Synthesis and preparation of thermoplastic silicone elastomer and molecular dynamics simulation of self healing and mechanical properties
Previous studies have shown that the self-healing properties of modified polydimethylsiloxane (PDMS) elastomer are primarily attributed to hydrogen bonding with modified silica. The addition of modified silica can improve the tensile strength of the PDMS matrix, as the modified silica and modified P...
Uložené v:
| Vydané v: | Polymer (Guilford) Ročník 304; s. 127151 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
03.06.2024
|
| Predmet: | |
| ISSN: | 0032-3861, 1873-2291 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Previous studies have shown that the self-healing properties of modified polydimethylsiloxane (PDMS) elastomer are primarily attributed to hydrogen bonding with modified silica. The addition of modified silica can improve the tensile strength of the PDMS matrix, as the modified silica and modified PDMS blend groups generate more hydrogen bonding interactions, resulting in better self-healing properties. However, as the proportion of silica in the system gradually increases, the rigid particles cause a slight decrease in the tensile property of the material. Consequently, it is crucial to strike a balance between the desired mechanical properties and the self-healing capabilities when investigating this subject matter.
To investigate the self-healing behavior of PDMS elastomer, a molecular dynamics technique based on a microcracking model was employed. During the compounding process, isocyanate-modified nanosilica was added to the polysiloxane matrix.The ratio of soft and hard segments, which determines the number of hydrogen bonds, was optimized by varying the silica addition ratio from 1 % to 5 %. The performance of the samples was analyzed using several calculations, including Fraction of Free Volume (FFV), Mean Square Displacement function (MSD), and Relative Concentration (RC).The results revealed that the highest self-healing performance and fastest self-healing rate were achieved when the silica addition ratio was 3 %. All tested structures displayed efficient healing within a short time frame. The primary hydrogen bonding exchanges occurred between the urea and UPy groups within the system.Furthermore, the experimental results aligned with the findings from the molecular dynamics simulations, thereby validating this study.
[Display omitted]
•By blending UPy-NCO modified silica with modified PDMS, an elastomer with outstanding self-healing capabilities was successfully synthesized.•This method not only endowed the elastomer with self-healing property but also enhanced its tensile strength and elongation at break.•Through molecular dynamics simulation, the self-healing mechanism of the elastomer was further elucidated. |
|---|---|
| AbstractList | Previous studies have shown that the self-healing properties of modified polydimethylsiloxane (PDMS) elastomer are primarily attributed to hydrogen bonding with modified silica. The addition of modified silica can improve the tensile strength of the PDMS matrix, as the modified silica and modified PDMS blend groups generate more hydrogen bonding interactions, resulting in better self-healing properties. However, as the proportion of silica in the system gradually increases, the rigid particles cause a slight decrease in the tensile property of the material. Consequently, it is crucial to strike a balance between the desired mechanical properties and the self-healing capabilities when investigating this subject matter.
To investigate the self-healing behavior of PDMS elastomer, a molecular dynamics technique based on a microcracking model was employed. During the compounding process, isocyanate-modified nanosilica was added to the polysiloxane matrix.The ratio of soft and hard segments, which determines the number of hydrogen bonds, was optimized by varying the silica addition ratio from 1 % to 5 %. The performance of the samples was analyzed using several calculations, including Fraction of Free Volume (FFV), Mean Square Displacement function (MSD), and Relative Concentration (RC).The results revealed that the highest self-healing performance and fastest self-healing rate were achieved when the silica addition ratio was 3 %. All tested structures displayed efficient healing within a short time frame. The primary hydrogen bonding exchanges occurred between the urea and UPy groups within the system.Furthermore, the experimental results aligned with the findings from the molecular dynamics simulations, thereby validating this study.
[Display omitted]
•By blending UPy-NCO modified silica with modified PDMS, an elastomer with outstanding self-healing capabilities was successfully synthesized.•This method not only endowed the elastomer with self-healing property but also enhanced its tensile strength and elongation at break.•Through molecular dynamics simulation, the self-healing mechanism of the elastomer was further elucidated. |
| ArticleNumber | 127151 |
| Author | Wang, Jincheng Hu, Wanying Chai, Xin Fei, Fan Lu, Wentong Tian, Hao |
| Author_xml | – sequence: 1 givenname: Fan orcidid: 0009-0000-5741-101X surname: Fei fullname: Fei, Fan – sequence: 2 givenname: Xin surname: Chai fullname: Chai, Xin – sequence: 3 givenname: Wanying surname: Hu fullname: Hu, Wanying – sequence: 4 givenname: Wentong surname: Lu fullname: Lu, Wentong – sequence: 5 givenname: Hao surname: Tian fullname: Tian, Hao – sequence: 6 givenname: Jincheng orcidid: 0000-0001-9815-4726 surname: Wang fullname: Wang, Jincheng email: wjc406@sues.edu.cn |
| BookMark | eNqFkN1KAzEQhYNUsK0-gpAX2DXJ_uOFSPEPCl7Y-yVNJjYlmyzJKuwj-Nam3XrjTa8GZuY7Z-Ys0Mw6CwjdUpJSQsu7fdo7M3bgU0ZYnlJW0YJeoDmtqyxhrKEzNCckY0lWl_QKLULYE0JYwfI5-vkY7bCDoAPmVuLeQ889H7Sz2CkcJ75zveFh0AIHbbSI1hgODRcNj0znDIgvwz2Wo-WdFiFudrHxpxLAKLwDbrT9nAgQO2614CYauh78oCFco0vFTYCbU12izfPTZvWarN9f3laP60RkpBmSikOpBBN1QfJSNGLb1DxjCmpZ50oSSSoGtZKMQtM0UDJVNFkmQEoCW0m32RLdT7LCuxA8qFbo4Xjq4Lk2LSXtIdR2355CbQ-htlOokS7-0b3XHffjWe5h4iB-9q3jNAgNNt6lPYihlU6fUfgFdlecqg |
| CitedBy_id | crossref_primary_10_1039_D5PY00616C crossref_primary_10_1021_acsapm_5c01125 crossref_primary_10_1021_acs_macromol_5c00368 |
| Cites_doi | 10.1002/marc.201200689 10.1166/jnn.2018.15548 10.1002/pat.4409 10.1039/C9CP06590C 10.1016/j.apsusc.2022.152471 10.1080/15583724.2015.1107098 10.1021/acs.jpcc.8b11790 10.1002/adfm.201303013 10.1016/j.eurpolymj.2020.109475 10.1039/D0SM02175J 10.3389/fmats.2022.859482 10.1002/mats.201200057 10.1021/am201417h 10.1016/j.polymer.2020.123111 10.1002/pc.25019 10.1002/mats.202270003 10.1038/pj.2012.230 10.1039/D0CP03013A 10.1002/marc.201500123 10.1186/s11671-017-1935-x 10.1007/s11595-019-2097-8 10.1007/s12274-023-5563-8 10.1021/acsami.0c03038 10.3390/ma14081884 10.1016/j.surfcoat.2021.127388 10.1021/acsapm.8b00153 10.1016/j.apsusc.2011.10.090 10.1021/acsapm.1c00271 10.1016/j.conbuildmat.2015.12.058 10.1039/C9TA03775F |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.polymer.2024.127151 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-2291 |
| ExternalDocumentID | 10_1016_j_polymer_2024_127151 S0032386124004877 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 53G 6TJ 6TU 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 M24 M41 R2- SCB SMS T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c309t-7ae6fc2c85046c9cb98a32fe8d84fd0d072e8fd21e999e62f5933cedd0ebd1b3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242238500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-3861 |
| IngestDate | Tue Nov 18 22:04:50 EST 2025 Sat Nov 29 03:55:12 EST 2025 Sat Jun 01 15:41:38 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Self-healing Molecular dynamics simulation Hydrogen bonds Polydimethylsiloxane |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-7ae6fc2c85046c9cb98a32fe8d84fd0d072e8fd21e999e62f5933cedd0ebd1b3 |
| ORCID | 0000-0001-9815-4726 0009-0000-5741-101X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_polymer_2024_127151 crossref_primary_10_1016_j_polymer_2024_127151 elsevier_sciencedirect_doi_10_1016_j_polymer_2024_127151 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-03 |
| PublicationDateYYYYMMDD | 2024-06-03 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Polymer (Guilford) |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Yu, Feng, Feng (bib10) 2021; 52 Li, Niu, Yu, Gao, Wu, Wang, Sun (bib5) 2021; 3 Rahman, Penco, Peroni, Ramorino, Grande, Di Landro (bib11) 2011; 3 Zheng, Liu, Wang, Yao, Dang, Liu, Lu, Li (bib8) 2023; 16 Zhou, Li, Yang, Gu (bib26) 2013; 22 Zheng, Yang, Sun, Zhang, Guo (bib25) 2021; 212 Pan, Hu, Yang, Tan (bib12) 2019; 1 Wu, Wang, Lu, Sun, Wong (bib34) 2022; 583 Oya, Ikezaki, Yoshie (bib1) 2013; 45 Irigoyen, Matxain, Ruiperez (bib24) 2022; 9 Faghihnejad, Feldman, Yu, Tirrell, Israelachvili, Hawker, Kramer, Zeng (bib33) 2014; 24 Sulym, Goncharuk, Sternik, Terpilowski, Derylo-Marczewska, Borysenko, Gun'ko (bib19) 2017; 12 Chen, He, Cheng, Xiong (bib20) 2020; 67 Le Bras, Berthin, Hamdi, Louati, Aloise, Takeshita, Adamo, Perrier (bib23) 2020; 22 Chen, Wu, Gong, Zhang, Yan, Liu, Zhang, Thundat, Zeng (bib29) 2019; 123 Shan, Liang, Mao, Lu, Liu, Huang, Yang (bib6) 2021; 17 Wang, Fan, Chen (bib4) 2020; 41 Liu, Bu, Sanjayan, Nazari, Shen (bib31) 2016; 104 Ren, Li, Zhao, Wang, Wang, Li, Jian, Li, Yan, Bai (bib32) 2020; 12 Chen, Wen, Ma, Sun, Lin, Yue, Mol, Liu (bib7) 2021; 421 Takase, Koyanagi, Mori, Sakai (bib28) 2021; 14 Ullah, Azizli, Man, Ismail, Khan (bib30) 2016; 56 Zhou, Sun, Wu, Zhang, Liu, Xiao (bib13) 2019; 34 He, Ma, Xu, Wang, Chen, Deng, Wang, Zhang, Fu (bib27) 2012; 258 Billiet, Hillewaere, Teixeira, Du Prez (bib3) 2013; 34 Liu, Zhong, Li, Rong, Yang, Zhou, Shen, Gao, Huang, He (bib14) 2020; 124 Chen, Zhu, Luo, Chen, Ma, Bukhvalov, Liu, Zhang, Luo (bib22) 2020; 22 Chen, Li, Luo, Shi, Ma, Zhang, Boukhvalov, Luo (bib2) 2019; 7 Zhang, Xu, Shen, Wang, Ding (bib9) 2018; 18 Suriano, Brambilla, Tommasini, Turri (bib16) 2018; 29 An, Noh, Nam, Oh (bib15) 2015; 36 Chen, Shen, Jia (bib21) 2022; 31 Kausar (bib18) 2020; 59 Hu, Qian, Li, Fei, Luo, Wang, Xia (bib17) 2019; 40 Wang (10.1016/j.polymer.2024.127151_bib4) 2020; 41 Chen (10.1016/j.polymer.2024.127151_bib2) 2019; 7 Chen (10.1016/j.polymer.2024.127151_bib7) 2021; 421 Zhou (10.1016/j.polymer.2024.127151_bib26) 2013; 22 Zhou (10.1016/j.polymer.2024.127151_bib13) 2019; 34 Zheng (10.1016/j.polymer.2024.127151_bib8) 2023; 16 Chen (10.1016/j.polymer.2024.127151_bib10) 2021; 52 Rahman (10.1016/j.polymer.2024.127151_bib11) 2011; 3 Liu (10.1016/j.polymer.2024.127151_bib31) 2016; 104 Billiet (10.1016/j.polymer.2024.127151_bib3) 2013; 34 Zheng (10.1016/j.polymer.2024.127151_bib25) 2021; 212 Chen (10.1016/j.polymer.2024.127151_bib21) 2022; 31 Faghihnejad (10.1016/j.polymer.2024.127151_bib33) 2014; 24 Hu (10.1016/j.polymer.2024.127151_bib17) 2019; 40 Sulym (10.1016/j.polymer.2024.127151_bib19) 2017; 12 Chen (10.1016/j.polymer.2024.127151_bib29) 2019; 123 Le Bras (10.1016/j.polymer.2024.127151_bib23) 2020; 22 Liu (10.1016/j.polymer.2024.127151_bib14) 2020; 124 Zhang (10.1016/j.polymer.2024.127151_bib9) 2018; 18 Shan (10.1016/j.polymer.2024.127151_bib6) 2021; 17 An (10.1016/j.polymer.2024.127151_bib15) 2015; 36 Pan (10.1016/j.polymer.2024.127151_bib12) 2019; 1 Irigoyen (10.1016/j.polymer.2024.127151_bib24) 2022; 9 Ullah (10.1016/j.polymer.2024.127151_bib30) 2016; 56 Suriano (10.1016/j.polymer.2024.127151_bib16) 2018; 29 He (10.1016/j.polymer.2024.127151_bib27) 2012; 258 Oya (10.1016/j.polymer.2024.127151_bib1) 2013; 45 Chen (10.1016/j.polymer.2024.127151_bib20) 2020; 67 Kausar (10.1016/j.polymer.2024.127151_bib18) 2020; 59 Li (10.1016/j.polymer.2024.127151_bib5) 2021; 3 Ren (10.1016/j.polymer.2024.127151_bib32) 2020; 12 Chen (10.1016/j.polymer.2024.127151_bib22) 2020; 22 Wu (10.1016/j.polymer.2024.127151_bib34) 2022; 583 Takase (10.1016/j.polymer.2024.127151_bib28) 2021; 14 |
| References_xml | – volume: 67 start-page: 91 year: 2020 end-page: 96 ident: bib20 article-title: Self-repair performance of modified silica/modified silicone rubber composite elastomers publication-title: Rubber Ind. – volume: 421 year: 2021 ident: bib7 article-title: Optimization of intrinsic self-healing silicone coatings by benzotriazole loaded mesoporous silica publication-title: Surf. Coating. Technol. – volume: 16 start-page: 7810 year: 2023 end-page: 7819 ident: bib8 article-title: Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications publication-title: Nano Res. – volume: 14 year: 2021 ident: bib28 article-title: Molecular dynamics simulation for evaluating fracture entropy of a polymer material under various combined stress states publication-title: Materials – volume: 123 start-page: 4540 year: 2019 end-page: 4548 ident: bib29 article-title: Mechanistic understanding and nanomechanics of multiple hydrogen-bonding interactions in aqueous environment publication-title: J. Phys. Chem. C – volume: 24 start-page: 2322 year: 2014 end-page: 2333 ident: bib33 article-title: Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups publication-title: Adv. Funct. Mater. – volume: 258 start-page: 2544 year: 2012 end-page: 2550 ident: bib27 article-title: Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates publication-title: Appl. Surf. Sci. – volume: 34 start-page: 290 year: 2013 end-page: 309 ident: bib3 article-title: Chemistry of Crosslinking processes for self-healing polymers publication-title: Macromol. Rapid Commun. – volume: 22 start-page: 107 year: 2013 end-page: 114 ident: bib26 article-title: Effect of hydrogen bonds on structures and glass transition temperatures of MaleimideIsobutene alternating copolymers: molecular dynamics simulation study publication-title: Macromol. Theory Simul. – volume: 29 start-page: 2899 year: 2018 end-page: 2908 ident: bib16 article-title: A deep insight into the intrinsic healing mechanism in ureido-pyrimidinone copolymers publication-title: Polym. Adv. Technol. – volume: 34 start-page: 630 year: 2019 end-page: 637 ident: bib13 article-title: Evaluation on self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane publication-title: J. Wuhan Univ. Technol.-Materials Sci. Ed. – volume: 59 start-page: 1148 year: 2020 end-page: 1166 ident: bib18 article-title: Polydimethylsiloxane-based nanocomposite: present research scenario and emergent future trends publication-title: Polym.Plast. Technol. Mater. – volume: 3 start-page: 3373 year: 2021 end-page: 3382 ident: bib5 article-title: SupramolecularPolydimethylsiloxane elastomer with enhanced mechanical properties and self-healing ability Engineered by synergetic dynamic bonds publication-title: ACS Appl. Polym. Mater. – volume: 12 year: 2017 ident: bib19 article-title: Nanooxide/polymer composites with silica@PDMS and ceria- zirconia-silica@PDMS: textural, morphological, and hydrophilic/hydrophobic features publication-title: Nanoscale Res. Lett. – volume: 3 start-page: 4865 year: 2011 end-page: 4874 ident: bib11 article-title: Self-repairing systems based on ionomers and epoxidized natural rubber blends publication-title: ACS Appl. Mater. Interfaces – volume: 124 year: 2020 ident: bib14 article-title: A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding publication-title: Eur. Polym. J. – volume: 22 start-page: 17620 year: 2020 end-page: 17631 ident: bib22 article-title: Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer publication-title: Phys. Chem. Chem. Phys. – volume: 36 start-page: 1255 year: 2015 end-page: 1260 ident: bib15 article-title: Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability publication-title: Macromol. Rapid Commun. – volume: 583 year: 2022 ident: bib34 article-title: Study of the interfacial adhesion properties of a novel Self-healable siloxane polymer material via molecular dynamics simulation publication-title: Appl. Surf. Sci. – volume: 41 start-page: 548 year: 2020 end-page: 555 ident: bib4 article-title: Analysis of composition and Antigenic atomic oxygen performance of silica-reinforced silicone rubber publication-title: Chem. J. Chin. Univ.Chin. – volume: 22 start-page: 6942 year: 2020 end-page: 6952 ident: bib23 article-title: Understanding the properties of dithienylethenes functionalized for supramolecular self-assembly: a molecular modeling study publication-title: Phys. Chem. Chem. Phys. – volume: 9 year: 2022 ident: bib24 article-title: Combined DFT and MD simulation protocol to characterize self-healing properties in disulfide-containing materials: polyurethanes and polymethacrylates as case studies publication-title: Front. Mater. – volume: 212 year: 2021 ident: bib25 article-title: A molecular dynamics simulation on self-healing behavior based on disulfide bond exchange reactions publication-title: Polymer – volume: 104 start-page: 72 year: 2016 end-page: 84 ident: bib31 article-title: The application of coated superabsorbent polymer in well cement for plugging the microcrack publication-title: Construct. Build. Mater. – volume: 31 year: 2022 ident: bib21 article-title: Understanding the self‐healing mechanism of polyurethane elastomer based on hydrogen bonding interactions through molecular dynamics simulation publication-title: Macromol. Theory Simul. – volume: 40 start-page: E1397 year: 2019 end-page: E1406 ident: bib17 article-title: A novel method to prepare homogeneous biocompatible graphene-based PDMS composites with enhanced mechanical, thermal and antibacterial properties publication-title: Polym. Compos. – volume: 45 start-page: 955 year: 2013 end-page: 961 ident: bib1 article-title: A crystalline supramolecular polymer with self-healing capability at room temperature publication-title: Polym. J. – volume: 1 start-page: 425 year: 2019 ident: bib12 article-title: From fragile plastic to room-temperature self-healing elastomer: tuning quadruple hydrogen bonding interaction through one-pot synthesis publication-title: ACS Appl. Polym. Mater. – volume: 18 start-page: 7721 year: 2018 end-page: 7731 ident: bib9 article-title: One-step fabrication of self-healing and durable superhydrophobic cotton fabrics based on silica aerogel publication-title: J. Nanosci. Nanotechnol. – volume: 12 start-page: 21433 year: 2020 end-page: 21440 ident: bib32 article-title: Dipeptide self-assembled hydrogels with shear-thinning and instantaneous self-healing properties determined by peptide sequences publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 4643 year: 2021 end-page: 4652 ident: bib6 article-title: Stretchable dual cross-linked silicon elastomer with a superhydrophobic surface and fast triple self-healing ability at room temperature publication-title: Soft Matter – volume: 56 start-page: 429 year: 2016 end-page: 485 ident: bib30 article-title: The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review publication-title: Polym. Rev. – volume: 7 start-page: 15207 year: 2019 end-page: 15214 ident: bib2 article-title: A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism publication-title: J. Mater. Chem. A – volume: 52 start-page: 272 year: 2021 end-page: 280 ident: bib10 article-title: Polymer composite material with both thermal conduction and self-healing functions publication-title: Acta Polym. Sin. – volume: 34 start-page: 290 issue: 4 year: 2013 ident: 10.1016/j.polymer.2024.127151_bib3 article-title: Chemistry of Crosslinking processes for self-healing polymers publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201200689 – volume: 18 start-page: 7721 issue: 11 year: 2018 ident: 10.1016/j.polymer.2024.127151_bib9 article-title: One-step fabrication of self-healing and durable superhydrophobic cotton fabrics based on silica aerogel publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2018.15548 – volume: 29 start-page: 2899 issue: 12 year: 2018 ident: 10.1016/j.polymer.2024.127151_bib16 article-title: A deep insight into the intrinsic healing mechanism in ureido-pyrimidinone copolymers publication-title: Polym. Adv. Technol. doi: 10.1002/pat.4409 – volume: 22 start-page: 6942 issue: 13 year: 2020 ident: 10.1016/j.polymer.2024.127151_bib23 article-title: Understanding the properties of dithienylethenes functionalized for supramolecular self-assembly: a molecular modeling study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP06590C – volume: 583 year: 2022 ident: 10.1016/j.polymer.2024.127151_bib34 article-title: Study of the interfacial adhesion properties of a novel Self-healable siloxane polymer material via molecular dynamics simulation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.152471 – volume: 56 start-page: 429 issue: 3 year: 2016 ident: 10.1016/j.polymer.2024.127151_bib30 article-title: The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review publication-title: Polym. Rev. doi: 10.1080/15583724.2015.1107098 – volume: 123 start-page: 4540 issue: 7 year: 2019 ident: 10.1016/j.polymer.2024.127151_bib29 article-title: Mechanistic understanding and nanomechanics of multiple hydrogen-bonding interactions in aqueous environment publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b11790 – volume: 24 start-page: 2322 issue: 16 year: 2014 ident: 10.1016/j.polymer.2024.127151_bib33 article-title: Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303013 – volume: 124 year: 2020 ident: 10.1016/j.polymer.2024.127151_bib14 article-title: A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.109475 – volume: 17 start-page: 4643 issue: 17 year: 2021 ident: 10.1016/j.polymer.2024.127151_bib6 article-title: Stretchable dual cross-linked silicon elastomer with a superhydrophobic surface and fast triple self-healing ability at room temperature publication-title: Soft Matter doi: 10.1039/D0SM02175J – volume: 9 year: 2022 ident: 10.1016/j.polymer.2024.127151_bib24 article-title: Combined DFT and MD simulation protocol to characterize self-healing properties in disulfide-containing materials: polyurethanes and polymethacrylates as case studies publication-title: Front. Mater. doi: 10.3389/fmats.2022.859482 – volume: 22 start-page: 107 issue: 2 year: 2013 ident: 10.1016/j.polymer.2024.127151_bib26 article-title: Effect of hydrogen bonds on structures and glass transition temperatures of MaleimideIsobutene alternating copolymers: molecular dynamics simulation study publication-title: Macromol. Theory Simul. doi: 10.1002/mats.201200057 – volume: 67 start-page: 91 issue: 2 year: 2020 ident: 10.1016/j.polymer.2024.127151_bib20 article-title: Self-repair performance of modified silica/modified silicone rubber composite elastomers publication-title: Rubber Ind. – volume: 52 start-page: 272 issue: 3 year: 2021 ident: 10.1016/j.polymer.2024.127151_bib10 article-title: Polymer composite material with both thermal conduction and self-healing functions publication-title: Acta Polym. Sin. – volume: 41 start-page: 548 issue: 3 year: 2020 ident: 10.1016/j.polymer.2024.127151_bib4 article-title: Analysis of composition and Antigenic atomic oxygen performance of silica-reinforced silicone rubber publication-title: Chem. J. Chin. Univ.Chin. – volume: 3 start-page: 4865 issue: 12 year: 2011 ident: 10.1016/j.polymer.2024.127151_bib11 article-title: Self-repairing systems based on ionomers and epoxidized natural rubber blends publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201417h – volume: 212 year: 2021 ident: 10.1016/j.polymer.2024.127151_bib25 article-title: A molecular dynamics simulation on self-healing behavior based on disulfide bond exchange reactions publication-title: Polymer doi: 10.1016/j.polymer.2020.123111 – volume: 40 start-page: E1397 year: 2019 ident: 10.1016/j.polymer.2024.127151_bib17 article-title: A novel method to prepare homogeneous biocompatible graphene-based PDMS composites with enhanced mechanical, thermal and antibacterial properties publication-title: Polym. Compos. doi: 10.1002/pc.25019 – volume: 31 issue: 2 year: 2022 ident: 10.1016/j.polymer.2024.127151_bib21 article-title: Understanding the self‐healing mechanism of polyurethane elastomer based on hydrogen bonding interactions through molecular dynamics simulation publication-title: Macromol. Theory Simul. doi: 10.1002/mats.202270003 – volume: 45 start-page: 955 issue: 9 year: 2013 ident: 10.1016/j.polymer.2024.127151_bib1 article-title: A crystalline supramolecular polymer with self-healing capability at room temperature publication-title: Polym. J. doi: 10.1038/pj.2012.230 – volume: 22 start-page: 17620 issue: 31 year: 2020 ident: 10.1016/j.polymer.2024.127151_bib22 article-title: Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP03013A – volume: 36 start-page: 1255 issue: 13 year: 2015 ident: 10.1016/j.polymer.2024.127151_bib15 article-title: Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201500123 – volume: 12 year: 2017 ident: 10.1016/j.polymer.2024.127151_bib19 article-title: Nanooxide/polymer composites with silica@PDMS and ceria- zirconia-silica@PDMS: textural, morphological, and hydrophilic/hydrophobic features publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-1935-x – volume: 34 start-page: 630 issue: 3 year: 2019 ident: 10.1016/j.polymer.2024.127151_bib13 article-title: Evaluation on self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane publication-title: J. Wuhan Univ. Technol.-Materials Sci. Ed. doi: 10.1007/s11595-019-2097-8 – volume: 59 start-page: 1148 issue: 11 year: 2020 ident: 10.1016/j.polymer.2024.127151_bib18 article-title: Polydimethylsiloxane-based nanocomposite: present research scenario and emergent future trends publication-title: Polym.Plast. Technol. Mater. – volume: 16 start-page: 7810 issue: 5 year: 2023 ident: 10.1016/j.polymer.2024.127151_bib8 article-title: Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications publication-title: Nano Res. doi: 10.1007/s12274-023-5563-8 – volume: 12 start-page: 21433 issue: 19 year: 2020 ident: 10.1016/j.polymer.2024.127151_bib32 article-title: Dipeptide self-assembled hydrogels with shear-thinning and instantaneous self-healing properties determined by peptide sequences publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03038 – volume: 14 issue: 8 year: 2021 ident: 10.1016/j.polymer.2024.127151_bib28 article-title: Molecular dynamics simulation for evaluating fracture entropy of a polymer material under various combined stress states publication-title: Materials doi: 10.3390/ma14081884 – volume: 421 year: 2021 ident: 10.1016/j.polymer.2024.127151_bib7 article-title: Optimization of intrinsic self-healing silicone coatings by benzotriazole loaded mesoporous silica publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2021.127388 – volume: 1 start-page: 425 issue: 3 year: 2019 ident: 10.1016/j.polymer.2024.127151_bib12 article-title: From fragile plastic to room-temperature self-healing elastomer: tuning quadruple hydrogen bonding interaction through one-pot synthesis publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.8b00153 – volume: 258 start-page: 2544 issue: 7 year: 2012 ident: 10.1016/j.polymer.2024.127151_bib27 article-title: Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.10.090 – volume: 3 start-page: 3373 issue: 7 year: 2021 ident: 10.1016/j.polymer.2024.127151_bib5 article-title: SupramolecularPolydimethylsiloxane elastomer with enhanced mechanical properties and self-healing ability Engineered by synergetic dynamic bonds publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c00271 – volume: 104 start-page: 72 year: 2016 ident: 10.1016/j.polymer.2024.127151_bib31 article-title: The application of coated superabsorbent polymer in well cement for plugging the microcrack publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2015.12.058 – volume: 7 start-page: 15207 issue: 25 year: 2019 ident: 10.1016/j.polymer.2024.127151_bib2 article-title: A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03775F |
| SSID | ssj0002524 |
| Score | 2.4677453 |
| Snippet | Previous studies have shown that the self-healing properties of modified polydimethylsiloxane (PDMS) elastomer are primarily attributed to hydrogen bonding... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 127151 |
| SubjectTerms | Hydrogen bonds Molecular dynamics simulation Polydimethylsiloxane Self-healing |
| Title | Synthesis and preparation of thermoplastic silicone elastomer and molecular dynamics simulation of self healing and mechanical properties |
| URI | https://dx.doi.org/10.1016/j.polymer.2024.127151 |
| Volume | 304 |
| WOSCitedRecordID | wos001242238500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-2291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002524 issn: 0032-3861 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVZO9j2MLZuY90XetjbsGdLtiU9ltCwjVEKDSNvxpalkWI7JklL-xP2uH-8K0uyU1b2BXsxQViSk3NydX2591yE3qqSVYZHgWREBklayIDrTASZytKS6KQivc72l8_s5IQvFuJ0Mvnua2Eua9a2_OpKdP8VahgDsE3p7F_APSwKA_AZQIcrwA7XPwL-7LoFp87ojDgNAKvubf1C4-41qw5cZiPUulnWQARwM5UZWDXKJlQ2vmXuu8r2q9_AnY3r82VW2ajaupi-wrFRpoC4x7sz0f311ucmOr_3dFVfm-VNUOJiWduM-iEGMVN9TsFsZOrUtcleLNuReH0-IBgvf9qaPCI7qEwn5K-7EQyS9JlWdAyr-dKaMY-pN9WUBJRbpfZQWevMGQ0Ise29vPmmtn3xT0eBjUqch539gqHZOYwJi53A7U2V7TOzn9mO9EaNsTton7BUgKHcP_p4vPg0HO8kJVba2z3fWBb2_tbNbnd4dpyY-SP00L194CPLmsdootoDdG_qm_4doAc7-pRP0LeBSxhQxjtcwiuNb3AJey7hgUv9nIFL2HMJj1wyqxguYcclO2PgEh659BTNZ8fz6YfA9e4IJI3ENmCFyrQkkqdRkkkhS8ELSrTiFU90FVURI4rrisQK3lBURnQqKJWqqiJVVnFJn6G9Fp75OcKZjhOti0SDMUm4KgQQQMDtZVqksU7EIUr875tLp2tv2qvUuU9gPM8dLLmBJbewHKJwmNZZYZffTeAevNx5p9brzIFxv5764t-nvkT3x7_MK7S3XV-o1-iuvNwuN-s3jps_ALQbvzA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+preparation+of+thermoplastic+silicone+elastomer+and+molecular+dynamics+simulation+of+self+healing+and+mechanical+properties&rft.jtitle=Polymer+%28Guilford%29&rft.au=Fei%2C+Fan&rft.au=Chai%2C+Xin&rft.au=Hu%2C+Wanying&rft.au=Lu%2C+Wentong&rft.date=2024-06-03&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=304&rft_id=info:doi/10.1016%2Fj.polymer.2024.127151&rft.externalDocID=S0032386124004877 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |