/nature03496 10.1088/0960-1317/24/11/115006 10.1002/adfm.201705002 10.1016/j.polymertesting.2016.11.011 10.1039/C0LC00296H 10.1002/anie.201310385 10.1039/C5TA02490K 10.1088/0964-1726/18/8/085003 10.3390/ma6083610 10.1002/adma.201807507 10.1016/j.nanoen.2019.04.089 10.1039/C6LC01354F 10.1016/j.apsusc.2019.144137 10.1002/marc.201500533 10.1016/j.cej.2021.128694 10.1016/j.apsusc.2020.146525 10.1039/C1SM06564E 10.1016/j.carbpol.2014.01.031 10.1039/C9NR00154A 10.1016/j.colsurfa.2021.127441 10.1007/s00396-021-04870-1 10.1021/acs.langmuir.5b02622 10.1016/j.colsurfa.2019.124331 10.1007/s004250100530 10.1039/tf9444000546 10.1021/acsami.9b22693 10.1016/j.porgcoat.2020.105557 10.1021/ie50320a024 10.1021/acsami.1c04049 10.1063/1.3026724 10.1016/j.cej.2019.122989 10.1002/smll.201600092 10.1103/PhysRevApplied.13.034056 10.1021/am404087q 10.1016/j.ccr.2016.03.007 10.1016/j.apsusc.2021.151269 10.1016/j.progpolymsci.2012.06.001 10.1039/C5RA01469G 10.1002/adma.201304030 10.1016/j.jcis.2021.03.005 10.1021/acsami.9b20223 10.1016/j.matdes.2018.02.005 10.1021/nl2044875 10.1002/adfm.201201541 10.1146/annurev-matsci-082908-145419 10.1007/s40843-020-1554-y 10.1016/j.pmatsci.2011.03.001 10.1039/b504479k 10.1039/c0lc00527d 10.1039/c3ta15204a 10.1016/j.cej.2020.124996 10.3390/polym7091477 10.1016/j.porgcoat.2020.106117 10.1016/j.jnoncrysol.2015.04.011 10.1126/sciadv.1700004 10.1007/s42114-019-00127-2 10.1002/admi.202100228 10.1002/adma.202000713 10.1021/acsami.9b00278 10.1016/j.jcis.2021.08.026 10.1016/j.polymer.2020.122898 10.1016/j.polymer.2011.08.003 10.1021/acsami.9b19380 10.1016/j.cej.2020.128072 10.1002/adem.201901226 10.1002/ange.201602847 10.1039/C4TA04881D 10.1021/acsami.1c14342 10.1039/C4RA10716K 10.1016/j.cej.2021.131718 10.1002/admi.202002111 10.1039/b922220k 10.1063/1.2790497 10.1063/1.1880448 10.1039/C5SM03059E 10.1016/j.compscitech.2018.03.018 10.1002/anie.200602126 10.1002/polb.24097 10.1016/j.compstruct.2018.03.060 10.1021/cm061417s 10.1007/s40843-020-1611-9 10.1016/j.msea.2006.08.083 10.1021/acsami.6b14868 10.1155/2020/7639724 10.1126/science.1066102 10.1063/5.0072950 10.1038/nmat1059 10.1002/admi.202102010 10.1016/j.cej.2020.125930 10.1098/rstl.1805.0005 10.1016/j.matlet.2021.130270 10.1021/acsnano.6b04257 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.polymer.2022.125193 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-2291 |
| ExternalDocumentID | 10_1016_j_polymer_2022_125193 S0032386122006814 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SCB SEW T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c309t-aa1f64f4e966c6e7903a9a2d5b9ba5e458ea506f90a5ecd95d7dabd7fc4f059b3 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888510000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-3861 |
| IngestDate | Tue Nov 18 21:58:04 EST 2025 Sat Nov 29 07:29:56 EST 2025 Sat Apr 06 16:23:53 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Superhydrophobic Wettability Applications Shape memory effect Shape memory polymer |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-aa1f64f4e966c6e7903a9a2d5b9ba5e458ea506f90a5ecd95d7dabd7fc4f059b3 |
| ORCID | 0000-0003-1356-422X |
| ParticipantIDs | crossref_primary_10_1016_j_polymer_2022_125193 crossref_citationtrail_10_1016_j_polymer_2022_125193 elsevier_sciencedirect_doi_10_1016_j_polymer_2022_125193 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-21 |
| PublicationDateYYYYMMDD | 2022-09-21 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Polymer (Guilford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Sun, Zou, Gao, Liu, Shang, Gu, Zhao (bib97) 2017; 3 Xie (bib36) 2011; 52 Wang, Lai, Cheng, Zhang, Liu, Jiang (bib131) 2019; 11 Zhao, Zhao, Liu, Guo, Zhang, Chen, Zhang, Zhang (bib121) 2016; 12 Ma, Hill (bib3) 2006; 11 Zhang, Cheng, Liu (bib60) 2019; 25 Lan, Liu, Lv, Wang, Leng, Du (bib32) 2009; 18 Liu, Chen, Ge, Ni, Gao (bib39) 2018; 143 Á (bib52) 2016; 432 Xu, Grabowski, Yu, Kerezyte, Lee, Pfeifer (bib10) 2020; 13 Lv, Cheng, Zhang, Zhang, Zhao, Liu, Jiang (bib133) 2016; 10 Pan, Chen, Wu (bib141) 2020; 12 Yao, Dunn, Kim, Duffy, Alvarenga, Aizenberg (bib48) 2014; 53 Ma, Wang, He, Yao, Zhu, Peng, Yang, Liu, Qu (bib148) 2021; 13 Gao, Li, Zhang, Liu, Leng (bib30) 2019; 6 Fan, Ji, Lan, Zhang, Li, Zhang, Yang (bib21) 2022; 637 Guo, Xue, Sathasivam, Page, He, Guo, Promdet, Heale, Carmalt, Parkin (bib71) 2019; 7 Liu, Shan, Pu, Zhao, Huang (bib137) 2020; 221 Dong, Qian, Li, Tang, Xiang, Chun, Lu, Han, Xia, Hu (bib17) 2021; 98 Lu, Liu, Leng, Du (bib107) 2009; 18 Li, Gao, Fan, Liu, Liu, Jiang, Zhao (bib109) 2019; 12 Cassie, Baxter (bib57) 1944; 40 Shao, Zhao, Fan, Wan, Lu, Zhang, Ming, Ren (bib119) 2020; 382 Jiao, Li, Ji, Wang, Tao, Zhang, Liu (bib130) 2021; 118 Testa, Style, Cui, Donnelly, Borisova, Derlet, Dufresne, Heyderman (bib40) 2019; 31 Zhang, Wei, Li, Zhao, Zhang (bib143) 2021; 594 Lai, Li, Kao, Liu (bib65) 2019; 58 Zhang, Park, Liu, Tsuan, Yang, Wang (bib125) 2011; 11 Uchida, Izumi, Sukata, Kojima, Nakamura, Irie (bib26) 2006; 45 Wenzel (bib56) 1936; 28 Yang, Jin, Tao, Xu, Lin (bib87) 2021; 12 Zhan, Yu, Amirfazli, Siddiqui, Li (bib22) 2021; 629 Wang, Zhe (bib126) 2011; 11 Rosario, Gust, Garcia, Hayes, Taraci, Clement, Dailey, Picraux (bib25) 2004; 108 Yan, Fang, Noechel, Kratz, Lendlein (bib59) 2016; 54 Young (bib55) 1805 Xi, Liu, Ma, Yuan, Xin, Lu, Ma (bib49) 2019; 583 Wang, Lu, Liu, Leng (bib108) 2014; 2 Wang, Salazar, Vahabi, Joshi-Imre, Voit, Kota (bib72) 2017; 29 Wang, Lai, Cheng, Zhang, Zhang, Lv, Liu, Jiang (bib116) 2019; 11 Yao, Luo, Lu, Wang (bib84) 2018; 192 Sauter, Heuchel, Kratz, Lendlein (bib35) 2013; 53 Sun, Liu, Ming, Zhao, Song (bib16) 2022; 571 Zhang, Xia, Lai, Cheng, Liu, Zhang, Liu, Jiang (bib73) 2021; 64 Wang, Liu, Leng (bib114) 2016; 320 Zhang, Zhao, Wei, Li, Zhang (bib142) 2021; 37 Xue, Zhang, Li, Hu, Chen, Song, You, Li, Li, Wu (bib115) 2021; 13 Cao, Wang, Zhou, Hu, Fang, Ni, Lu, Xu (bib34) 2020; 2020 Mather, Luo, Rousseau (bib63) 2009; 39 Zhang, Lai, Cheng, Zhang, Liu, Li, Liu (bib77) 2020; 525 Zhang, Liu, Lai, Cheng, Fan, Yu, Wang, Xie, Tan (bib100) 2021; 417 Lv, Cheng, Zhang, Kang, Liu, Jiang (bib140) 2017; 1503402 Liu, Kappl, Butt (bib139) 2021 Liu, Wang, Jiang (bib1) 2017; 2 Shao, Du, Fan, Zhao, Zhang, Ren (bib89) 2022; 427 Park, Kim (bib128) 2017; 17 Sarwate, Chakraborty, Garg, Luo (bib51) 2014; 24 Du, Liu, Zhang, Zhao, Leng, Liu (bib67) 2017; 57 Lee, Lim, Lee, Kwak, Cho (bib122) 2013; 23 Jiang, Hu, Wu, Zhang, Zhang, Wang, Zhang, Zhu, Li, Wu (bib104) 2019; 31 Jiang, Wang, He, Wang, An, Song, Jiang (bib24) 2005 Li, Liu, Chen, Wei, Qian, Liu, Leng (bib28) 2021; 2105958 Lendlein, Jiang, Jünger, Langer (bib38) 2005; 434 Wu, Wang, Keller, Zheng (bib83) 2016; 37 Cho, Kim, Jung, Goo (bib98) 2005; 26 Kang, Lai, Cheng, Liu, Jiang (bib86) 2020; 394 Mu, Liu, Lan, Liu, Leng (bib58) 2018; 160 Liu, Li, Zeng, Zhang, Kang, Duan, Guo, Liu (bib92) 2015; 3 Neinhuis, Koch, Barthlott (bib136) 2001; 213 Lendlein, Gould (bib42) 2019; 4 Jin, Song, Jiang, Song, Zhao, Xie (bib33) 2018; 4 Su, Li, Lai, Chen, Zeng (bib45) 2019; 29 Zhan, Yu, Siddiqui, Amirfazli, Li (bib19) 2021 Wang, Liu, Ji, Tao, Zhang, Xu, Jiao, Liu, Drag Reduction, Enhancement (bib14) 2021; 13 Zheng, Fang, Cao, Zhao, Xie (bib69) 2015; 6 Leverant, Zhang, Cordoba, Leo, Charpota, Taylor, Jiang (bib147) 2021; 8 Koerner, Price, Pearce, Alexander, Vaia (bib90) 2004; 3 García-Huete, Cuevas, Laza, Vilas, León (bib37) 2015; 7 Xiong, Luo, Gao, Zhou, Cui, Thangavel, Parida, Lee (bib146) 2019; 61 Lendlein, Langer (bib31) 2002; 296 Wang, Cheng, Liu, Kang, Liu (bib41) 2018; 6 Zhu, Huang, Zhang, Jin, Lou, Xia (bib5) 2021; 13 Bai, Yang, Fang, Yong, Bai, Zhang, Hou, Chen (bib124) 2020; 400 Zhang, Cheng, Kang, Yu, Liu, Jiang (bib75) 2018; 130 Lu, Liu, Gou, Leng, Du (bib96) 2010; 19 Alorabi, Tarn, Gómez-Pastora, Bringas, Ortiz, Paunov, Pamme (bib127) 2017; 17 Uemura, Matsuo, Okamatsu, Arita, Shimomura, Hirai (bib46) 2020; 22 Xia, He, Zhang, Liu, Leng (bib62) 2021; 33 Huo, Bai, Yong, Fang, Yang, Hou, Chen (bib54) 2021; 414 Guo, Long, Gao, Luo, Wang, Huang, Wang, Xue, Gao (bib9) 2021 Zheng, Fang, Zou, Zhao, Xie (bib70) 2016; 128 Liu, Du, Han, Wang, Liu, Wang (bib144) 2021; 8 Kolesov, Dolynchuk, Borreck, Radusch (bib66) 2014; 25 Song, Gao, Zhao, Lu, Huang, Liu, Carmalt, Deng, Parkin (bib129) 2017; 11 Liu, Li, Chen, Yang, Zheng, Zhou (bib111) 2014; 104 Fang, Kuang, Zhou, Ming, Zhu, Liu, Ning, Chen (bib112) 2017; 9 Tian, Guo (bib50) 2019; 16 Zhang, Zhao (bib81) 2013; 5 Zheng, Li, Lee, Yang (bib85) 2015; 5 Mohr, Kratz, Weigel, Lucka-Gabor, Moneke, Lendlein (bib101) 2006; 103 Huang, Yang, An, Li, Chan (bib106) 2005; 86 Bai, Yang, Fang, Zhang, Yong, Hou, Chen (bib76) 2020; 123143 Zhan, Yu, Amirfazli, Siddiqui, Li (bib11) 2022 Kuang, Ba, Li, Wang, Qiu (bib7) 2020; 501 Zhao, Zhao, Jiang, Liu, Shi, Liu, Yang, Chen (bib68) 2017; 29 Wang, Zhang, Zheng, Zhao, Liang, Li, Ren (bib134) 2021; 127944 Cheng, Zhang, Luo, Lai, Liu, Jiang (bib61) 2021; 33 Leng, Lan, Liu, Du (bib64) 2011; 56 Leng, Lan, Liu, Du, Huang, Liu, Phee, Yuan (bib94) 2008; 92 Han, Liu, Wang, Leng, Jin (bib44) 2016; 12 Bayram, Mercan, Karaman (bib18) 2021; 299 Wang, Liu, Tan, Zhang, Zhang, Li (bib113) 2019; 371 Zhao, Li, Wang (bib47) 2021 Chen, Zhang, Lin, Shi (bib78) 2020; 206 Leng, Lv, Liu, Du (bib93) 2008; 104 Wang, Wu, Zhang, Li, Wang, Duan (bib15) 2020; 587 Li, Jiao, Lv, Wu, Chen, Zhang, Li, Hu, Wu, Chu (bib99) 2020; 12 Du, Zhang (bib110) 2010; 6 Zheng, Huang, Wang (bib117) 2021; 301 Vanithakumari, Athulya, George, Philip (bib20) 2021; 138 Zhan, Ruan, Li, Li, Hu, Ma, Yu, Feng (bib6) 2017; 535 Chen, Chiang, Yang (bib43) 2015; 31 Meng, Li (bib91) 2013; 54 Hu, Zhu, Huang, Lu (bib29) 2012; 37 Zhan, Yu, Amirfazli, Rahim Siddiqui, Li (bib13) 2021; 2101053 Wu, Wang, Chen, Peng, Li, Zhang, Wang, Li, Li, Zhang (bib88) 2021; 119 Selim, Fatthallah, Higazy, Hao, Mo (bib12) 2022; 606 Zhang, Lai, Cheng, Zhang, Wang, Liu, Yu, Xie, Liu (bib135) 2021; 420 Barthlott, Neinhuis (bib2) 1997; 202 Chen, Yang (bib74) 2014; 26 Hooda, Goyat, Pandey, Kumar, Gupta (bib4) 2020; 142 Li, Liu, Leng (bib102) 2014; 4 Wang, Hu, Wen, Song, Jiang (bib27) 2006; 18 Li, Jiao, Zhang, Jiang, Lv, Wu, Li, Hu, Ye, Liu (bib105) 2021; 31 Feng, Jiang (bib23) 2006; 18 Razzaq, Anhalt, Frormann, Weidenfeller (bib103) 2007; 444 Liu, Boyles, Genzer, Dickey (bib79) 2012; 8 Wu, Hu, Zhang, Han, Wang, Kumar (bib80) 2015; 3 Liu, Lai, Xia, Zhang, Cheng, Liu, Jiang (bib145) 2021; 64 Wang, Yu, Cheng, Zhi, Liu, Liu (bib120) 2021; 106579 Kohlmeyer, Lor, Chen (bib82) 2012; 12 Li, Zhan, Yu (bib8) 2021; 152 Leng, Lv, Liu, Du (bib95) 2007; 91 Wang, Lai, Cheng, Fan, Zhang, Wang, Yu, Xie, Liu (bib132) 2020; 12 Chakraborty, Xiang, Luo (bib53) 2013; 6 Xiang, Liu (bib138) 2021; 8 Lai, Shang, Cheng, Lv, Zhang, Zhang, Wang, Liu (bib118) 2019; 2 Cheng, Zhang, Lv, Lai, Zhang, Kang, Wang, Liu, Liu, Du (bib123) 2018; 28 Vanithakumari (10.1016/j.polymer.2022.125193_bib20) 2021; 138 Kohlmeyer (10.1016/j.polymer.2022.125193_bib82) 2012; 12 Guo (10.1016/j.polymer.2022.125193_bib9) 2021 Selim (10.1016/j.polymer.2022.125193_bib12) 2022; 606 Li (10.1016/j.polymer.2022.125193_bib105) 2021; 31 Feng (10.1016/j.polymer.2022.125193_bib23) 2006; 18 Zhang (10.1016/j.polymer.2022.125193_bib100) 2021; 417 Jin (10.1016/j.polymer.2022.125193_bib33) 2018; 4 Leng (10.1016/j.polymer.2022.125193_bib64) 2011; 56 Li (10.1016/j.polymer.2022.125193_bib28) 2021; 2105958 Liu (10.1016/j.polymer.2022.125193_bib145) 2021; 64 Su (10.1016/j.polymer.2022.125193_bib45) 2019; 29 Bayram (10.1016/j.polymer.2022.125193_bib18) 2021; 299 Xiong (10.1016/j.polymer.2022.125193_bib146) 2019; 61 Wang (10.1016/j.polymer.2022.125193_bib113) 2019; 371 Lendlein (10.1016/j.polymer.2022.125193_bib31) 2002; 296 Zheng (10.1016/j.polymer.2022.125193_bib117) 2021; 301 Liu (10.1016/j.polymer.2022.125193_bib137) 2020; 221 Alorabi (10.1016/j.polymer.2022.125193_bib127) 2017; 17 Leng (10.1016/j.polymer.2022.125193_bib95) 2007; 91 Lv (10.1016/j.polymer.2022.125193_bib140) 2017; 1503402 Chen (10.1016/j.polymer.2022.125193_bib43) 2015; 31 Zhang (10.1016/j.polymer.2022.125193_bib73) 2021; 64 Shao (10.1016/j.polymer.2022.125193_bib119) 2020; 382 Hu (10.1016/j.polymer.2022.125193_bib29) 2012; 37 Zheng (10.1016/j.polymer.2022.125193_bib70) 2016; 128 Li (10.1016/j.polymer.2022.125193_bib109) 2019; 12 Xue (10.1016/j.polymer.2022.125193_bib115) 2021; 13 Uchida (10.1016/j.polymer.2022.125193_bib26) 2006; 45 Bai (10.1016/j.polymer.2022.125193_bib76) 2020; 123143 Zhang (10.1016/j.polymer.2022.125193_bib60) 2019; 25 Lai (10.1016/j.polymer.2022.125193_bib65) 2019; 58 Wang (10.1016/j.polymer.2022.125193_bib41) 2018; 6 Ma (10.1016/j.polymer.2022.125193_bib148) 2021; 13 Cao (10.1016/j.polymer.2022.125193_bib34) 2020; 2020 Wenzel (10.1016/j.polymer.2022.125193_bib56) 1936; 28 Huo (10.1016/j.polymer.2022.125193_bib54) 2021; 414 Lu (10.1016/j.polymer.2022.125193_bib107) 2009; 18 Rosario (10.1016/j.polymer.2022.125193_bib25) 2004; 108 Lee (10.1016/j.polymer.2022.125193_bib122) 2013; 23 Yang (10.1016/j.polymer.2022.125193_bib87) 2021; 12 Liu (10.1016/j.polymer.2022.125193_bib139) 2021 Barthlott (10.1016/j.polymer.2022.125193_bib2) 1997; 202 Wang (10.1016/j.polymer.2022.125193_bib131) 2019; 11 Zhan (10.1016/j.polymer.2022.125193_bib22) 2021; 629 Huang (10.1016/j.polymer.2022.125193_bib106) 2005; 86 Bai (10.1016/j.polymer.2022.125193_bib124) 2020; 400 Zhang (10.1016/j.polymer.2022.125193_bib143) 2021; 594 Lendlein (10.1016/j.polymer.2022.125193_bib38) 2005; 434 Xie (10.1016/j.polymer.2022.125193_bib36) 2011; 52 Zheng (10.1016/j.polymer.2022.125193_bib69) 2015; 6 Chen (10.1016/j.polymer.2022.125193_bib78) 2020; 206 Wang (10.1016/j.polymer.2022.125193_bib126) 2011; 11 García-Huete (10.1016/j.polymer.2022.125193_bib37) 2015; 7 Yan (10.1016/j.polymer.2022.125193_bib59) 2016; 54 Zhao (10.1016/j.polymer.2022.125193_bib47) 2021 Xiang (10.1016/j.polymer.2022.125193_bib138) 2021; 8 Xia (10.1016/j.polymer.2022.125193_bib62) 2021; 33 Lu (10.1016/j.polymer.2022.125193_bib96) 2010; 19 Zhu (10.1016/j.polymer.2022.125193_bib5) 2021; 13 Zhang (10.1016/j.polymer.2022.125193_bib81) 2013; 5 Wang (10.1016/j.polymer.2022.125193_bib114) 2016; 320 Wang (10.1016/j.polymer.2022.125193_bib120) 2021; 106579 Liu (10.1016/j.polymer.2022.125193_bib92) 2015; 3 Wang (10.1016/j.polymer.2022.125193_bib134) 2021; 127944 Testa (10.1016/j.polymer.2022.125193_bib40) 2019; 31 Chakraborty (10.1016/j.polymer.2022.125193_bib53) 2013; 6 Zhao (10.1016/j.polymer.2022.125193_bib68) 2017; 29 Li (10.1016/j.polymer.2022.125193_bib8) 2021; 152 Han (10.1016/j.polymer.2022.125193_bib44) 2016; 12 Mu (10.1016/j.polymer.2022.125193_bib58) 2018; 160 Cheng (10.1016/j.polymer.2022.125193_bib123) 2018; 28 Yao (10.1016/j.polymer.2022.125193_bib84) 2018; 192 Mather (10.1016/j.polymer.2022.125193_bib63) 2009; 39 Wang (10.1016/j.polymer.2022.125193_bib108) 2014; 2 Tian (10.1016/j.polymer.2022.125193_bib50) 2019; 16 Razzaq (10.1016/j.polymer.2022.125193_bib103) 2007; 444 Meng (10.1016/j.polymer.2022.125193_bib91) 2013; 54 Dong (10.1016/j.polymer.2022.125193_bib17) 2021; 98 Cassie (10.1016/j.polymer.2022.125193_bib57) 1944; 40 Wang (10.1016/j.polymer.2022.125193_bib14) 2021; 13 Wang (10.1016/j.polymer.2022.125193_bib15) 2020; 587 Zhang (10.1016/j.polymer.2022.125193_bib135) 2021; 420 Hooda (10.1016/j.polymer.2022.125193_bib4) 2020; 142 Yao (10.1016/j.polymer.2022.125193_bib48) 2014; 53 Li (10.1016/j.polymer.2022.125193_bib102) 2014; 4 Zhang (10.1016/j.polymer.2022.125193_bib142) 2021; 37 Lan (10.1016/j.polymer.2022.125193_bib32) 2009; 18 Sauter (10.1016/j.polymer.2022.125193_bib35) 2013; 53 Uemura (10.1016/j.polymer.2022.125193_bib46) 2020; 22 Wu (10.1016/j.polymer.2022.125193_bib83) 2016; 37 Chen (10.1016/j.polymer.2022.125193_bib74) 2014; 26 Á (10.1016/j.polymer.2022.125193_bib52) 2016; 432 Zhang (10.1016/j.polymer.2022.125193_bib125) 2011; 11 Wang (10.1016/j.polymer.2022.125193_bib132) 2020; 12 Zhan (10.1016/j.polymer.2022.125193_bib13) 2021; 2101053 Du (10.1016/j.polymer.2022.125193_bib67) 2017; 57 Wu (10.1016/j.polymer.2022.125193_bib88) 2021; 119 Kuang (10.1016/j.polymer.2022.125193_bib7) 2020; 501 Kang (10.1016/j.polymer.2022.125193_bib86) 2020; 394 Zhang (10.1016/j.polymer.2022.125193_bib75) 2018; 130 Jiao (10.1016/j.polymer.2022.125193_bib130) 2021; 118 Jiang (10.1016/j.polymer.2022.125193_bib104) 2019; 31 Ma (10.1016/j.polymer.2022.125193_bib3) 2006; 11 Zhao (10.1016/j.polymer.2022.125193_bib121) 2016; 12 Fan (10.1016/j.polymer.2022.125193_bib21) 2022; 637 Pan (10.1016/j.polymer.2022.125193_bib141) 2020; 12 Leng (10.1016/j.polymer.2022.125193_bib94) 2008; 92 Fang (10.1016/j.polymer.2022.125193_bib112) 2017; 9 Zhang (10.1016/j.polymer.2022.125193_bib77) 2020; 525 Sarwate (10.1016/j.polymer.2022.125193_bib51) 2014; 24 Guo (10.1016/j.polymer.2022.125193_bib71) 2019; 7 Xi (10.1016/j.polymer.2022.125193_bib49) 2019; 583 Young (10.1016/j.polymer.2022.125193_bib55) 1805 Wang (10.1016/j.polymer.2022.125193_bib72) 2017; 29 Wang (10.1016/j.polymer.2022.125193_bib116) 2019; 11 Liu (10.1016/j.polymer.2022.125193_bib144) 2021; 8 Liu (10.1016/j.polymer.2022.125193_bib111) 2014; 104 Li (10.1016/j.polymer.2022.125193_bib99) 2020; 12 Park (10.1016/j.polymer.2022.125193_bib128) 2017; 17 Lai (10.1016/j.polymer.2022.125193_bib118) 2019; 2 Liu (10.1016/j.polymer.2022.125193_bib39) 2018; 143 Wu (10.1016/j.polymer.2022.125193_bib80) 2015; 3 Leng (10.1016/j.polymer.2022.125193_bib93) 2008; 104 Cho (10.1016/j.polymer.2022.125193_bib98) 2005; 26 Wang (10.1016/j.polymer.2022.125193_bib27) 2006; 18 Leverant (10.1016/j.polymer.2022.125193_bib147) 2021; 8 Jiang (10.1016/j.polymer.2022.125193_bib24) 2005 Sun (10.1016/j.polymer.2022.125193_bib16) 2022; 571 Koerner (10.1016/j.polymer.2022.125193_bib90) 2004; 3 Zhan (10.1016/j.polymer.2022.125193_bib11) 2022 Neinhuis (10.1016/j.polymer.2022.125193_bib136) 2001; 213 Zhan (10.1016/j.polymer.2022.125193_bib19) 2021 Du (10.1016/j.polymer.2022.125193_bib110) 2010; 6 Shao (10.1016/j.polymer.2022.125193_bib89) 2022; 427 Lendlein (10.1016/j.polymer.2022.125193_bib42) 2019; 4 Liu (10.1016/j.polymer.2022.125193_bib79) 2012; 8 Liu (10.1016/j.polymer.2022.125193_bib1) 2017; 2 Cheng (10.1016/j.polymer.2022.125193_bib61) 2021; 33 Zheng (10.1016/j.polymer.2022.125193_bib85) 2015; 5 Song (10.1016/j.polymer.2022.125193_bib129) 2017; 11 Kolesov (10.1016/j.polymer.2022.125193_bib66) 2014; 25 Wang (10.1016/j.polymer.2022.125193_bib97) 2017; 3 Xu (10.1016/j.polymer.2022.125193_bib10) 2020; 13 Zhan (10.1016/j.polymer.2022.125193_bib6) 2017; 535 Lv (10.1016/j.polymer.2022.125193_bib133) 2016; 10 Gao (10.1016/j.polymer.2022.125193_bib30) 2019; 6 Mohr (10.1016/j.polymer.2022.125193_bib101) 2006; 103 |
| References_xml | – volume: 571 year: 2022 ident: bib16 article-title: Wire electrochemical etching of superhydrophobic 304 stainless steel surfaces based on high local current density with neutral electrolyte publication-title: Appl. Surf. Sci. – volume: 45 start-page: 6470 year: 2006 end-page: 6473 ident: bib26 article-title: Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface publication-title: Angew. Chem., Int – volume: 2105958 year: 2021 ident: bib28 article-title: Application and development of shape memory micro/nano patterns publication-title: Small – volume: 17 start-page: 1793 year: 2017 end-page: 1801 ident: bib128 article-title: Droplet manipulation on a structured shape memory polymer surface publication-title: Lab Chip – volume: 31 start-page: 9523 year: 2015 end-page: 9526 ident: bib43 article-title: Programming tilting angles in shape memory polymer Janus pillar arrays with unidirectional wetting against the tilting direction publication-title: Langmuir – volume: 11 start-page: 8984 year: 2019 end-page: 8993 ident: bib116 article-title: Gecko toe pads inspired in situ switchable superhydrophobic shape memory adhesive film publication-title: Nanoscale – volume: 26 start-page: 1283 year: 2014 end-page: 1288 ident: bib74 article-title: Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays publication-title: Adv. Mater. – volume: 143 start-page: 196 year: 2018 end-page: 203 ident: bib39 article-title: Electroactive shape memory composites with TiO publication-title: Mater. Des. – volume: 40 start-page: 546 year: 1944 end-page: 551 ident: bib57 article-title: Wettability of porous surfaces publication-title: Trans. Faraday Soc. – volume: 444 start-page: 227 year: 2007 end-page: 235 ident: bib103 article-title: Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers publication-title: Mater. Sci. Eng. A. – volume: 296 start-page: 1673 year: 2002 end-page: 1676 ident: bib31 article-title: Biodegradable, elastic shape-memory polymers for potential biomedical applications publication-title: Science – volume: 11 start-page: 398 year: 2011 end-page: 406 ident: bib125 article-title: A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification publication-title: Lab Chip – volume: 594 start-page: 836 year: 2021 end-page: 847 ident: bib143 article-title: Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite publication-title: J. Colloid Interface Sci. – volume: 606 start-page: 367 year: 2022 end-page: 383 ident: bib12 article-title: A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 1668 year: 2018 end-page: 1677 ident: bib41 article-title: Cellulose nanofibers/polyurethane shape memory composites with fast water-responsivity publication-title: J. Mater. Chem. B – volume: 10 start-page: 9379 year: 2016 end-page: 9386 ident: bib133 article-title: Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage publication-title: ACS Nano – volume: 28 year: 2018 ident: bib123 article-title: Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting publication-title: Adv. Funct. Mater. – volume: 26 start-page: 412 year: 2005 end-page: 416 ident: bib98 article-title: Electroactive shape-memory polyurethane composites incorporating carbon nanotubes publication-title: Macromol. Rapid Commun. – volume: 6 start-page: 931 year: 2019 end-page: 944 ident: bib30 article-title: The research status and challenges of shape memory polymer-based flexible electronics, Mater publication-title: Horiz – volume: 123143 year: 2020 ident: bib76 article-title: Superhydrophobicity-memory surfaces prepared by a femtosecond laser, Chem. Eng. J publication-title: 383 – volume: 13 start-page: 48270 year: 2021 end-page: 48280 ident: bib14 article-title: On biomimetic antiabrasive superhydrophobic coatings publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 11641 year: 2015 end-page: 11649 ident: bib92 article-title: Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels publication-title: J. Mater. Chem. – year: 2021 ident: bib9 article-title: Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation, J. Hazard. Mater publication-title: 402 – volume: 31 year: 2019 ident: bib40 article-title: Magnetically addressable shape-memory and stiffening in a composite elastomer publication-title: Adv. Mater. – volume: 371 start-page: 769 year: 2019 end-page: 780 ident: bib113 article-title: Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation publication-title: Chem. Eng. J. – volume: 28 start-page: 988 year: 1936 end-page: 994 ident: bib56 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. – volume: 5 start-page: 30495 year: 2015 end-page: 30499 ident: bib85 article-title: Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods publication-title: RSC Adv. – volume: 4 start-page: 116 year: 2019 end-page: 133 ident: bib42 article-title: Reprogrammable recovery and actuation behaviour of shape-memory polymers publication-title: Nat. Rev. Mater. – volume: 12 start-page: 3327 year: 2016 end-page: 3333 ident: bib121 article-title: Continuously tunable wettability by using surface patterned shape memory polymers with giant deformability publication-title: Small – volume: 29 year: 2017 ident: bib68 article-title: Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase publication-title: Adv. Mater. – volume: 13 start-page: 1 year: 2021 end-page: 11 ident: bib5 article-title: A universal, multifunctional, high-practicability superhydrophobic paint for waterproofing grass houses publication-title: NPG Asia Mater. – volume: 400 year: 2020 ident: bib124 article-title: Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation publication-title: Chem. Eng. J. – volume: 37 start-page: 13527 year: 2021 end-page: 13536 ident: bib142 article-title: Superhydrophobic coatings with photothermal self-healing chemical composition and microstructure for efficient corrosion protection of magnesium alloy publication-title: Langmuir – volume: 3 year: 2017 ident: bib97 article-title: Bioinspired shape-memory graphene film with tunable wettability publication-title: Sci. Adv. – volume: 31 year: 2021 ident: bib105 article-title: Noncontact all-in-situ reversible reconfiguration of femtosecond laser-induced shape memory magnetic microcones for multifunctional liquid droplet manipulation and information encryption publication-title: Adv. Funct. Mater. – volume: 160 start-page: 169 year: 2018 end-page: 198 ident: bib58 article-title: Shape memory polymers for composites publication-title: Compos. Sci. Technol. – volume: 9 start-page: 5495 year: 2017 end-page: 5502 ident: bib112 article-title: Programmable shape recovery process of water-responsive shape-memory poly (vinyl alcohol) by wettability contrast strategy publication-title: ACS Appl. Mater. Interfaces – volume: 106579 year: 2021 ident: bib120 article-title: Switchable shape memory wetting surface based on synergistic regulation of surface chemistry and microstructure, Composites, Part A publication-title: 149 – volume: 427 year: 2022 ident: bib89 article-title: Near-infrared light accurately controllable superhydrophobic surface from water sticking to repelling publication-title: Chem. Eng. J. – volume: 8 year: 2021 ident: bib147 article-title: Macroporous superhydrophobic coatings with switchable wettability enabled by smart shape memory polymers publication-title: Adv. Mater. Interfac. – volume: 7 start-page: 1674 year: 2015 end-page: 1688 ident: bib37 article-title: Polymeric shape-memory micro-patterned surface for switching wettability with temperature publication-title: Polymers – volume: 18 year: 2009 ident: bib107 article-title: Qualitative separation of the effect of the solubility parameter on the recovery behavior of shape-memory polymer publication-title: Smart Mater. Struct. – start-page: 3550 year: 2005 end-page: 3552 ident: bib24 article-title: Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer publication-title: Chem. Commun. – volume: 25 start-page: 1315 year: 2014 end-page: 1322 ident: bib66 article-title: Morphology-controlled multiple one-and two-way shape-memory behavior of cross-linked polyethylene/poly (ε-caprolactone) blends publication-title: Polym. Adv. Technol. – volume: 2 start-page: 5441 year: 2014 end-page: 5449 ident: bib108 article-title: Sodium dodecyl sulfate/epoxy composite: water-induced shape memory effect and its mechanism publication-title: J. Mater. Chem. – volume: 213 start-page: 427 year: 2001 end-page: 434 ident: bib136 article-title: Movement and regeneration of epicuticular waxes through plant cuticles publication-title: Planta – volume: 31 year: 2019 ident: bib104 article-title: Multifunctional janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration publication-title: Adv. Mater. – volume: 2 start-page: 1 year: 2017 end-page: 17 ident: bib1 article-title: Nature-inspired superwettability systems publication-title: Nat. Rev. Mater. – volume: 12 start-page: 2757 year: 2012 end-page: 2762 ident: bib82 article-title: Remote, local, and chemical programming of healable multishape memory polymer nanocomposites publication-title: Nano Lett. – volume: 3 start-page: 115 year: 2004 end-page: 120 ident: bib90 article-title: Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers publication-title: Nat. Mater. – volume: 130 start-page: 3763 year: 2018 end-page: 3767 ident: bib75 article-title: A smart superwetting surface with responsivity in both surface chemistry and microstructure publication-title: Angew. Chem. – volume: 25 start-page: 3979 year: 2019 end-page: 3992 ident: bib60 article-title: Smart wetting control on shape memory polymer surfaces, Chem publication-title: Eur. J. – volume: 202 start-page: 1 year: 1997 end-page: 8 ident: bib2 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta – volume: 192 start-page: 507 year: 2018 end-page: 515 ident: bib84 article-title: Remotely actuated porous composite membrane with shape memory property publication-title: Compos. Struct. – volume: 501 year: 2020 ident: bib7 article-title: The study on corrosion resistance of superhydrophobic coatings on magnesium publication-title: Appl. Surf. Sci. – volume: 128 start-page: 11593 year: 2016 end-page: 11597 ident: bib70 article-title: Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation publication-title: Angew. Chem. – volume: 103 start-page: 3540 year: 2006 end-page: 3545 ident: bib101 article-title: Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers publication-title: Proc. Natl. Acad. Sci. USA – volume: 64 start-page: 1801 year: 2021 end-page: 1812 ident: bib73 article-title: Dual-responsive shape memory polymer arrays with smart and precise multiple-wetting controllability publication-title: Sci. China Mater – volume: 33 year: 2021 ident: bib62 article-title: A review of shape memory polymers and composites: mechanisms, materials, and applications publication-title: Adv. Mater. – volume: 301 year: 2021 ident: bib117 article-title: Reversible switching of wettability based on shape memory effect publication-title: Mater. Lett. – volume: 64 start-page: 2337 year: 2021 end-page: 2347 ident: bib145 article-title: A shape memory porous sponge with tunability in both surface wettability and pore size for smart molecule release publication-title: Sci. China Mater – volume: 2101053 year: 2021 ident: bib13 article-title: Recent advances in antibacterial superhydrophobic coatings publication-title: Adv. Eng. Mater. – volume: 2020 year: 2020 ident: bib34 article-title: Surface structures, particles, and fibers of shape-memory polymers at micro-/nanoscale publication-title: Adv. Polym. Technol. – start-page: 39 year: 2021 end-page: 61 ident: bib139 article-title: Self-recovery superhydrophobic surfaces, materials with extreme wetting properties publication-title: Springer, Cham – volume: 52 start-page: 4985 year: 2011 end-page: 5000 ident: bib36 article-title: Recent advances in polymer shape memory publication-title: Polymer – volume: 2 start-page: 753 year: 2019 end-page: 762 ident: bib118 article-title: Control of tip nanostructure on superhydrophobic shape memory arrays toward reversibly adjusting water adhesion publication-title: Adv. Compos. Hybrid Mater – volume: 12 start-page: 5303 year: 2021 end-page: 5309 ident: bib87 article-title: Photo-switchable smart superhydrophobic surface with controllable superwettability publication-title: Polym. Chem. – volume: 320 start-page: 38 year: 2016 end-page: 52 ident: bib114 article-title: Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms publication-title: Coord. Chem. Rev. – volume: 12 start-page: 2708 year: 2016 end-page: 2714 ident: bib44 article-title: Controlled wettability based on reversible micro-cracking on a shape memory polymer surface publication-title: Soft Matter – volume: 535 start-page: 8 year: 2017 end-page: 15 ident: bib6 article-title: Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior publication-title: Colloids Surf., A. – volume: 12 start-page: 49219 year: 2020 end-page: 49226 ident: bib132 article-title: Superhydrophobic shape memory polymer microarrays with switchable directional/antidirectional droplet sliding and optical performance, ACS publication-title: Appl. Mater. Interfaces – volume: 420 year: 2021 ident: bib135 article-title: Superhydrophobic shape memory film with switchable adhesion to both water and solid publication-title: Chem. Eng. J. – volume: 23 start-page: 547 year: 2013 end-page: 553 ident: bib122 article-title: Tunable anisotropic wettability of rice leaf-like wavy surfaces publication-title: Adv. Funct. Mater. – volume: 39 start-page: 445 year: 2009 end-page: 471 ident: bib63 article-title: Shape memory polymer research publication-title: Annu. Rev. Mater. Res. – volume: 3 start-page: 97 year: 2015 end-page: 100 ident: bib80 article-title: A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer publication-title: J. Mater. Chem. – volume: 12 start-page: 5157 year: 2020 end-page: 5165 ident: bib141 article-title: Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry publication-title: ACS Appl. Mater. Interfaces – volume: 434 start-page: 879 year: 2005 end-page: 882 ident: bib38 article-title: Light-induced shape-memory polymers publication-title: Nature – volume: 587 year: 2020 ident: bib15 article-title: Preparation of superhydrophobic flexible tubes with water and blood repellency based on template method publication-title: Colloids Surf., A – volume: 37 start-page: 311 year: 2016 end-page: 317 ident: bib83 article-title: Light responsive microstructured surfaces of liquid crystalline network with shape memory and tunable wetting behaviors publication-title: Macromol. Rapid Commun. – volume: 583 year: 2019 ident: bib49 article-title: Superhydrophobic, compressible, and reusable polyvinyl alcohol-wrapped silver nanowire composite sponge for continuous oil-water separation publication-title: Colloids Surf., A. – volume: 108 start-page: 12640 year: 2004 end-page: 12642 ident: bib25 article-title: Lotus effect amplifies light-induced contact angle switching publication-title: J. Phys. Chem. B – volume: 29 year: 2019 ident: bib45 article-title: 3D porous superhydrophobic CNT/EVA composites for recoverable shape reconfiguration and underwater vibration detection publication-title: Adv. Funct. Mater. – volume: 6 start-page: 3046 year: 2015 end-page: 3053 ident: bib69 article-title: High strain epoxy shape memory polymer publication-title: Polym. Chem. – volume: 6 start-page: 3370 year: 2010 end-page: 3376 ident: bib110 article-title: Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly (vinyl alcohol) publication-title: Soft Matter – volume: 414 year: 2021 ident: bib54 article-title: How to adjust bubble's adhesion on solid in aqueous media: femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation publication-title: Chem. Eng. J. – volume: 4 start-page: 61847 year: 2014 end-page: 61854 ident: bib102 article-title: Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior publication-title: RSC Adv. – volume: 13 year: 2020 ident: bib10 article-title: Superhydrophobic drag reduction for turbulent flows in open water publication-title: Phys. Rev. Appl. – volume: 98 start-page: 224 year: 2021 end-page: 237 ident: bib17 article-title: Fabrication of superhydrophobic PET filter material with fluorinated SiO2 nanoparticles via simple sol–gel process publication-title: J. Sol. Gel Sci. Technol. – volume: 24 year: 2014 ident: bib51 article-title: Controllable strain recovery of shape memory polystyrene to achieve superhydrophobicity with tunable adhesion publication-title: J. Micromech. Microeng. – volume: 4 year: 2018 ident: bib33 article-title: Programming a crystalline shape memory polymer network with thermo-and photo-reversible bonds toward a single-component soft robot publication-title: Sci. Adv. – volume: 104 year: 2008 ident: bib93 article-title: Synergic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity publication-title: J. Appl. Phys. – year: 2022 ident: bib11 article-title: Magnetically responsive superhydrophobic surfaces for microdroplet manipulation publication-title: Adv. Mater. Interfaces – volume: 22 year: 2020 ident: bib46 article-title: Low-Friction, superhydrophobic, and shape-memory vulcanized rubber microspiked structures publication-title: Adv. Eng. Mater. – volume: 206 year: 2020 ident: bib78 article-title: Fast near-infrared light responsive shape memory composites: polydopamine nanospheres hybrid polynorbornene publication-title: Polymer. – volume: 6 start-page: 3610 year: 2013 end-page: 3623 ident: bib53 article-title: Fabrication of super-hydrophobic microchannels via strain-recovery deformations of polystyrene and oxygen reactive ion etch publication-title: Materials – volume: 54 start-page: 1935 year: 2016 end-page: 1943 ident: bib59 article-title: Influence of programming strain rates on the shape-memory performance of semicrystalline multiblock copolymers publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 92 year: 2008 ident: bib94 article-title: Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains publication-title: Appl. Phys. Lett. – volume: 525 year: 2020 ident: bib77 article-title: In-situ switchable superhydrophobic shape memory microstructure patterns with reversible wettability and adhesion publication-title: Appl. Surf. Sci. – volume: 57 start-page: 119 year: 2017 end-page: 125 ident: bib67 article-title: Thermal-mechanical behavior of styrene-based shape memory polymer tubes publication-title: Polym. Test. – volume: 18 year: 2009 ident: bib32 article-title: Fiber reinforced shape-memory polymer composite and its application in a deployable hinge publication-title: Smart Mater. Struct. – volume: 33 year: 2021 ident: bib61 article-title: Superwetting shape memory microstructure: smart wetting control and practical application publication-title: Adv. Mater. – volume: 18 start-page: 3063 year: 2006 end-page: 3078 ident: bib23 article-title: Design and creation of superwetting/antiwetting surfaces publication-title: Adv. Mater. – volume: 7 start-page: 17604 year: 2019 end-page: 17612 ident: bib71 article-title: Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures publication-title: J. Mater. Chem. – volume: 382 year: 2020 ident: bib119 article-title: Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect” publication-title: Chem. Eng. J. – volume: 13 start-page: 31285 year: 2021 end-page: 31297 ident: bib148 article-title: Biotemplated fabrication of a multifunctional superwettable shape memory film for wearable sensing electronics and smart liquid droplet manipulation publication-title: ACS Appl. Mater. Interfaces – volume: 432 start-page: 158 year: 2016 end-page: 166 ident: bib52 article-title: J. Leite, S.G. Caridade, J.F. Mano, Synthesis and characterization of bioactive biodegradable chitosan composite spheres with shape memory capability publication-title: J. Non-Cryst. Solids – volume: 58 start-page: 174 year: 2019 end-page: 191 ident: bib65 article-title: Shape memory properties of melt-blended olefin block copolymer (OBC)/Ethylene-Vinyl acetate blends publication-title: J. Macromol. Sci., Part B: Phys. – volume: 29 year: 2017 ident: bib72 article-title: Metamorphic superomniphobic surfaces publication-title: Adv. Mater. – volume: 37 start-page: 1720 year: 2012 end-page: 1763 ident: bib29 article-title: Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications publication-title: Prog. Polym. Sci. – volume: 142 year: 2020 ident: bib4 article-title: A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings publication-title: Prog. Org. Coating – volume: 12 start-page: 13464 year: 2020 end-page: 13472 ident: bib99 article-title: In situ reversible tuning from pinned to roll-down superhydrophobic states on a thermal-responsive shape memory polymer by a silver nanowire film publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 1077 year: 2011 end-page: 1135 ident: bib64 article-title: Shape-memory polymers and their composites: stimulus methods and applications publication-title: Prog. Mater. Sci. – volume: 5 start-page: 13069 year: 2013 end-page: 13075 ident: bib81 article-title: Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles publication-title: ACS Appl. Mater. Interfaces – volume: 152 year: 2021 ident: bib8 article-title: Applications of superhydrophobic coatings in anti-icing: theory, mechanisms, impact factors, challenges and perspectives publication-title: Prog. Org. Coating – volume: 104 start-page: 101 year: 2014 end-page: 108 ident: bib111 article-title: Water-induced shape-memory poly (d, l-lactide)/microcrystalline cellulose composites publication-title: Carbohydr. Polym. – volume: 54 start-page: 2199 year: 2013 end-page: 2221 ident: bib91 article-title: A review of stimuli-responsive shape memory polymer composites publication-title: Polymer – volume: 86 year: 2005 ident: bib106 article-title: Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism publication-title: Appl. Phys. Lett. – volume: 19 year: 2010 ident: bib96 article-title: Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer publication-title: Smart Mater. Struct. – volume: 11 start-page: 193 year: 2006 end-page: 202 ident: bib3 article-title: Superhydrophobic surfaces publication-title: Curr. Opin. Colloid Interface Sci. – volume: 61 start-page: 584 year: 2019 end-page: 593 ident: bib146 article-title: Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor publication-title: Nano Energy – volume: 1503402 year: 2017 ident: bib140 article-title: Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry, small publication-title: 13 – start-page: 65 year: 1805 end-page: 87 ident: bib55 article-title: An essay on the cohesion of fluids publication-title: Phil. Trans. Roy. Soc. Lond. – volume: 127944 year: 2021 ident: bib134 article-title: Multifunctional superhydrophobic surface with dynamically controllable micro/nanostructures for droplet manipulation and friction control, Chem. Eng. J publication-title: 417 – volume: 11 start-page: 9259 year: 2017 end-page: 9267 ident: bib129 article-title: Large-area fabrication of droplet pancake bouncing surface and control of bouncing state publication-title: ACS Nano – volume: 16 start-page: 1 year: 2019 end-page: 12 ident: bib50 article-title: Biomimetic Janus paper with controllable swelling for shape memory and energy conversion publication-title: J. Bionic Eng – year: 2021 ident: bib47 article-title: Droplet motion on flexible superhydrophobic porous sponge surface, AIP Adv publication-title: 11 – volume: 17 start-page: 3785 year: 2017 end-page: 3795 ident: bib127 article-title: On-chip polyelectrolyte coating onto magnetic droplets–towards continuous flow assembly of drug delivery capsules publication-title: Lab Chip – volume: 18 start-page: 4984 year: 2006 end-page: 4986 ident: bib27 article-title: Hydrogen-bonding-driven wettability change of colloidal crystal films: from superhydrophobicity to superhydrophilicity publication-title: Chem. Mater. – volume: 8 year: 2021 ident: bib138 article-title: Self-healing superhydrophobic surfaces: healing principles and applications publication-title: Adv. Mater. Interfac. – volume: 119 year: 2021 ident: bib88 article-title: Carbon black-based NIR-responsive superhydrophobic shape memory microplate array with switchable adhesion for droplets and bubbles manipulation publication-title: Appl. Phys. Lett. – volume: 91 year: 2007 ident: bib95 article-title: Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers publication-title: Appl. Phys. Lett. – volume: 11 start-page: 10988 year: 2019 end-page: 10997 ident: bib131 article-title: Smart superhydrophobic shape memory adhesive surface toward selective capture/release of microdroplets publication-title: ACS Appl. Mater. Interfaces – year: 2021 ident: bib19 article-title: Facile preparations of superhydrophobic coatings with self-cleaning, mechanical durability, anticorrosion and easy-repairable properties publication-title: Mater. Res. Express – volume: 629 year: 2021 ident: bib22 article-title: Preparations of versatile polytetrafluoroethylene superhydrophobic surfaces using the femtosecond laser technology publication-title: Colloids Surf., A – volume: 12 start-page: 6407 year: 2019 end-page: 6418 ident: bib109 article-title: Photoresponsive shape memory hydrogels for complex deformation and solvent-driven actuation publication-title: ACS Appl. Mater. Interfaces – volume: 394 year: 2020 ident: bib86 article-title: Restoration of superwetting switching on TiO publication-title: Chem. Eng. J. – volume: 118 year: 2021 ident: bib130 article-title: Femtosecond laser-induced shape memory polymer micropillar with tunable wettability and reversible adhesion for underwater oil droplet lossless transfer publication-title: Appl. Phys. Lett. – volume: 299 start-page: 1469 year: 2021 end-page: 1477 ident: bib18 article-title: One-step fabrication of superhydrophobic-superoleophilic membrane by initiated chemical vapor deposition method for oil–water separation publication-title: Colloid Polym. Sci. – volume: 11 start-page: 1280 year: 2011 end-page: 1285 ident: bib126 article-title: Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves publication-title: Lab Chip – volume: 8 year: 2021 ident: bib144 article-title: Recent progress in the fabrication and characteristics of self-repairing superhydrophobic surfaces publication-title: Adv. Mater. Interfac. – volume: 221 year: 2020 ident: bib137 article-title: Preparation of superhydrophobic fabrics via chemical self-healing strategy and their high oil/water separation performance and enhanced durability publication-title: Macromol. Chem. Phys. – volume: 8 start-page: 1764 year: 2012 end-page: 1769 ident: bib79 article-title: Self-folding of polymer sheets using local light absorption publication-title: Soft Matter – volume: 637 year: 2022 ident: bib21 article-title: An anti-icing copper-based superhydrophobic layer prepared by one-step electrodeposition in both cathode and anode publication-title: Colloids Surf., A – volume: 417 year: 2021 ident: bib100 article-title: Smart gripper based on electric-triggered superhydrophobic polyurethane arrays coated bucky gel composite membrane for reversible capture/release of both solid and liquid publication-title: Chem. Eng. J. – volume: 138 year: 2021 ident: bib20 article-title: Fabrication of superhydrophobic and self cleaning PVA-silica fiber coating on 304L SS surfaces by electrospinning publication-title: J. Appl. Polym. Sci. – volume: 13 start-page: 23210 year: 2021 end-page: 23219 ident: bib115 article-title: 3D multiscale micro-/nanofolds by femtosecond laser intermittent ablation and constrained heating on a shape memory polymer publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 6 year: 2013 end-page: 40 ident: bib35 article-title: Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests publication-title: Polym. Rev. – volume: 53 start-page: 4418 year: 2014 end-page: 4422 ident: bib48 article-title: Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties publication-title: Angew. Chem., Int – year: 2021 ident: 10.1016/j.polymer.2022.125193_bib19 article-title: Facile preparations of superhydrophobic coatings with self-cleaning, mechanical durability, anticorrosion and easy-repairable properties publication-title: Mater. Res. Express – volume: 7 start-page: 17604 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib71 article-title: Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures publication-title: J. Mater. Chem. doi: 10.1039/C9TA03264A – volume: 583 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib49 article-title: Superhydrophobic, compressible, and reusable polyvinyl alcohol-wrapped silver nanowire composite sponge for continuous oil-water separation publication-title: Colloids Surf., A. doi: 10.1016/j.colsurfa.2019.124028 – volume: 37 start-page: 13527 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib142 article-title: Superhydrophobic coatings with photothermal self-healing chemical composition and microstructure for efficient corrosion protection of magnesium alloy publication-title: Langmuir doi: 10.1021/acs.langmuir.1c02355 – volume: 19 year: 2010 ident: 10.1016/j.polymer.2022.125193_bib96 article-title: Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/7/075021 – volume: 18 year: 2009 ident: 10.1016/j.polymer.2022.125193_bib32 article-title: Fiber reinforced shape-memory polymer composite and its application in a deployable hinge publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/2/024002 – volume: 6 start-page: 3046 year: 2015 ident: 10.1016/j.polymer.2022.125193_bib69 article-title: High strain epoxy shape memory polymer publication-title: Polym. Chem. doi: 10.1039/C5PY00172B – volume: 12 start-page: 5303 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib87 article-title: Photo-switchable smart superhydrophobic surface with controllable superwettability publication-title: Polym. Chem. doi: 10.1039/D1PY00984B – volume: 53 start-page: 6 year: 2013 ident: 10.1016/j.polymer.2022.125193_bib35 article-title: Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests publication-title: Polym. Rev. doi: 10.1080/15583724.2012.756519 – volume: 16 start-page: 1 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib50 article-title: Biomimetic Janus paper with controllable swelling for shape memory and energy conversion publication-title: J. Bionic Eng doi: 10.1007/s42235-019-0001-z – volume: 2105958 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib28 article-title: Application and development of shape memory micro/nano patterns publication-title: Small – volume: 420 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib135 article-title: Superhydrophobic shape memory film with switchable adhesion to both water and solid publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129862 – volume: 130 start-page: 3763 year: 2018 ident: 10.1016/j.polymer.2022.125193_bib75 article-title: A smart superwetting surface with responsivity in both surface chemistry and microstructure publication-title: Angew. Chem. doi: 10.1002/ange.201800416 – volume: 6 start-page: 1668 year: 2018 ident: 10.1016/j.polymer.2022.125193_bib41 article-title: Cellulose nanofibers/polyurethane shape memory composites with fast water-responsivity publication-title: J. Mater. Chem. B doi: 10.1039/C7TB03069J – volume: 17 start-page: 3785 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib127 article-title: On-chip polyelectrolyte coating onto magnetic droplets–towards continuous flow assembly of drug delivery capsules publication-title: Lab Chip doi: 10.1039/C7LC00918F – volume: 13 start-page: 31285 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib148 article-title: Biotemplated fabrication of a multifunctional superwettable shape memory film for wearable sensing electronics and smart liquid droplet manipulation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c08319 – volume: 535 start-page: 8 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib6 article-title: Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior publication-title: Colloids Surf., A. doi: 10.1016/j.colsurfa.2017.09.018 – volume: 11 start-page: 9259 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib129 article-title: Large-area fabrication of droplet pancake bouncing surface and control of bouncing state publication-title: ACS Nano doi: 10.1021/acsnano.7b04494 – volume: 25 start-page: 1315 year: 2014 ident: 10.1016/j.polymer.2022.125193_bib66 article-title: Morphology-controlled multiple one-and two-way shape-memory behavior of cross-linked polyethylene/poly (ε-caprolactone) blends publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3338 – volume: 108 start-page: 12640 year: 2004 ident: 10.1016/j.polymer.2022.125193_bib25 article-title: Lotus effect amplifies light-induced contact angle switching publication-title: J. Phys. Chem. B doi: 10.1021/jp0473568 – start-page: 39 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib139 article-title: Self-recovery superhydrophobic surfaces, materials with extreme wetting properties publication-title: Springer, Cham – volume: 33 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib61 article-title: Superwetting shape memory microstructure: smart wetting control and practical application publication-title: Adv. Mater. doi: 10.1002/adma.202001718 – volume: 103 start-page: 3540 year: 2006 ident: 10.1016/j.polymer.2022.125193_bib101 article-title: Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0600079103 – volume: 202 start-page: 1 year: 1997 ident: 10.1016/j.polymer.2022.125193_bib2 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta doi: 10.1007/s004250050096 – volume: 98 start-page: 224 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib17 article-title: Fabrication of superhydrophobic PET filter material with fluorinated SiO2 nanoparticles via simple sol–gel process publication-title: J. Sol. Gel Sci. Technol. doi: 10.1007/s10971-021-05483-4 – volume: 127944 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib134 article-title: Multifunctional superhydrophobic surface with dynamically controllable micro/nanostructures for droplet manipulation and friction control, Chem. Eng. J publication-title: 417 – volume: 371 start-page: 769 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib113 article-title: Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.108 – volume: 31 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib40 article-title: Magnetically addressable shape-memory and stiffening in a composite elastomer publication-title: Adv. Mater. – volume: 637 year: 2022 ident: 10.1016/j.polymer.2022.125193_bib21 article-title: An anti-icing copper-based superhydrophobic layer prepared by one-step electrodeposition in both cathode and anode publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2021.128220 – volume: 29 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib72 article-title: Metamorphic superomniphobic surfaces publication-title: Adv. Mater. – volume: 26 start-page: 412 year: 2005 ident: 10.1016/j.polymer.2022.125193_bib98 article-title: Electroactive shape-memory polyurethane composites incorporating carbon nanotubes publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200400492 – volume: 138 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib20 article-title: Fabrication of superhydrophobic and self cleaning PVA-silica fiber coating on 304L SS surfaces by electrospinning publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.50118 – volume: 4 year: 2018 ident: 10.1016/j.polymer.2022.125193_bib33 article-title: Programming a crystalline shape memory polymer network with thermo-and photo-reversible bonds toward a single-component soft robot publication-title: Sci. Adv. doi: 10.1126/sciadv.aao3865 – volume: 118 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib130 article-title: Femtosecond laser-induced shape memory polymer micropillar with tunable wettability and reversible adhesion for underwater oil droplet lossless transfer publication-title: Appl. Phys. Lett. doi: 10.1063/5.0040990 – volume: 221 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib137 article-title: Preparation of superhydrophobic fabrics via chemical self-healing strategy and their high oil/water separation performance and enhanced durability publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201900356 – volume: 25 start-page: 3979 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib60 article-title: Smart wetting control on shape memory polymer surfaces, Chem publication-title: Eur. J. doi: 10.1002/chem.201804192 – volume: 11 start-page: 193 year: 2006 ident: 10.1016/j.polymer.2022.125193_bib3 article-title: Superhydrophobic surfaces publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2006.06.002 – volume: 18 start-page: 3063 year: 2006 ident: 10.1016/j.polymer.2022.125193_bib23 article-title: Design and creation of superwetting/antiwetting surfaces publication-title: Adv. Mater. doi: 10.1002/adma.200501961 – volume: 54 start-page: 2199 year: 2013 ident: 10.1016/j.polymer.2022.125193_bib91 article-title: A review of stimuli-responsive shape memory polymer composites publication-title: Polymer doi: 10.1016/j.polymer.2013.02.023 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib1 article-title: Nature-inspired superwettability systems publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.36 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib5 article-title: A universal, multifunctional, high-practicability superhydrophobic paint for waterproofing grass houses publication-title: NPG Asia Mater. doi: 10.1038/s41427-021-00315-x – volume: 12 start-page: 49219 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib132 article-title: Superhydrophobic shape memory polymer microarrays with switchable directional/antidirectional droplet sliding and optical performance, ACS publication-title: Appl. Mater. Interfaces doi: 10.1021/acsami.0c13627 – volume: 92 year: 2008 ident: 10.1016/j.polymer.2022.125193_bib94 article-title: Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains publication-title: Appl. Phys. Lett. doi: 10.1063/1.2829388 – volume: 29 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib45 article-title: 3D porous superhydrophobic CNT/EVA composites for recoverable shape reconfiguration and underwater vibration detection publication-title: Adv. Funct. Mater. – volume: 4 start-page: 116 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib42 article-title: Reprogrammable recovery and actuation behaviour of shape-memory polymers publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0078-8 – volume: 58 start-page: 174 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib65 article-title: Shape memory properties of melt-blended olefin block copolymer (OBC)/Ethylene-Vinyl acetate blends publication-title: J. Macromol. Sci., Part B: Phys. doi: 10.1080/00222348.2018.1558593 – volume: 434 start-page: 879 year: 2005 ident: 10.1016/j.polymer.2022.125193_bib38 article-title: Light-induced shape-memory polymers publication-title: Nature doi: 10.1038/nature03496 – volume: 24 year: 2014 ident: 10.1016/j.polymer.2022.125193_bib51 article-title: Controllable strain recovery of shape memory polystyrene to achieve superhydrophobicity with tunable adhesion publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/24/11/115006 – volume: 28 year: 2018 ident: 10.1016/j.polymer.2022.125193_bib123 article-title: Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705002 – volume: 8 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib138 article-title: Self-healing superhydrophobic surfaces: healing principles and applications publication-title: Adv. Mater. Interfac. – volume: 57 start-page: 119 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib67 article-title: Thermal-mechanical behavior of styrene-based shape memory polymer tubes publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2016.11.011 – volume: 11 start-page: 398 year: 2011 ident: 10.1016/j.polymer.2022.125193_bib125 article-title: A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification publication-title: Lab Chip doi: 10.1039/C0LC00296H – volume: 53 start-page: 4418 year: 2014 ident: 10.1016/j.polymer.2022.125193_bib48 article-title: Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties publication-title: Angew. Chem., Int doi: 10.1002/anie.201310385 – volume: 3 start-page: 11641 year: 2015 ident: 10.1016/j.polymer.2022.125193_bib92 article-title: Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels publication-title: J. Mater. Chem. doi: 10.1039/C5TA02490K – volume: 18 year: 2009 ident: 10.1016/j.polymer.2022.125193_bib107 article-title: Qualitative separation of the effect of the solubility parameter on the recovery behavior of shape-memory polymer publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/8/085003 – volume: 6 start-page: 3610 year: 2013 ident: 10.1016/j.polymer.2022.125193_bib53 article-title: Fabrication of super-hydrophobic microchannels via strain-recovery deformations of polystyrene and oxygen reactive ion etch publication-title: Materials doi: 10.3390/ma6083610 – volume: 31 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib104 article-title: Multifunctional janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration publication-title: Adv. Mater. doi: 10.1002/adma.201807507 – volume: 61 start-page: 584 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib146 article-title: Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.089 – volume: 17 start-page: 1793 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib128 article-title: Droplet manipulation on a structured shape memory polymer surface publication-title: Lab Chip doi: 10.1039/C6LC01354F – volume: 501 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib7 article-title: The study on corrosion resistance of superhydrophobic coatings on magnesium publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144137 – volume: 37 start-page: 311 year: 2016 ident: 10.1016/j.polymer.2022.125193_bib83 article-title: Light responsive microstructured surfaces of liquid crystalline network with shape memory and tunable wetting behaviors publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201500533 – volume: 414 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib54 article-title: How to adjust bubble's adhesion on solid in aqueous media: femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128694 – volume: 525 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib77 article-title: In-situ switchable superhydrophobic shape memory microstructure patterns with reversible wettability and adhesion publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146525 – volume: 8 start-page: 1764 year: 2012 ident: 10.1016/j.polymer.2022.125193_bib79 article-title: Self-folding of polymer sheets using local light absorption publication-title: Soft Matter doi: 10.1039/C1SM06564E – volume: 104 start-page: 101 year: 2014 ident: 10.1016/j.polymer.2022.125193_bib111 article-title: Water-induced shape-memory poly (d, l-lactide)/microcrystalline cellulose composites publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.01.031 – volume: 106579 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib120 article-title: Switchable shape memory wetting surface based on synergistic regulation of surface chemistry and microstructure, Composites, Part A publication-title: 149 – volume: 11 start-page: 8984 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib116 article-title: Gecko toe pads inspired in situ switchable superhydrophobic shape memory adhesive film publication-title: Nanoscale doi: 10.1039/C9NR00154A – volume: 629 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib22 article-title: Preparations of versatile polytetrafluoroethylene superhydrophobic surfaces using the femtosecond laser technology publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2021.127441 – volume: 299 start-page: 1469 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib18 article-title: One-step fabrication of superhydrophobic-superoleophilic membrane by initiated chemical vapor deposition method for oil–water separation publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-021-04870-1 – volume: 31 start-page: 9523 year: 2015 ident: 10.1016/j.polymer.2022.125193_bib43 article-title: Programming tilting angles in shape memory polymer Janus pillar arrays with unidirectional wetting against the tilting direction publication-title: Langmuir doi: 10.1021/acs.langmuir.5b02622 – volume: 587 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib15 article-title: Preparation of superhydrophobic flexible tubes with water and blood repellency based on template method publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2019.124331 – volume: 213 start-page: 427 year: 2001 ident: 10.1016/j.polymer.2022.125193_bib136 article-title: Movement and regeneration of epicuticular waxes through plant cuticles publication-title: Planta doi: 10.1007/s004250100530 – volume: 40 start-page: 546 year: 1944 ident: 10.1016/j.polymer.2022.125193_bib57 article-title: Wettability of porous surfaces publication-title: Trans. Faraday Soc. doi: 10.1039/tf9444000546 – volume: 29 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib68 article-title: Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase publication-title: Adv. Mater. – volume: 12 start-page: 5157 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib141 article-title: Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22693 – volume: 123143 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib76 article-title: Superhydrophobicity-memory surfaces prepared by a femtosecond laser, Chem. Eng. J publication-title: 383 – volume: 142 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib4 article-title: A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2020.105557 – volume: 28 start-page: 988 year: 1936 ident: 10.1016/j.polymer.2022.125193_bib56 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. doi: 10.1021/ie50320a024 – volume: 13 start-page: 23210 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib115 article-title: 3D multiscale micro-/nanofolds by femtosecond laser intermittent ablation and constrained heating on a shape memory polymer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04049 – volume: 104 year: 2008 ident: 10.1016/j.polymer.2022.125193_bib93 article-title: Synergic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity publication-title: J. Appl. Phys. doi: 10.1063/1.3026724 – volume: 382 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib119 article-title: Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect” publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122989 – volume: 12 start-page: 3327 year: 2016 ident: 10.1016/j.polymer.2022.125193_bib121 article-title: Continuously tunable wettability by using surface patterned shape memory polymers with giant deformability publication-title: Small doi: 10.1002/smll.201600092 – volume: 13 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib10 article-title: Superhydrophobic drag reduction for turbulent flows in open water publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.034056 – volume: 5 start-page: 13069 year: 2013 ident: 10.1016/j.polymer.2022.125193_bib81 article-title: Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404087q – volume: 320 start-page: 38 year: 2016 ident: 10.1016/j.polymer.2022.125193_bib114 article-title: Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.03.007 – volume: 571 year: 2022 ident: 10.1016/j.polymer.2022.125193_bib16 article-title: Wire electrochemical etching of superhydrophobic 304 stainless steel surfaces based on high local current density with neutral electrolyte publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151269 – volume: 37 start-page: 1720 year: 2012 ident: 10.1016/j.polymer.2022.125193_bib29 article-title: Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2012.06.001 – volume: 5 start-page: 30495 year: 2015 ident: 10.1016/j.polymer.2022.125193_bib85 article-title: Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods publication-title: RSC Adv. doi: 10.1039/C5RA01469G – volume: 31 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib105 article-title: Noncontact all-in-situ reversible reconfiguration of femtosecond laser-induced shape memory magnetic microcones for multifunctional liquid droplet manipulation and information encryption publication-title: Adv. Funct. Mater. – volume: 26 start-page: 1283 year: 2014 ident: 10.1016/j.polymer.2022.125193_bib74 article-title: Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays publication-title: Adv. Mater. doi: 10.1002/adma.201304030 – volume: 594 start-page: 836 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib143 article-title: Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.03.005 – year: 2021 ident: 10.1016/j.polymer.2022.125193_bib9 article-title: Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation, J. Hazard. Mater publication-title: 402 – volume: 12 start-page: 13464 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib99 article-title: In situ reversible tuning from pinned to roll-down superhydrophobic states on a thermal-responsive shape memory polymer by a silver nanowire film publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20223 – volume: 143 start-page: 196 year: 2018 ident: 10.1016/j.polymer.2022.125193_bib39 article-title: Electroactive shape memory composites with TiO2 whiskers for switching an electrical circuit publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.005 – volume: 12 start-page: 2757 year: 2012 ident: 10.1016/j.polymer.2022.125193_bib82 article-title: Remote, local, and chemical programming of healable multishape memory polymer nanocomposites publication-title: Nano Lett. doi: 10.1021/nl2044875 – volume: 23 start-page: 547 year: 2013 ident: 10.1016/j.polymer.2022.125193_bib122 article-title: Tunable anisotropic wettability of rice leaf-like wavy surfaces publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201541 – volume: 39 start-page: 445 year: 2009 ident: 10.1016/j.polymer.2022.125193_bib63 article-title: Shape memory polymer research publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-082908-145419 – volume: 64 start-page: 1801 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib73 article-title: Dual-responsive shape memory polymer arrays with smart and precise multiple-wetting controllability publication-title: Sci. China Mater doi: 10.1007/s40843-020-1554-y – volume: 56 start-page: 1077 year: 2011 ident: 10.1016/j.polymer.2022.125193_bib64 article-title: Shape-memory polymers and their composites: stimulus methods and applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2011.03.001 – volume: 2101053 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib13 article-title: Recent advances in antibacterial superhydrophobic coatings publication-title: Adv. Eng. Mater. – start-page: 3550 year: 2005 ident: 10.1016/j.polymer.2022.125193_bib24 article-title: Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer publication-title: Chem. Commun. doi: 10.1039/b504479k – volume: 11 start-page: 1280 year: 2011 ident: 10.1016/j.polymer.2022.125193_bib126 article-title: Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves publication-title: Lab Chip doi: 10.1039/c0lc00527d – volume: 2 start-page: 5441 year: 2014 ident: 10.1016/j.polymer.2022.125193_bib108 article-title: Sodium dodecyl sulfate/epoxy composite: water-induced shape memory effect and its mechanism publication-title: J. Mater. Chem. doi: 10.1039/c3ta15204a – volume: 394 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib86 article-title: Restoration of superwetting switching on TiO2 coated shape memory polymer arrays publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124996 – year: 2021 ident: 10.1016/j.polymer.2022.125193_bib47 article-title: Droplet motion on flexible superhydrophobic porous sponge surface, AIP Adv publication-title: 11 – volume: 7 start-page: 1674 year: 2015 ident: 10.1016/j.polymer.2022.125193_bib37 article-title: Polymeric shape-memory micro-patterned surface for switching wettability with temperature publication-title: Polymers doi: 10.3390/polym7091477 – volume: 152 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib8 article-title: Applications of superhydrophobic coatings in anti-icing: theory, mechanisms, impact factors, challenges and perspectives publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2020.106117 – volume: 432 start-page: 158 year: 2016 ident: 10.1016/j.polymer.2022.125193_bib52 article-title: J. Leite, S.G. Caridade, J.F. Mano, Synthesis and characterization of bioactive biodegradable chitosan composite spheres with shape memory capability publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2015.04.011 – volume: 3 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib97 article-title: Bioinspired shape-memory graphene film with tunable wettability publication-title: Sci. Adv. doi: 10.1126/sciadv.1700004 – volume: 2 start-page: 753 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib118 article-title: Control of tip nanostructure on superhydrophobic shape memory arrays toward reversibly adjusting water adhesion publication-title: Adv. Compos. Hybrid Mater doi: 10.1007/s42114-019-00127-2 – volume: 8 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib144 article-title: Recent progress in the fabrication and characteristics of self-repairing superhydrophobic surfaces publication-title: Adv. Mater. Interfac. doi: 10.1002/admi.202100228 – volume: 33 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib62 article-title: A review of shape memory polymers and composites: mechanisms, materials, and applications publication-title: Adv. Mater. doi: 10.1002/adma.202000713 – volume: 11 start-page: 10988 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib131 article-title: Smart superhydrophobic shape memory adhesive surface toward selective capture/release of microdroplets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00278 – volume: 606 start-page: 367 year: 2022 ident: 10.1016/j.polymer.2022.125193_bib12 article-title: A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.026 – volume: 206 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib78 article-title: Fast near-infrared light responsive shape memory composites: polydopamine nanospheres hybrid polynorbornene publication-title: Polymer. doi: 10.1016/j.polymer.2020.122898 – volume: 52 start-page: 4985 year: 2011 ident: 10.1016/j.polymer.2022.125193_bib36 article-title: Recent advances in polymer shape memory publication-title: Polymer doi: 10.1016/j.polymer.2011.08.003 – volume: 12 start-page: 6407 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib109 article-title: Photoresponsive shape memory hydrogels for complex deformation and solvent-driven actuation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19380 – volume: 417 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib100 article-title: Smart gripper based on electric-triggered superhydrophobic polyurethane arrays coated bucky gel composite membrane for reversible capture/release of both solid and liquid publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128072 – volume: 22 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib46 article-title: Low-Friction, superhydrophobic, and shape-memory vulcanized rubber microspiked structures publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901226 – volume: 128 start-page: 11593 year: 2016 ident: 10.1016/j.polymer.2022.125193_bib70 article-title: Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation publication-title: Angew. Chem. doi: 10.1002/ange.201602847 – volume: 3 start-page: 97 year: 2015 ident: 10.1016/j.polymer.2022.125193_bib80 article-title: A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer publication-title: J. Mater. Chem. doi: 10.1039/C4TA04881D – volume: 13 start-page: 48270 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib14 article-title: On biomimetic antiabrasive superhydrophobic coatings publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c14342 – volume: 4 start-page: 61847 year: 2014 ident: 10.1016/j.polymer.2022.125193_bib102 article-title: Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior publication-title: RSC Adv. doi: 10.1039/C4RA10716K – volume: 1503402 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib140 article-title: Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry, small publication-title: 13 – volume: 427 year: 2022 ident: 10.1016/j.polymer.2022.125193_bib89 article-title: Near-infrared light accurately controllable superhydrophobic surface from water sticking to repelling publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131718 – volume: 8 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib147 article-title: Macroporous superhydrophobic coatings with switchable wettability enabled by smart shape memory polymers publication-title: Adv. Mater. Interfac. doi: 10.1002/admi.202002111 – volume: 6 start-page: 3370 year: 2010 ident: 10.1016/j.polymer.2022.125193_bib110 article-title: Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly (vinyl alcohol) publication-title: Soft Matter doi: 10.1039/b922220k – volume: 91 year: 2007 ident: 10.1016/j.polymer.2022.125193_bib95 article-title: Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers publication-title: Appl. Phys. Lett. doi: 10.1063/1.2790497 – volume: 86 year: 2005 ident: 10.1016/j.polymer.2022.125193_bib106 article-title: Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism publication-title: Appl. Phys. Lett. doi: 10.1063/1.1880448 – volume: 12 start-page: 2708 year: 2016 ident: 10.1016/j.polymer.2022.125193_bib44 article-title: Controlled wettability based on reversible micro-cracking on a shape memory polymer surface publication-title: Soft Matter doi: 10.1039/C5SM03059E – volume: 160 start-page: 169 year: 2018 ident: 10.1016/j.polymer.2022.125193_bib58 article-title: Shape memory polymers for composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.03.018 – volume: 45 start-page: 6470 year: 2006 ident: 10.1016/j.polymer.2022.125193_bib26 article-title: Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface publication-title: Angew. Chem., Int doi: 10.1002/anie.200602126 – volume: 54 start-page: 1935 year: 2016 ident: 10.1016/j.polymer.2022.125193_bib59 article-title: Influence of programming strain rates on the shape-memory performance of semicrystalline multiblock copolymers publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.24097 – volume: 192 start-page: 507 year: 2018 ident: 10.1016/j.polymer.2022.125193_bib84 article-title: Remotely actuated porous composite membrane with shape memory property publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.03.060 – volume: 18 start-page: 4984 year: 2006 ident: 10.1016/j.polymer.2022.125193_bib27 article-title: Hydrogen-bonding-driven wettability change of colloidal crystal films: from superhydrophobicity to superhydrophilicity publication-title: Chem. Mater. doi: 10.1021/cm061417s – volume: 64 start-page: 2337 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib145 article-title: A shape memory porous sponge with tunability in both surface wettability and pore size for smart molecule release publication-title: Sci. China Mater doi: 10.1007/s40843-020-1611-9 – volume: 444 start-page: 227 year: 2007 ident: 10.1016/j.polymer.2022.125193_bib103 article-title: Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2006.08.083 – volume: 9 start-page: 5495 year: 2017 ident: 10.1016/j.polymer.2022.125193_bib112 article-title: Programmable shape recovery process of water-responsive shape-memory poly (vinyl alcohol) by wettability contrast strategy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14868 – volume: 2020 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib34 article-title: Surface structures, particles, and fibers of shape-memory polymers at micro-/nanoscale publication-title: Adv. Polym. Technol. doi: 10.1155/2020/7639724 – volume: 296 start-page: 1673 year: 2002 ident: 10.1016/j.polymer.2022.125193_bib31 article-title: Biodegradable, elastic shape-memory polymers for potential biomedical applications publication-title: Science doi: 10.1126/science.1066102 – volume: 119 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib88 article-title: Carbon black-based NIR-responsive superhydrophobic shape memory microplate array with switchable adhesion for droplets and bubbles manipulation publication-title: Appl. Phys. Lett. doi: 10.1063/5.0072950 – volume: 3 start-page: 115 year: 2004 ident: 10.1016/j.polymer.2022.125193_bib90 article-title: Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers publication-title: Nat. Mater. doi: 10.1038/nmat1059 – year: 2022 ident: 10.1016/j.polymer.2022.125193_bib11 article-title: Magnetically responsive superhydrophobic surfaces for microdroplet manipulation publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202102010 – volume: 400 year: 2020 ident: 10.1016/j.polymer.2022.125193_bib124 article-title: Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125930 – start-page: 65 year: 1805 ident: 10.1016/j.polymer.2022.125193_bib55 article-title: An essay on the cohesion of fluids publication-title: Phil. Trans. Roy. Soc. Lond. doi: 10.1098/rstl.1805.0005 – volume: 301 year: 2021 ident: 10.1016/j.polymer.2022.125193_bib117 article-title: Reversible switching of wettability based on shape memory effect publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.130270 – volume: 6 start-page: 931 year: 2019 ident: 10.1016/j.polymer.2022.125193_bib30 article-title: The research status and challenges of shape memory polymer-based flexible electronics, Mater publication-title: Horiz – volume: 10 start-page: 9379 year: 2016 ident: 10.1016/j.polymer.2022.125193_bib133 article-title: Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage publication-title: ACS Nano doi: 10.1021/acsnano.6b04257 |
| SSID | ssj0002524 |
| Score | 2.5003412 |
| SecondaryResourceType | review_article |
| Snippet | Smart control of surface wettability has attracted widespread attention, especially for superhydrophobic surfaces. Based on the shape memory effect (SME) of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 125193 |
| SubjectTerms | Applications Shape memory effect Shape memory polymer Superhydrophobic Wettability |
| Title | Recent advances in shape memory superhydrophobic surfaces: Concepts, mechanism, classification, applications and challenges |
| URI | https://dx.doi.org/10.1016/j.polymer.2022.125193 |
| Volume | 256 |
| WOSCitedRecordID | wos000888510000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002524 issn: 0032-3861 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFAl6QFBAtDy0B26Ng-NHvMstispLqOqhQG7WvkxcObaVR9XAf-G3Muv12m6pCj1wseJVdr3OfJmZnf1mFqHXAeVs5Eld-pInDlho4vAw4g4NSQIOuuBuVUj76-fo-JjMZvSk1_tlc2HOsyjPycUFLf-rqKENhK1TZ28h7mZQaIDPIHS4gtjh-k-CB0ew4o2bzf2K7rqas1IdLjSpdnu42pRqOd_KZVHOC54KaFgmmpilgwNTk8VYCXehdFawZmbAjdBetqYVGTaI5nx2tr5Ndpw9l2XV9XhPimy70PUqPPJ-k2aGS99EH3S8urICLM-K2ohqelDFMfjWpqlNFilM8ofJ5Z5kqWSy0VebKoKr0_W-d2MYsPzV2zqjrl72Pccnpiy71cte2NWs2hEzZyn-ofRN_OFsWJoXGuonDNvvXy6yfcX4NZREy3Y7i-thYj1MbIa5g3a8KKSkj3YmH49mnxpb74WeqfNdz7_NEXtz7Xyu9346Hs3pQ_SgXorgiYHQI9RT-R66N7UnAO6h3U6xysfopwEWtsDCaY4rYGEDLHwVWNgC6y22sBrgBlQDfBlSA9wFFAZA4RZQT9CXd0en0w9OfXSHI3yXrh3GRsk4SAIFq2kxVhF1fUaZJ0MOuiFUQUgUC91xQl24E5KGMpKMyygRQQIOP_efon5e5OoZwoknhQwCjxOXg2-vQHv4QgVjUCl-BOZmHwX2J41FXddeH6-SxTeKdB8Nm26lKezytw7EyiuuvVPjdcaAw5u7Htz2Wc_R_fZv8gL118uNeonuivN1ulq-qkH4G3fsuF0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+shape+memory+superhydrophobic+surfaces%3A+Concepts%2C+mechanism%2C+classification%2C+applications+and+challenges&rft.jtitle=Polymer+%28Guilford%29&rft.au=Zhan%2C+Yanlong&rft.au=Li%2C+Wen&rft.au=Amirfazli%2C+Alidad&rft.au=Yu%2C+Sirong&rft.date=2022-09-21&rft.issn=0032-3861&rft.volume=256&rft.spage=125193&rft_id=info:doi/10.1016%2Fj.polymer.2022.125193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymer_2022_125193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |