Data-Driven Energy Modeling of Machining Centers Through Automata Learning
The paper addresses the problem of estimating the energy consumed by production resources in manufacturing so that alternative process designs can be compared in terms of energy expenditure. In particular, the proposed methodology focuses on Computer Numerical Controlled (CNC) machining centers. Cla...
Saved in:
| Published in: | IEEE transactions on automation science and engineering Vol. 22; pp. 5769 - 5780 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The paper addresses the problem of estimating the energy consumed by production resources in manufacturing so that alternative process designs can be compared in terms of energy expenditure. In particular, the proposed methodology focuses on Computer Numerical Controlled (CNC) machining centers. Classical approaches to energy modeling require high expertise and large development effort since, for example, data acquisition is resource-specific and must be repeated frequently to avoid obsolescence. An automated and flexible data-driven methodology is designed in this work. A data-driven method is employed to learn a hybrid and stochastic model of a CNC machining center's energetic behavior. The learned model is used to provide offline energy consumption estimates of simulated part-programs before the actual execution of the cutting. Numerical results show the performance of the proposed method on a set of case studies. The methodology is also applied to a real industrial application, including data collected during machine production. Note to Practitioners-This article provides a flexible and autonomous data-driven approach to building models representing the energetic behavior of production resources, particularly CNC machining centers. The learned models can predict machine energy consumption while executing complex part-programs. The algorithm uses data that are commonly acquired by contemporary machine monitoring systems and does not require ad-hoc experimental tests for training. Specifically, it requires the spindle rotary speed signal, part load/unload signal, and spindle (or machine) power signal during the learning phase, whilst the estimation phase uses only the load/unload and spindle speed simulated signals. |
|---|---|
| AbstractList | The paper addresses the problem of estimating the energy consumed by production resources in manufacturing so that alternative process designs can be compared in terms of energy expenditure. In particular, the proposed methodology focuses on Computer Numerical Controlled (CNC) machining centers. Classical approaches to energy modeling require high expertise and large development effort since, for example, data acquisition is resource-specific and must be repeated frequently to avoid obsolescence. An automated and flexible data-driven methodology is designed in this work. A data-driven method is employed to learn a hybrid and stochastic model of a CNC machining center's energetic behavior. The learned model is used to provide offline energy consumption estimates of simulated part-programs before the actual execution of the cutting. Numerical results show the performance of the proposed method on a set of case studies. The methodology is also applied to a real industrial application, including data collected during machine production. Note to Practitioners-This article provides a flexible and autonomous data-driven approach to building models representing the energetic behavior of production resources, particularly CNC machining centers. The learned models can predict machine energy consumption while executing complex part-programs. The algorithm uses data that are commonly acquired by contemporary machine monitoring systems and does not require ad-hoc experimental tests for training. Specifically, it requires the spindle rotary speed signal, part load/unload signal, and spindle (or machine) power signal during the learning phase, whilst the estimation phase uses only the load/unload and spindle speed simulated signals. |
| Author | Lestingi, Livia Bersani, Marcello M. Frigerio, Nicla Matta, Andrea Rossi, Matteo |
| Author_xml | – sequence: 1 givenname: Livia orcidid: 0000-0001-8724-1541 surname: Lestingi fullname: Lestingi, Livia email: livia.lestingi@polimi.it organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy – sequence: 2 givenname: Nicla orcidid: 0000-0001-8146-9772 surname: Frigerio fullname: Frigerio, Nicla organization: Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy – sequence: 3 givenname: Marcello M. orcidid: 0000-0001-5137-940X surname: Bersani fullname: Bersani, Marcello M. organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy – sequence: 4 givenname: Andrea orcidid: 0000-0003-3902-2007 surname: Matta fullname: Matta, Andrea organization: Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy – sequence: 5 givenname: Matteo orcidid: 0000-0002-9193-9560 surname: Rossi fullname: Rossi, Matteo organization: Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy |
| BookMark | eNp9kE1PAjEQQBuDiYD-ABMP_QOL_dzdHgkgaiAexPNm2m2hBlrTXUz49-4GDsaDp5lJ3pvDG6FBiMEidE_JhFKiHjfT98WEESYmXHDClbhCQyplmfGi5IN-FzKTSsobNGqaT9KRpSJD9DqHFrJ58t824EWwaXvC61jbvQ9bHB1eg9n50B8zG1qbGrzZpXjc7vD02MZDJ-OVhdQTt-jawb6xd5c5Rh9Pi83sOVu9LV9m01VmOFFtBmVuasgZY9rlMpec15oLZ0BoIpjhTmsqy8JRYzVxQEoKjBU5aFZzojt8jIrzX5Ni0yTrKuNbaH0MbQK_ryip-iRVn6Tqk1SXJJ1J_5hfyR8gnf51Hs6Ot9b-4nNSKKX4D32LbxE |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1016_j_procir_2024_12_024 |
| Cites_doi | 10.1007/s00170-022-10194-3 10.1021/es8016655 10.1016/0890-5401(87)90052-6 10.1016/j.jclepro.2020.123125 10.1016/j.cirpj.2021.07.014 10.1016/j.procir.2022.02.032 10.1115/IMECE2004-62600 10.1016/j.jclepro.2016.04.012 10.1177/0954405414539490 10.1201/9781315140919 10.1109/tase.2023.3315546 10.1007/978-3-642-21455-4_8 10.1016/j.inffus.2019.12.012 10.5937/jaes0-30826 10.1007/978-1-4612-5931-2_7 10.1007/s10009-014-0361-y 10.1137/1.9781611972719.1 10.1214/aoms/1177729394 10.1016/0304-3975(94)00202-T 10.1214/aoms/1177706793 10.1177/1687814016680737 10.1016/j.jclepro.2015.05.093 10.3390/machines11111015 10.1007/s00170-018-2550-4 10.1109/MIS.2022.3215698 10.1016/j.jclepro.2021.129920 10.1007/s100090050010 10.1016/j.procir.2015.08.081 10.1109/ICEMCE60359.2023.10491062 10.1214/lnms/1196285403 10.3390/su132413918 10.1016/j.cirp.2011.03.088 10.1007/s00170-022-09557-7 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2024.3430394 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 5780 |
| ExternalDocumentID | 10_1109_TASE_2024_3430394 10607999 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Union (EU) Horizon Europe Research and Innovation Program grantid: 101092021 (AutoTwin) |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c309t-a86cda6222bf656533db34fca4b042c3fbb1587f1ceb0fa081a2276ab2d30b533 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001279016800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Tue Nov 18 21:37:43 EST 2025 Sat Nov 29 08:08:55 EST 2025 Wed Aug 27 01:43:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c309t-a86cda6222bf656533db34fca4b042c3fbb1587f1ceb0fa081a2276ab2d30b533 |
| ORCID | 0000-0002-9193-9560 0000-0001-8724-1541 0000-0001-8146-9772 0000-0001-5137-940X 0000-0003-3902-2007 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10607999 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TASE_2024_3430394 ieee_primary_10607999 crossref_primary_10_1109_TASE_2024_3430394 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref9 doi: 10.1007/s00170-022-10194-3 – ident: ref12 doi: 10.1021/es8016655 – ident: ref3 doi: 10.1016/0890-5401(87)90052-6 – ident: ref26 doi: 10.1016/j.jclepro.2020.123125 – ident: ref5 doi: 10.1016/j.cirpj.2021.07.014 – ident: ref22 doi: 10.1016/j.procir.2022.02.032 – ident: ref10 doi: 10.1115/IMECE2004-62600 – ident: ref1 doi: 10.1016/j.jclepro.2016.04.012 – ident: ref30 doi: 10.1177/0954405414539490 – ident: ref27 doi: 10.1201/9781315140919 – ident: ref32 doi: 10.1109/tase.2023.3315546 – ident: ref28 doi: 10.1007/978-3-642-21455-4_8 – ident: ref4 doi: 10.1016/j.inffus.2019.12.012 – ident: ref6 doi: 10.5937/jaes0-30826 – ident: ref23 doi: 10.1007/978-1-4612-5931-2_7 – ident: ref11 doi: 10.1007/s10009-014-0361-y – ident: ref14 doi: 10.1137/1.9781611972719.1 – ident: ref24 doi: 10.1214/aoms/1177729394 – ident: ref2 doi: 10.1016/0304-3975(94)00202-T – ident: ref21 doi: 10.1214/aoms/1177706793 – ident: ref31 doi: 10.1177/1687814016680737 – ident: ref33 doi: 10.1016/j.jclepro.2015.05.093 – ident: ref29 doi: 10.3390/machines11111015 – ident: ref25 doi: 10.1007/s00170-018-2550-4 – ident: ref16 doi: 10.1109/MIS.2022.3215698 – ident: ref19 doi: 10.1016/j.jclepro.2021.129920 – ident: ref15 doi: 10.1007/s100090050010 – ident: ref13 doi: 10.1016/j.procir.2015.08.081 – ident: ref18 doi: 10.1109/ICEMCE60359.2023.10491062 – ident: ref8 doi: 10.1214/lnms/1196285403 – ident: ref7 doi: 10.3390/su132413918 – ident: ref20 doi: 10.1016/j.cirp.2011.03.088 – ident: ref17 doi: 10.1007/s00170-022-09557-7 |
| SSID | ssj0024890 |
| Score | 2.3893962 |
| Snippet | The paper addresses the problem of estimating the energy consumed by production resources in manufacturing so that alternative process designs can be compared... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 5769 |
| SubjectTerms | automata learning Biological system modeling data-driven modeling Energy consumption Energy modeling Machining Numerical models Predictive models Task analysis Training |
| Title | Data-Driven Energy Modeling of Machining Centers Through Automata Learning |
| URI | https://ieeexplore.ieee.org/document/10607999 |
| Volume | 22 |
| WOSCitedRecordID | wos001279016800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8aAHnxXrixw8Cam7m-wjx2JbRLQIVultyWtFKF2pW3-_k-yq9aDgLbtMYPmyyXyZZOYDOM_CJMWJFFERG0m5SQQVTITU-XZu0EMJX47h6TYdj7PpVNw3yeo-F8Za6y-f2Z5r-rN8U-qlC5XhDE-CFBlNC1ppmtTJWt-F9TIfUHGUgMYijpsjzDAQl5P-wxC3ghHvMY5LtuA_nNCKqop3KqPtf37ODmw17JH06-HehTU734PNlZqC-3AzkJWkg4VbxcjQZ_YRJ3jm0s5JWZA7f3vSPbjALpI_Mqmlekh_WZXIXyVpaq4-d-BxNJxcXdNGMIFqFoiKyizRRibo8lWBPA2ZnFGMF1pyhXNTs0KpMM7SItRWBYVENiCjKE2kigwLFJofQHtezu0hEIudhFO4C1nMLbZjEzKpkCwylSmbdSH4RDDXTTVxJ2oxy_2uIhC5Az13oOcN6F24-OryWpfS-Mu44wBfMayxPvrl_TFsRE6Z1wdHTqBdLZb2FNb1e_Xytjjzf8oH1NS5GQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BfXB68R5zYNPQmbbpJc8DrcxdRuCVfZWcqsIssrs_P2epFXng4JvaTmB8qXJ-XKScz6EzhM_imEiBYSHWhCmI0445T6xvp1p8FDclWN4HMbjcTKZ8Ls6Wd3lwhhj3OUz07ZNd5avCzW3oTKY4ZEXA6NZRishY4FXpWt9l9ZLXEjFkgIS8jCsDzF9j1-mnfsebAYD1qYMFm3OfrihBV0V51b6W__8oG20WfNH3KkGfActmeku2lioKriHbrqiFKQ7s-sY7rncPmwlz2ziOS5yPHL3J-2DDe0C_cNpJdaDO_OyAAYrcF119amJHvq99GpAaskEoqjHSyKSSGkRgdOXOTA14HJaUpYrwSTMTkVzKf0wiXNfGenlAviACII4EjLQ1JNgvo8a02JqDhA20IlbjTufhsxAO9Q-FRLoIpWJNEkLeZ8IZqquJ25lLV4yt6_weGZBzyzoWQ16C118dXmtimn8Zdy0gC8YVlgf_vL-DK0N0tEwG16Pb4_QemB1el2o5Bg1ytncnKBV9V4-v81O3V_zAaPOvGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Energy+Modeling+of+Machining+Centers+Through+Automata+Learning&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Lestingi%2C+Livia&rft.au=Frigerio%2C+Nicla&rft.au=Bersani%2C+Marcello+M.&rft.au=Matta%2C+Andrea&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=5769&rft.epage=5780&rft_id=info:doi/10.1109%2FTASE.2024.3430394&rft.externalDocID=10607999 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |