Experimentation and optimization of phase change material integrated passive bifacial photovoltaic thermal greenhouse dryer
•Bifacial PVT Greenhouse dryer with PCM is designed and developed.•The operating hours and performance of the dryer with PCM are improved.•North wall insulation with aluminium foil is used for better performance.•MOGA-ANN methods have been used to explore the performance of PVT dryer. A greenhouse d...
Uložené v:
| Vydané v: | Solar energy Ročník 257; s. 45 - 57 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.06.2023
|
| Predmet: | |
| ISSN: | 0038-092X, 1471-1257 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Bifacial PVT Greenhouse dryer with PCM is designed and developed.•The operating hours and performance of the dryer with PCM are improved.•North wall insulation with aluminium foil is used for better performance.•MOGA-ANN methods have been used to explore the performance of PVT dryer.
A greenhouse dryer is the most economical and environmentally friendly device used to dry various products like fruits, vegetables and meats. The operating hours and heat losses from the north wall are the main concerns for its performance. To minimize the heat losses and improve the operating hours, the present study is undertaken on a modified hybrid greenhouse dryer with a thermal energy storage system and a bifacial photovoltaic thermal for electrical (BIFPVT) and thermal energy. A thermocol was wrapped in an aluminium foil (As a reflector) and placed on the north wall to minimize energy losses. The integration of PCM made the system sustainable to use while off sunshine hours as it stores the thermal energy during daytime. It was observed that the BIFPVT system provided electrical power ranging from 2.0 to 85.5 W and 0.6–81 W with respect to solar radiation intensity on the front (IF) and rear (IR) side of BIFPVT which varied from 34–950 W/m2 and 13–350 W/m2, respectively. The drying room temperature was found to be 16–44% higher than the ambient temperature for both days. Further, the experiment result was trained using an artificial neural network and optimized with the help of multi-objective genetic algorithm tools. |
|---|---|
| AbstractList | •Bifacial PVT Greenhouse dryer with PCM is designed and developed.•The operating hours and performance of the dryer with PCM are improved.•North wall insulation with aluminium foil is used for better performance.•MOGA-ANN methods have been used to explore the performance of PVT dryer.
A greenhouse dryer is the most economical and environmentally friendly device used to dry various products like fruits, vegetables and meats. The operating hours and heat losses from the north wall are the main concerns for its performance. To minimize the heat losses and improve the operating hours, the present study is undertaken on a modified hybrid greenhouse dryer with a thermal energy storage system and a bifacial photovoltaic thermal for electrical (BIFPVT) and thermal energy. A thermocol was wrapped in an aluminium foil (As a reflector) and placed on the north wall to minimize energy losses. The integration of PCM made the system sustainable to use while off sunshine hours as it stores the thermal energy during daytime. It was observed that the BIFPVT system provided electrical power ranging from 2.0 to 85.5 W and 0.6–81 W with respect to solar radiation intensity on the front (IF) and rear (IR) side of BIFPVT which varied from 34–950 W/m2 and 13–350 W/m2, respectively. The drying room temperature was found to be 16–44% higher than the ambient temperature for both days. Further, the experiment result was trained using an artificial neural network and optimized with the help of multi-objective genetic algorithm tools. |
| Author | Sehrawat, Ravin Sahdev, Ravinder Kumar Tiwari, Sumit Chhabra, Deepak |
| Author_xml | – sequence: 1 givenname: Ravin orcidid: 0000-0003-1805-8668 surname: Sehrawat fullname: Sehrawat, Ravin organization: University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak, Haryana 124001, India – sequence: 2 givenname: Ravinder Kumar surname: Sahdev fullname: Sahdev, Ravinder Kumar email: ravindersahdev1972@gmail.com, ravindersahdev.uiet@mdurohtak.ac.in organization: University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak, Haryana 124001, India – sequence: 3 givenname: Deepak orcidid: 0000-0002-3738-0153 surname: Chhabra fullname: Chhabra, Deepak organization: University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak, Haryana 124001, India – sequence: 4 givenname: Sumit orcidid: 0000-0002-7177-8595 surname: Tiwari fullname: Tiwari, Sumit email: tiwsumit@hotmail.com, sumit.tiwari@snu.edu.in organization: Shiv Nadar Institute of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh 201314, India |
| BookMark | eNqFkMtqHDEQRUVwIGPHn2DQD3Sn9Jh-4IUJxnmAwRsHshPV6uppDT1SIylDnPx8NIxX2XhVVF3OhTqX7MIHT4zdCKgFiObTvk5hIU-xliBVDboGqd-xjdCtqITcthdsA6C6Cnr58wO7TGkPIFrRtRv29-H3StEdyGfMLniOfuRhze7g_pwPYeLrjIm4ndHviB8wFwAX7nymXSzbyFdMyR2JD25Ce8rWOeRwDEtGZ3meKR7KcReJ_Bx-la4xvlD8yN5PuCS6fp1X7MeXh-f7b9Xj09fv958fK6ugz1U7wdT1LVhtqVGNlT0OqFoaml5aBKv0ANtBSQmNxqbXAuyAqLuBWoVN06krtj332hhSijSZtXyM8cUIMCeDZm9eDZqTQQPaFIOFu_2Ps-5sKUd0y5v03Zmm8trRlTRZR97S6CLZbMbg3mj4B8h5lwk |
| CitedBy_id | crossref_primary_10_1016_j_jafr_2025_102310 crossref_primary_10_1002_ep_14479 crossref_primary_10_1016_j_enconman_2023_117150 crossref_primary_10_1016_j_est_2025_116380 crossref_primary_10_1007_s11082_025_08140_0 crossref_primary_10_1007_s11665_023_08815_3 crossref_primary_10_1016_j_est_2024_111559 crossref_primary_10_1016_j_solener_2024_112364 crossref_primary_10_1016_j_tsep_2023_102371 crossref_primary_10_4271_05_17_01_0001 crossref_primary_10_1016_j_est_2024_112369 crossref_primary_10_1016_j_solener_2023_112046 crossref_primary_10_1080_15567036_2024_2441417 crossref_primary_10_1016_j_solener_2025_113716 crossref_primary_10_1002_htj_23237 crossref_primary_10_1016_j_est_2024_115115 crossref_primary_10_1016_j_jspr_2023_102190 crossref_primary_10_1016_j_enbuild_2025_115667 crossref_primary_10_1016_j_solmat_2024_113134 crossref_primary_10_1016_j_solener_2025_113416 crossref_primary_10_1007_s11356_024_32171_x crossref_primary_10_1002_ente_202400176 crossref_primary_10_1038_s41598_025_02549_z crossref_primary_10_1016_j_solener_2024_112609 |
| Cites_doi | 10.1016/j.energy.2016.07.132 10.1016/j.jfoodeng.2018.05.012 10.1080/15435075.2014.961461 10.1002/ep.13535 10.1016/j.apsusc.2022.154482 10.1007/s11356-022-24552-x 10.1016/j.solener.2021.04.058 10.1016/j.renene.2018.01.017 10.1016/j.energy.2017.04.022 10.1016/j.enbuild.2008.05.007 10.1016/j.rser.2018.03.043 10.1016/j.solener.2021.02.028 10.1016/j.solener.2022.12.009 10.1111/jfpp.16725 10.1016/j.biortech.2018.09.115 10.1016/j.jspr.2022.101990 10.1016/j.applthermaleng.2022.119288 10.1016/j.rser.2016.07.070 10.1016/j.tsep.2020.100713 10.1007/s00231-020-02886-x 10.1016/j.jspr.2021.101848 10.1016/j.solener.2021.10.082 10.1016/j.renene.2022.02.020 10.1016/j.tifs.2021.05.035 10.1016/j.jfoodeng.2004.10.031 10.1016/j.jclepro.2022.132639 10.1016/j.renene.2018.05.027 10.1016/j.solener.2009.05.003 |
| ContentType | Journal Article |
| Copyright | 2023 International Solar Energy Society |
| Copyright_xml | – notice: 2023 International Solar Energy Society |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.solener.2023.04.024 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1471-1257 |
| EndPage | 57 |
| ExternalDocumentID | 10_1016_j_solener_2023_04_024 S0038092X23002542 |
| GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c309t-7f0f8970c4ce636c29aba37eb692ca0c34b05b322064a69410cbaa48be73a6683 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986023500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-092X |
| IngestDate | Sat Nov 29 07:31:34 EST 2025 Tue Nov 18 22:28:02 EST 2025 Fri Feb 23 02:39:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bifacial photovoltaic thermal Multi-objective genetic algorithm Greenhouse dryer Phase change material Artificial neural network Food drying |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-7f0f8970c4ce636c29aba37eb692ca0c34b05b322064a69410cbaa48be73a6683 |
| ORCID | 0000-0002-7177-8595 0000-0002-3738-0153 0000-0003-1805-8668 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_solener_2023_04_024 crossref_citationtrail_10_1016_j_solener_2023_04_024 elsevier_sciencedirect_doi_10_1016_j_solener_2023_04_024 |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Solar energy |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jain (b0045) 2005; 71 Sehrawat, Sahdev, Tiwari (b0110) 2023; 30 Ahmed, Rafa, Mehnaz, Ahmed, Islam, Mofihur, Hoang, Shafiullah (b0005) 2022; 364 Atalay, Yavaş, Turhan Çoban (b0015) 2022; 187 Manisha, Tiwari, Chhabra, Kumari, Tiwari, Sahdev (b0172) 2023; 1–24 Tiwari, Tiwari (b0155) 2017; 128 Tiwari, Tiwari, Al-Helal (b0140) 2016; 65 Kumar, Sahdev, Tiwari, Manchanda, Kumar (b0075) 2021; 93 Kumar, Sahdev, Tiwari, Panchal, Manchanda (b0065) 2019; 21 Karaagaç, Ergun, Agbulut, Gurel, Ceylan (b0055) 2021; 218 Janjai, Lamlert, Intawee, Mahayothee, Bala, Nagle, Müller (b0050) 2009; 83 Safri, Zainuddin, Azmi, Zulkifle, Fudholi, Ruslan, Sopian (b0095) 2021; 114 Nayak, Tiwari (b0085) 2008; 40 Tiwari (b0135) 2020; 56 Bhardwaj, Kumar, Chauhan, Kumar (b0020) 2020; 20 Andharia, Markam, Dzhonova, Maiti (b0010) 2022; 45 Sehrawat, Rana, Mehta, Kansal (b0100) 2022; 604 Yadav, Yadav, Garg, Gupta, Kumar, Chhabra (b0170) 2021 Kumar, Sahdev (b0171) 2023 Chauhan, Kumar, Nuntadusit (b0025) 2018; 121 Wilkins, Brusey, Gaura (b0165) 2018; 237 Madhankumar, Viswanathan, Wu, Taipabu (b0080) 2023; 249 Shimpy, Sahdev, Manchanda, Kumar (b0125) 2022; 46 Jahangir, Ziyaei, Kargarzadeh (b0040) 2022; 54 Tiwari, Tiwari (b9015) 2016; 114 Tuncer, Khanlari, Afshari, Sozen, Çiftçi, Kusun, Şahinkesen (b0160) 2023; 218 Prakash, Kumar (b0090) 2015; 12 Kumar, Kumar, Chhabra (b0060) 2019; 271 Srinivasan, Muthukumar (b0130) 2021; 229 Elbrashy, Abou-Taleb, El-Fakharany, Essa (b0030) 2022; 54 Selimefendigil, Şirin, Oztop (b0115) 2022; 231 Tiwari, Sahdev, Kumar, Chhabra, Tiwari, Tiwari (b9020) 2021; 40 Hamdi, Kooli, Elkhadraoui, Azaizia, Abdelhamid, Guizani (b0035) 2018; 127 Shimpy, Kumar, Sahdev, Manchanda (b0120) 2022; 98 Kumar, Sahdev, Tiwari, Manchanda, Chhabra, Panchal, Sadasivuni (b0070) 2021; 44 Tiwari, Agrawal, Tiwari (b0145) 2018; 90 Sehrawat (10.1016/j.solener.2023.04.024_b0100) 2022; 604 Shimpy (10.1016/j.solener.2023.04.024_b0125) 2022; 46 Srinivasan (10.1016/j.solener.2023.04.024_b0130) 2021; 229 Atalay (10.1016/j.solener.2023.04.024_b0015) 2022; 187 Tiwari (10.1016/j.solener.2023.04.024_b0140) 2016; 65 Janjai (10.1016/j.solener.2023.04.024_b0050) 2009; 83 Kumar (10.1016/j.solener.2023.04.024_b0060) 2019; 271 Andharia (10.1016/j.solener.2023.04.024_b0010) 2022; 45 Elbrashy (10.1016/j.solener.2023.04.024_b0030) 2022; 54 Jahangir (10.1016/j.solener.2023.04.024_b0040) 2022; 54 Kumar (10.1016/j.solener.2023.04.024_b0075) 2021; 93 Madhankumar (10.1016/j.solener.2023.04.024_b0080) 2023; 249 Tiwari (10.1016/j.solener.2023.04.024_b0135) 2020; 56 Yadav (10.1016/j.solener.2023.04.024_b0170) 2021 Prakash (10.1016/j.solener.2023.04.024_b0090) 2015; 12 Nayak (10.1016/j.solener.2023.04.024_b0085) 2008; 40 Tiwari (10.1016/j.solener.2023.04.024_b9020) 2021; 40 Bhardwaj (10.1016/j.solener.2023.04.024_b0020) 2020; 20 Kumar (10.1016/j.solener.2023.04.024_b0065) 2019; 21 Hamdi (10.1016/j.solener.2023.04.024_b0035) 2018; 127 Jain (10.1016/j.solener.2023.04.024_b0045) 2005; 71 Tiwari (10.1016/j.solener.2023.04.024_b9015) 2016; 114 Manisha (10.1016/j.solener.2023.04.024_b0172) 2023; 1–24 Safri (10.1016/j.solener.2023.04.024_b0095) 2021; 114 Kumar (10.1016/j.solener.2023.04.024_b0070) 2021; 44 Tiwari (10.1016/j.solener.2023.04.024_b0155) 2017; 128 Chauhan (10.1016/j.solener.2023.04.024_b0025) 2018; 121 Sehrawat (10.1016/j.solener.2023.04.024_b0110) 2023; 30 Selimefendigil (10.1016/j.solener.2023.04.024_b0115) 2022; 231 Ahmed (10.1016/j.solener.2023.04.024_b0005) 2022; 364 Shimpy (10.1016/j.solener.2023.04.024_b0120) 2022; 98 Tiwari (10.1016/j.solener.2023.04.024_b0145) 2018; 90 Wilkins (10.1016/j.solener.2023.04.024_b0165) 2018; 237 Kumar (10.1016/j.solener.2023.04.024_b0171) 2023 Karaagaç (10.1016/j.solener.2023.04.024_b0055) 2021; 218 Tuncer (10.1016/j.solener.2023.04.024_b0160) 2023; 218 |
| References_xml | – volume: 187 start-page: 1173 year: 2022 end-page: 1183 ident: b0015 article-title: Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer publication-title: Renew. Energy – volume: 1–24 year: 2023 ident: b0172 article-title: Recent developments on photovoltaic thermal drying systems: a clean energy production publication-title: Clean Technol Environ Policy – volume: 12 start-page: 1091 year: 2015 end-page: 1099 ident: b0090 article-title: Annual Performance of a Modified Greenhouse Dryer Under Passive Mode In No-Load Conditions publication-title: Int. J. Green Energy – volume: 271 start-page: 274 year: 2019 end-page: 282 ident: b0060 article-title: Shukla, Improved biobleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools publication-title: Bioresour. Technol. – volume: 98 year: 2022 ident: b0120 article-title: Comparison of groundnut drying in simple and modified natural convection greenhouse dryers: Thermal, environmental and kinetic analyses publication-title: J. Stored Prod. Res. – volume: 65 start-page: 1048 year: 2016 end-page: 1064 ident: b0140 article-title: Development and recent trends in greenhouse dryer: A review publication-title: Renew. Sustain. Energy Rev. – volume: 114 start-page: 155 year: 2016 end-page: 164 ident: b9015 article-title: Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer publication-title: Energy – volume: 20 year: 2020 ident: b0020 article-title: Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region publication-title: Thermal Science and Engineering Progress – volume: 44 year: 2021 ident: b0070 article-title: Thermal performance and kinetic analysis of vermicelli drying inside a greenhouse for sustainable development publication-title: Sustainable Energy Technol. Assess. – volume: 237 start-page: 44 year: 2018 end-page: 51 ident: b0165 article-title: Modelling uncontrolled solar drying of mango waste publication-title: J. Food Eng. – volume: 90 start-page: 142 year: 2018 end-page: 159 ident: b0145 article-title: PVT air collector integrated greenhouse dryers publication-title: Renew. Sustain. Energy Rev. – volume: 30 start-page: 11175 year: 2023 end-page: 11198 ident: b0110 article-title: Heat storage material: a hope in solar thermal publication-title: Environ. Sci. Pollut. Res. – volume: 121 start-page: 53 year: 2018 end-page: 65 ident: b0025 article-title: Heat transfer analysis of PV integrated modified greenhouse dryer publication-title: Renew. Energy – volume: 128 start-page: 183 year: 2017 end-page: 195 ident: b0155 article-title: Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector publication-title: Energy – start-page: 339 year: 2021 end-page: 353 ident: b0170 article-title: Modeling and Optimization of Piezoelectric Energy Harvesting System Under Dynamic Loading, Lecture Notes publication-title: Mech. Eng. – volume: 364 year: 2022 ident: b0005 article-title: Integration of phase change materials in improving the performance of heating, cooling, and clean energy storage systems: An overview publication-title: J. Clean. Prod. – volume: 21 start-page: 203 year: 2019 end-page: 211 ident: b0065 article-title: Experimental free convection thin layer groundnut greenhouse drying publication-title: Agric. Eng. Int. CIGR J. – volume: 231 start-page: 40 year: 2022 end-page: 148 ident: b0115 article-title: Improving the performance of an active greenhouse dryer by integrating a solar absorber north wall coated with graphene nanoplatelet-embedded black paint publication-title: Sol. Energy – volume: 218 start-page: 57 year: 2021 end-page: 67 ident: b0055 article-title: Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms publication-title: Sol. Energy – volume: 54 year: 2022 ident: b0030 article-title: Experimental study of solar air heater performance by evacuated tubes connected in series and loaded with thermal storage material publication-title: J. Storage Mater. – volume: 56 start-page: 2831 year: 2020 end-page: 2845 ident: b0135 article-title: ANN and mathematical modelling for moisture evaporation with thermal modelling of bitter gourd flakes drying in SPVT solar dryer publication-title: Heat Mass Transfer – volume: 54 start-page: 105176 year: 2022 ident: b0040 article-title: Evaluation of thermal behavior and life cycle cost analysis of greenhouses with bio-phase change materials in multiple locations publication-title: J. Storage Mater. – volume: 40 year: 2021 ident: b9020 article-title: Environmental and economicsustainability of PVT drying system: A heat transfer approach publication-title: Environ Prog Sustainable Energy – volume: 114 start-page: 633 year: 2021 end-page: 657 ident: b0095 article-title: Current status of solar-assisted greenhouse drying systems for drying industry publication-title: Trends Food Sci. Technol. – volume: 93 year: 2021 ident: b0075 article-title: Enviro-economical feasibility of groundnut drying under greenhouse and indoor forced convection hot air dryers publication-title: J. Stored Prod. Res. – start-page: 1 year: 2023 end-page: 18 ident: b0171 article-title: Experimental forced convection greenhouse and indirect cabinet drying of date fruits: a comparative study publication-title: J Therm Anal Calorim – volume: 218 year: 2023 ident: b0160 article-title: Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system publication-title: Appl. Therm. Eng. – volume: 229 start-page: 3 year: 2021 end-page: 21 ident: b0130 article-title: A review on solar greenhouse dryer: Design, thermal modelling, energy, economic and environmental aspects publication-title: Sol. Energy – volume: 71 start-page: 170 year: 2005 end-page: 178 ident: b0045 article-title: Modeling the performance of greenhouse with packed bed thermal storage on crop drying application publication-title: J. Food Eng. – volume: 83 start-page: 1550 year: 2009 end-page: 1565 ident: b0050 article-title: Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana publication-title: Sol. Energy – volume: 40 start-page: 2015 year: 2008 end-page: 2021 ident: b0085 article-title: Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse publication-title: Energ. Buildings – volume: 127 start-page: 936 year: 2018 end-page: 946 ident: b0035 article-title: Experimental study and numerical modeling for drying grapes under solar greenhouse publication-title: Renew. Energy – volume: 249 start-page: 667 year: 2023 end-page: 683 ident: b0080 article-title: Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization publication-title: Sol. Energy – volume: 46 start-page: 16725 year: 2022 ident: b0125 article-title: Experimental investigations on latent heat storage based modified mixed-mode greenhouse groundnuts drying publication-title: J. Food Process. Preserv. – volume: 45 start-page: 103764 year: 2022 ident: b0010 article-title: A comparative performance analysis of sensible and latent heat based storage in a small-scale solar thermal dryer publication-title: J. Storage Mater. – volume: 604 year: 2022 ident: b0100 article-title: Optimal synthesis of MoS publication-title: Appl. Surf. Sci. – volume: 114 start-page: 155 year: 2016 ident: 10.1016/j.solener.2023.04.024_b9015 article-title: Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer publication-title: Energy doi: 10.1016/j.energy.2016.07.132 – volume: 237 start-page: 44 year: 2018 ident: 10.1016/j.solener.2023.04.024_b0165 article-title: Modelling uncontrolled solar drying of mango waste publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2018.05.012 – volume: 12 start-page: 1091 issue: 11 year: 2015 ident: 10.1016/j.solener.2023.04.024_b0090 article-title: Annual Performance of a Modified Greenhouse Dryer Under Passive Mode In No-Load Conditions publication-title: Int. J. Green Energy doi: 10.1080/15435075.2014.961461 – volume: 40 year: 2021 ident: 10.1016/j.solener.2023.04.024_b9020 article-title: Environmental and economicsustainability of PVT drying system: A heat transfer approach publication-title: Environ Prog Sustainable Energy doi: 10.1002/ep.13535 – volume: 604 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0100 article-title: Optimal synthesis of MoS2/Cu2O nanocomposite to enhance photocatalytic performance towards indigo carmine dye degradation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154482 – volume: 21 start-page: 203 issue: 3 year: 2019 ident: 10.1016/j.solener.2023.04.024_b0065 article-title: Experimental free convection thin layer groundnut greenhouse drying publication-title: Agric. Eng. Int. CIGR J. – volume: 30 start-page: 11175 year: 2023 ident: 10.1016/j.solener.2023.04.024_b0110 article-title: Heat storage material: a hope in solar thermal publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-24552-x – volume: 54 start-page: 105176 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0040 article-title: Evaluation of thermal behavior and life cycle cost analysis of greenhouses with bio-phase change materials in multiple locations publication-title: J. Storage Mater. – volume: 229 start-page: 3 year: 2021 ident: 10.1016/j.solener.2023.04.024_b0130 article-title: A review on solar greenhouse dryer: Design, thermal modelling, energy, economic and environmental aspects publication-title: Sol. Energy doi: 10.1016/j.solener.2021.04.058 – volume: 45 start-page: 103764 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0010 article-title: A comparative performance analysis of sensible and latent heat based storage in a small-scale solar thermal dryer publication-title: J. Storage Mater. – volume: 1–24 year: 2023 ident: 10.1016/j.solener.2023.04.024_b0172 article-title: Recent developments on photovoltaic thermal drying systems: a clean energy production publication-title: Clean Technol Environ Policy – volume: 121 start-page: 53 year: 2018 ident: 10.1016/j.solener.2023.04.024_b0025 article-title: Heat transfer analysis of PV integrated modified greenhouse dryer publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.017 – volume: 128 start-page: 183 year: 2017 ident: 10.1016/j.solener.2023.04.024_b0155 article-title: Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector publication-title: Energy doi: 10.1016/j.energy.2017.04.022 – volume: 40 start-page: 2015 issue: 11 year: 2008 ident: 10.1016/j.solener.2023.04.024_b0085 article-title: Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2008.05.007 – volume: 44 year: 2021 ident: 10.1016/j.solener.2023.04.024_b0070 article-title: Thermal performance and kinetic analysis of vermicelli drying inside a greenhouse for sustainable development publication-title: Sustainable Energy Technol. Assess. – volume: 90 start-page: 142 year: 2018 ident: 10.1016/j.solener.2023.04.024_b0145 article-title: PVT air collector integrated greenhouse dryers publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.043 – volume: 218 start-page: 57 year: 2021 ident: 10.1016/j.solener.2023.04.024_b0055 article-title: Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms publication-title: Sol. Energy doi: 10.1016/j.solener.2021.02.028 – volume: 249 start-page: 667 year: 2023 ident: 10.1016/j.solener.2023.04.024_b0080 article-title: Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization publication-title: Sol. Energy doi: 10.1016/j.solener.2022.12.009 – volume: 46 start-page: 16725 issue: 7 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0125 article-title: Experimental investigations on latent heat storage based modified mixed-mode greenhouse groundnuts drying publication-title: J. Food Process. Preserv. doi: 10.1111/jfpp.16725 – volume: 271 start-page: 274 year: 2019 ident: 10.1016/j.solener.2023.04.024_b0060 article-title: Shukla, Improved biobleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.115 – volume: 98 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0120 article-title: Comparison of groundnut drying in simple and modified natural convection greenhouse dryers: Thermal, environmental and kinetic analyses publication-title: J. Stored Prod. Res. doi: 10.1016/j.jspr.2022.101990 – volume: 54 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0030 article-title: Experimental study of solar air heater performance by evacuated tubes connected in series and loaded with thermal storage material publication-title: J. Storage Mater. – volume: 218 year: 2023 ident: 10.1016/j.solener.2023.04.024_b0160 article-title: Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119288 – volume: 65 start-page: 1048 year: 2016 ident: 10.1016/j.solener.2023.04.024_b0140 article-title: Development and recent trends in greenhouse dryer: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.07.070 – volume: 20 year: 2020 ident: 10.1016/j.solener.2023.04.024_b0020 article-title: Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region publication-title: Thermal Science and Engineering Progress doi: 10.1016/j.tsep.2020.100713 – volume: 56 start-page: 2831 year: 2020 ident: 10.1016/j.solener.2023.04.024_b0135 article-title: ANN and mathematical modelling for moisture evaporation with thermal modelling of bitter gourd flakes drying in SPVT solar dryer publication-title: Heat Mass Transfer doi: 10.1007/s00231-020-02886-x – volume: 93 year: 2021 ident: 10.1016/j.solener.2023.04.024_b0075 article-title: Enviro-economical feasibility of groundnut drying under greenhouse and indoor forced convection hot air dryers publication-title: J. Stored Prod. Res. doi: 10.1016/j.jspr.2021.101848 – start-page: 1 year: 2023 ident: 10.1016/j.solener.2023.04.024_b0171 article-title: Experimental forced convection greenhouse and indirect cabinet drying of date fruits: a comparative study publication-title: J Therm Anal Calorim – volume: 231 start-page: 40 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0115 article-title: Improving the performance of an active greenhouse dryer by integrating a solar absorber north wall coated with graphene nanoplatelet-embedded black paint publication-title: Sol. Energy doi: 10.1016/j.solener.2021.10.082 – volume: 187 start-page: 1173 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0015 article-title: Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer publication-title: Renew. Energy doi: 10.1016/j.renene.2022.02.020 – volume: 114 start-page: 633 year: 2021 ident: 10.1016/j.solener.2023.04.024_b0095 article-title: Current status of solar-assisted greenhouse drying systems for drying industry publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.05.035 – volume: 71 start-page: 170 issue: 2 year: 2005 ident: 10.1016/j.solener.2023.04.024_b0045 article-title: Modeling the performance of greenhouse with packed bed thermal storage on crop drying application publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2004.10.031 – start-page: 339 year: 2021 ident: 10.1016/j.solener.2023.04.024_b0170 article-title: Modeling and Optimization of Piezoelectric Energy Harvesting System Under Dynamic Loading, Lecture Notes publication-title: Mech. Eng. – volume: 364 year: 2022 ident: 10.1016/j.solener.2023.04.024_b0005 article-title: Integration of phase change materials in improving the performance of heating, cooling, and clean energy storage systems: An overview publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.132639 – volume: 127 start-page: 936 year: 2018 ident: 10.1016/j.solener.2023.04.024_b0035 article-title: Experimental study and numerical modeling for drying grapes under solar greenhouse publication-title: Renew. Energy doi: 10.1016/j.renene.2018.05.027 – volume: 83 start-page: 1550 issue: 9 year: 2009 ident: 10.1016/j.solener.2023.04.024_b0050 article-title: Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana publication-title: Sol. Energy doi: 10.1016/j.solener.2009.05.003 |
| SSID | ssj0017187 |
| Score | 2.517481 |
| Snippet | •Bifacial PVT Greenhouse dryer with PCM is designed and developed.•The operating hours and performance of the dryer with PCM are improved.•North wall... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 45 |
| SubjectTerms | Artificial neural network Bifacial photovoltaic thermal Food drying Greenhouse dryer Multi-objective genetic algorithm Phase change material |
| Title | Experimentation and optimization of phase change material integrated passive bifacial photovoltaic thermal greenhouse dryer |
| URI | https://dx.doi.org/10.1016/j.solener.2023.04.024 |
| Volume | 257 |
| WOSCitedRecordID | wos000986023500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-1257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017187 issn: 0038-092X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE9RXtoDt8jF9fq1xwoFAYcKkSDlZs2u19hVakepk1biB_E3mX34QakKPXCxoo12Y3u-zIzX33xDyFumVAKgpOf7IvJCFnNP8CLycsUAI_YRzwWYZhPJyUm6XPIvk8nPrhZmt0rqOr285Ov_amocQ2Pr0tlbmLtfFAfwMxodj2h2PP6T4WeDZn_bcY0bdAxnruLScJxL0DR1U1kwxZxV2d4dnXREPl1jTm147VUBZlN9XTZtg66shUrqZBX9-Wr6XZN2ymaLa-U6dx9nunP9zDxVprSw38ZR5QYuwPj9r7CremDOoczxOrthrW9huN8D-aAEsbGvphQG0L68aFFdgK2Vn2_Pqna8hxGwgWvV-WWmSRimsXrvlwOrXO08qxWddDHafvOH97cbEaeH55rSoLTaa8CMkK0t0_5dbftKFOy5iR3t7TRzy2R6mcwPM1zmDtkPkoij-9w__jRbfu5fWGGIt_Ks7kKGYrF3157P9WnQKLVZPCQP3DMJPbZYekQmqn5M7o-UKp-QH1dQRRFVdIwq2hTUoIpaVNEOVXRAFXWooh2q6BhV1KGKDqiiBlVPybcPs8X7j57r2-FJ5vPWSwq_SHniy1CqmMUy4CCA6eY7PJDgSxYKPxIYSTAdBl1I7UsBEKZCJQziOGXPyF7d1Oo5oZhgpXkopdK7JylOhEgV-RETgHdaqeCAhN1tzKQTtde9VVbZjWY8IIf9tLVVdfnbhLSzUeZSU5tyZoi9m6e-uO1vvST3hv_IK7LXbrbqNbkrd211vnnjgPcLWP-8-Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimentation+and+optimization+of+phase+change+material+integrated+passive+bifacial+photovoltaic+thermal+greenhouse+dryer&rft.jtitle=Solar+energy&rft.au=Sehrawat%2C+Ravin&rft.au=Sahdev%2C+Ravinder+Kumar&rft.au=Chhabra%2C+Deepak&rft.au=Tiwari%2C+Sumit&rft.date=2023-06-01&rft.issn=0038-092X&rft.volume=257&rft.spage=45&rft.epage=57&rft_id=info:doi/10.1016%2Fj.solener.2023.04.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2023_04_024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |