Synthesis and preparation of thermoplastic silicone elastomer and molecular dynamics simulation of self healing and mechanical properties

Previous studies have shown that the self-healing properties of modified polydimethylsiloxane (PDMS) elastomer are primarily attributed to hydrogen bonding with modified silica. The addition of modified silica can improve the tensile strength of the PDMS matrix, as the modified silica and modified P...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Polymer (Guilford) Ročník 304; s. 127151
Hlavní autori: Fei, Fan, Chai, Xin, Hu, Wanying, Lu, Wentong, Tian, Hao, Wang, Jincheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 03.06.2024
Predmet:
ISSN:0032-3861, 1873-2291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Previous studies have shown that the self-healing properties of modified polydimethylsiloxane (PDMS) elastomer are primarily attributed to hydrogen bonding with modified silica. The addition of modified silica can improve the tensile strength of the PDMS matrix, as the modified silica and modified PDMS blend groups generate more hydrogen bonding interactions, resulting in better self-healing properties. However, as the proportion of silica in the system gradually increases, the rigid particles cause a slight decrease in the tensile property of the material. Consequently, it is crucial to strike a balance between the desired mechanical properties and the self-healing capabilities when investigating this subject matter. To investigate the self-healing behavior of PDMS elastomer, a molecular dynamics technique based on a microcracking model was employed. During the compounding process, isocyanate-modified nanosilica was added to the polysiloxane matrix.The ratio of soft and hard segments, which determines the number of hydrogen bonds, was optimized by varying the silica addition ratio from 1 % to 5 %. The performance of the samples was analyzed using several calculations, including Fraction of Free Volume (FFV), Mean Square Displacement function (MSD), and Relative Concentration (RC).The results revealed that the highest self-healing performance and fastest self-healing rate were achieved when the silica addition ratio was 3 %. All tested structures displayed efficient healing within a short time frame. The primary hydrogen bonding exchanges occurred between the urea and UPy groups within the system.Furthermore, the experimental results aligned with the findings from the molecular dynamics simulations, thereby validating this study. [Display omitted] •By blending UPy-NCO modified silica with modified PDMS, an elastomer with outstanding self-healing capabilities was successfully synthesized.•This method not only endowed the elastomer with self-healing property but also enhanced its tensile strength and elongation at break.•Through molecular dynamics simulation, the self-healing mechanism of the elastomer was further elucidated.
AbstractList Previous studies have shown that the self-healing properties of modified polydimethylsiloxane (PDMS) elastomer are primarily attributed to hydrogen bonding with modified silica. The addition of modified silica can improve the tensile strength of the PDMS matrix, as the modified silica and modified PDMS blend groups generate more hydrogen bonding interactions, resulting in better self-healing properties. However, as the proportion of silica in the system gradually increases, the rigid particles cause a slight decrease in the tensile property of the material. Consequently, it is crucial to strike a balance between the desired mechanical properties and the self-healing capabilities when investigating this subject matter. To investigate the self-healing behavior of PDMS elastomer, a molecular dynamics technique based on a microcracking model was employed. During the compounding process, isocyanate-modified nanosilica was added to the polysiloxane matrix.The ratio of soft and hard segments, which determines the number of hydrogen bonds, was optimized by varying the silica addition ratio from 1 % to 5 %. The performance of the samples was analyzed using several calculations, including Fraction of Free Volume (FFV), Mean Square Displacement function (MSD), and Relative Concentration (RC).The results revealed that the highest self-healing performance and fastest self-healing rate were achieved when the silica addition ratio was 3 %. All tested structures displayed efficient healing within a short time frame. The primary hydrogen bonding exchanges occurred between the urea and UPy groups within the system.Furthermore, the experimental results aligned with the findings from the molecular dynamics simulations, thereby validating this study. [Display omitted] •By blending UPy-NCO modified silica with modified PDMS, an elastomer with outstanding self-healing capabilities was successfully synthesized.•This method not only endowed the elastomer with self-healing property but also enhanced its tensile strength and elongation at break.•Through molecular dynamics simulation, the self-healing mechanism of the elastomer was further elucidated.
ArticleNumber 127151
Author Wang, Jincheng
Hu, Wanying
Chai, Xin
Fei, Fan
Lu, Wentong
Tian, Hao
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0009-0000-5741-101X
  surname: Fei
  fullname: Fei, Fan
– sequence: 2
  givenname: Xin
  surname: Chai
  fullname: Chai, Xin
– sequence: 3
  givenname: Wanying
  surname: Hu
  fullname: Hu, Wanying
– sequence: 4
  givenname: Wentong
  surname: Lu
  fullname: Lu, Wentong
– sequence: 5
  givenname: Hao
  surname: Tian
  fullname: Tian, Hao
– sequence: 6
  givenname: Jincheng
  orcidid: 0000-0001-9815-4726
  surname: Wang
  fullname: Wang, Jincheng
  email: wjc406@sues.edu.cn
BookMark eNqFkN1KAzEQhYNUsK0-gpAX2DXJ_uOFSPEPCl7Y-yVNJjYlmyzJKuwj-Nam3XrjTa8GZuY7Z-Ys0Mw6CwjdUpJSQsu7fdo7M3bgU0ZYnlJW0YJeoDmtqyxhrKEzNCckY0lWl_QKLULYE0JYwfI5-vkY7bCDoAPmVuLeQ889H7Sz2CkcJ75zveFh0AIHbbSI1hgODRcNj0znDIgvwz2Wo-WdFiFudrHxpxLAKLwDbrT9nAgQO2614CYauh78oCFco0vFTYCbU12izfPTZvWarN9f3laP60RkpBmSikOpBBN1QfJSNGLb1DxjCmpZ50oSSSoGtZKMQtM0UDJVNFkmQEoCW0m32RLdT7LCuxA8qFbo4Xjq4Lk2LSXtIdR2355CbQ-htlOokS7-0b3XHffjWe5h4iB-9q3jNAgNNt6lPYihlU6fUfgFdlecqg
CitedBy_id crossref_primary_10_1039_D5PY00616C
crossref_primary_10_1021_acsapm_5c01125
crossref_primary_10_1021_acs_macromol_5c00368
Cites_doi 10.1002/marc.201200689
10.1166/jnn.2018.15548
10.1002/pat.4409
10.1039/C9CP06590C
10.1016/j.apsusc.2022.152471
10.1080/15583724.2015.1107098
10.1021/acs.jpcc.8b11790
10.1002/adfm.201303013
10.1016/j.eurpolymj.2020.109475
10.1039/D0SM02175J
10.3389/fmats.2022.859482
10.1002/mats.201200057
10.1021/am201417h
10.1016/j.polymer.2020.123111
10.1002/pc.25019
10.1002/mats.202270003
10.1038/pj.2012.230
10.1039/D0CP03013A
10.1002/marc.201500123
10.1186/s11671-017-1935-x
10.1007/s11595-019-2097-8
10.1007/s12274-023-5563-8
10.1021/acsami.0c03038
10.3390/ma14081884
10.1016/j.surfcoat.2021.127388
10.1021/acsapm.8b00153
10.1016/j.apsusc.2011.10.090
10.1021/acsapm.1c00271
10.1016/j.conbuildmat.2015.12.058
10.1039/C9TA03775F
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.polymer.2024.127151
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2291
ExternalDocumentID 10_1016_j_polymer_2024_127151
S0032386124004877
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
53G
6TJ
6TU
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
M24
M41
R2-
SCB
SMS
T9H
WUQ
~HD
ID FETCH-LOGICAL-c309t-7ae6fc2c85046c9cb98a32fe8d84fd0d072e8fd21e999e62f5933cedd0ebd1b3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242238500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0032-3861
IngestDate Tue Nov 18 22:04:50 EST 2025
Sat Nov 29 03:55:12 EST 2025
Sat Jun 01 15:41:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Self-healing
Molecular dynamics simulation
Hydrogen bonds
Polydimethylsiloxane
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-7ae6fc2c85046c9cb98a32fe8d84fd0d072e8fd21e999e62f5933cedd0ebd1b3
ORCID 0000-0001-9815-4726
0009-0000-5741-101X
ParticipantIDs crossref_citationtrail_10_1016_j_polymer_2024_127151
crossref_primary_10_1016_j_polymer_2024_127151
elsevier_sciencedirect_doi_10_1016_j_polymer_2024_127151
PublicationCentury 2000
PublicationDate 2024-06-03
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-03
  day: 03
PublicationDecade 2020
PublicationTitle Polymer (Guilford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Yu, Feng, Feng (bib10) 2021; 52
Li, Niu, Yu, Gao, Wu, Wang, Sun (bib5) 2021; 3
Rahman, Penco, Peroni, Ramorino, Grande, Di Landro (bib11) 2011; 3
Zheng, Liu, Wang, Yao, Dang, Liu, Lu, Li (bib8) 2023; 16
Zhou, Li, Yang, Gu (bib26) 2013; 22
Zheng, Yang, Sun, Zhang, Guo (bib25) 2021; 212
Pan, Hu, Yang, Tan (bib12) 2019; 1
Wu, Wang, Lu, Sun, Wong (bib34) 2022; 583
Oya, Ikezaki, Yoshie (bib1) 2013; 45
Irigoyen, Matxain, Ruiperez (bib24) 2022; 9
Faghihnejad, Feldman, Yu, Tirrell, Israelachvili, Hawker, Kramer, Zeng (bib33) 2014; 24
Sulym, Goncharuk, Sternik, Terpilowski, Derylo-Marczewska, Borysenko, Gun'ko (bib19) 2017; 12
Chen, He, Cheng, Xiong (bib20) 2020; 67
Le Bras, Berthin, Hamdi, Louati, Aloise, Takeshita, Adamo, Perrier (bib23) 2020; 22
Chen, Wu, Gong, Zhang, Yan, Liu, Zhang, Thundat, Zeng (bib29) 2019; 123
Shan, Liang, Mao, Lu, Liu, Huang, Yang (bib6) 2021; 17
Wang, Fan, Chen (bib4) 2020; 41
Liu, Bu, Sanjayan, Nazari, Shen (bib31) 2016; 104
Ren, Li, Zhao, Wang, Wang, Li, Jian, Li, Yan, Bai (bib32) 2020; 12
Chen, Wen, Ma, Sun, Lin, Yue, Mol, Liu (bib7) 2021; 421
Takase, Koyanagi, Mori, Sakai (bib28) 2021; 14
Ullah, Azizli, Man, Ismail, Khan (bib30) 2016; 56
Zhou, Sun, Wu, Zhang, Liu, Xiao (bib13) 2019; 34
He, Ma, Xu, Wang, Chen, Deng, Wang, Zhang, Fu (bib27) 2012; 258
Billiet, Hillewaere, Teixeira, Du Prez (bib3) 2013; 34
Liu, Zhong, Li, Rong, Yang, Zhou, Shen, Gao, Huang, He (bib14) 2020; 124
Chen, Zhu, Luo, Chen, Ma, Bukhvalov, Liu, Zhang, Luo (bib22) 2020; 22
Chen, Li, Luo, Shi, Ma, Zhang, Boukhvalov, Luo (bib2) 2019; 7
Zhang, Xu, Shen, Wang, Ding (bib9) 2018; 18
Suriano, Brambilla, Tommasini, Turri (bib16) 2018; 29
An, Noh, Nam, Oh (bib15) 2015; 36
Chen, Shen, Jia (bib21) 2022; 31
Kausar (bib18) 2020; 59
Hu, Qian, Li, Fei, Luo, Wang, Xia (bib17) 2019; 40
Wang (10.1016/j.polymer.2024.127151_bib4) 2020; 41
Chen (10.1016/j.polymer.2024.127151_bib2) 2019; 7
Chen (10.1016/j.polymer.2024.127151_bib7) 2021; 421
Zhou (10.1016/j.polymer.2024.127151_bib26) 2013; 22
Zhou (10.1016/j.polymer.2024.127151_bib13) 2019; 34
Zheng (10.1016/j.polymer.2024.127151_bib8) 2023; 16
Chen (10.1016/j.polymer.2024.127151_bib10) 2021; 52
Rahman (10.1016/j.polymer.2024.127151_bib11) 2011; 3
Liu (10.1016/j.polymer.2024.127151_bib31) 2016; 104
Billiet (10.1016/j.polymer.2024.127151_bib3) 2013; 34
Zheng (10.1016/j.polymer.2024.127151_bib25) 2021; 212
Chen (10.1016/j.polymer.2024.127151_bib21) 2022; 31
Faghihnejad (10.1016/j.polymer.2024.127151_bib33) 2014; 24
Hu (10.1016/j.polymer.2024.127151_bib17) 2019; 40
Sulym (10.1016/j.polymer.2024.127151_bib19) 2017; 12
Chen (10.1016/j.polymer.2024.127151_bib29) 2019; 123
Le Bras (10.1016/j.polymer.2024.127151_bib23) 2020; 22
Liu (10.1016/j.polymer.2024.127151_bib14) 2020; 124
Zhang (10.1016/j.polymer.2024.127151_bib9) 2018; 18
Shan (10.1016/j.polymer.2024.127151_bib6) 2021; 17
An (10.1016/j.polymer.2024.127151_bib15) 2015; 36
Pan (10.1016/j.polymer.2024.127151_bib12) 2019; 1
Irigoyen (10.1016/j.polymer.2024.127151_bib24) 2022; 9
Ullah (10.1016/j.polymer.2024.127151_bib30) 2016; 56
Suriano (10.1016/j.polymer.2024.127151_bib16) 2018; 29
He (10.1016/j.polymer.2024.127151_bib27) 2012; 258
Oya (10.1016/j.polymer.2024.127151_bib1) 2013; 45
Chen (10.1016/j.polymer.2024.127151_bib20) 2020; 67
Kausar (10.1016/j.polymer.2024.127151_bib18) 2020; 59
Li (10.1016/j.polymer.2024.127151_bib5) 2021; 3
Ren (10.1016/j.polymer.2024.127151_bib32) 2020; 12
Chen (10.1016/j.polymer.2024.127151_bib22) 2020; 22
Wu (10.1016/j.polymer.2024.127151_bib34) 2022; 583
Takase (10.1016/j.polymer.2024.127151_bib28) 2021; 14
References_xml – volume: 67
  start-page: 91
  year: 2020
  end-page: 96
  ident: bib20
  article-title: Self-repair performance of modified silica/modified silicone rubber composite elastomers
  publication-title: Rubber Ind.
– volume: 421
  year: 2021
  ident: bib7
  article-title: Optimization of intrinsic self-healing silicone coatings by benzotriazole loaded mesoporous silica
  publication-title: Surf. Coating. Technol.
– volume: 16
  start-page: 7810
  year: 2023
  end-page: 7819
  ident: bib8
  article-title: Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications
  publication-title: Nano Res.
– volume: 14
  year: 2021
  ident: bib28
  article-title: Molecular dynamics simulation for evaluating fracture entropy of a polymer material under various combined stress states
  publication-title: Materials
– volume: 123
  start-page: 4540
  year: 2019
  end-page: 4548
  ident: bib29
  article-title: Mechanistic understanding and nanomechanics of multiple hydrogen-bonding interactions in aqueous environment
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 2322
  year: 2014
  end-page: 2333
  ident: bib33
  article-title: Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups
  publication-title: Adv. Funct. Mater.
– volume: 258
  start-page: 2544
  year: 2012
  end-page: 2550
  ident: bib27
  article-title: Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates
  publication-title: Appl. Surf. Sci.
– volume: 34
  start-page: 290
  year: 2013
  end-page: 309
  ident: bib3
  article-title: Chemistry of Crosslinking processes for self-healing polymers
  publication-title: Macromol. Rapid Commun.
– volume: 22
  start-page: 107
  year: 2013
  end-page: 114
  ident: bib26
  article-title: Effect of hydrogen bonds on structures and glass transition temperatures of MaleimideIsobutene alternating copolymers: molecular dynamics simulation study
  publication-title: Macromol. Theory Simul.
– volume: 29
  start-page: 2899
  year: 2018
  end-page: 2908
  ident: bib16
  article-title: A deep insight into the intrinsic healing mechanism in ureido-pyrimidinone copolymers
  publication-title: Polym. Adv. Technol.
– volume: 34
  start-page: 630
  year: 2019
  end-page: 637
  ident: bib13
  article-title: Evaluation on self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane
  publication-title: J. Wuhan Univ. Technol.-Materials Sci. Ed.
– volume: 59
  start-page: 1148
  year: 2020
  end-page: 1166
  ident: bib18
  article-title: Polydimethylsiloxane-based nanocomposite: present research scenario and emergent future trends
  publication-title: Polym.Plast. Technol. Mater.
– volume: 3
  start-page: 3373
  year: 2021
  end-page: 3382
  ident: bib5
  article-title: SupramolecularPolydimethylsiloxane elastomer with enhanced mechanical properties and self-healing ability Engineered by synergetic dynamic bonds
  publication-title: ACS Appl. Polym. Mater.
– volume: 12
  year: 2017
  ident: bib19
  article-title: Nanooxide/polymer composites with silica@PDMS and ceria- zirconia-silica@PDMS: textural, morphological, and hydrophilic/hydrophobic features
  publication-title: Nanoscale Res. Lett.
– volume: 3
  start-page: 4865
  year: 2011
  end-page: 4874
  ident: bib11
  article-title: Self-repairing systems based on ionomers and epoxidized natural rubber blends
  publication-title: ACS Appl. Mater. Interfaces
– volume: 124
  year: 2020
  ident: bib14
  article-title: A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding
  publication-title: Eur. Polym. J.
– volume: 22
  start-page: 17620
  year: 2020
  end-page: 17631
  ident: bib22
  article-title: Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer
  publication-title: Phys. Chem. Chem. Phys.
– volume: 36
  start-page: 1255
  year: 2015
  end-page: 1260
  ident: bib15
  article-title: Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability
  publication-title: Macromol. Rapid Commun.
– volume: 583
  year: 2022
  ident: bib34
  article-title: Study of the interfacial adhesion properties of a novel Self-healable siloxane polymer material via molecular dynamics simulation
  publication-title: Appl. Surf. Sci.
– volume: 41
  start-page: 548
  year: 2020
  end-page: 555
  ident: bib4
  article-title: Analysis of composition and Antigenic atomic oxygen performance of silica-reinforced silicone rubber
  publication-title: Chem. J. Chin. Univ.Chin.
– volume: 22
  start-page: 6942
  year: 2020
  end-page: 6952
  ident: bib23
  article-title: Understanding the properties of dithienylethenes functionalized for supramolecular self-assembly: a molecular modeling study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  year: 2022
  ident: bib24
  article-title: Combined DFT and MD simulation protocol to characterize self-healing properties in disulfide-containing materials: polyurethanes and polymethacrylates as case studies
  publication-title: Front. Mater.
– volume: 212
  year: 2021
  ident: bib25
  article-title: A molecular dynamics simulation on self-healing behavior based on disulfide bond exchange reactions
  publication-title: Polymer
– volume: 104
  start-page: 72
  year: 2016
  end-page: 84
  ident: bib31
  article-title: The application of coated superabsorbent polymer in well cement for plugging the microcrack
  publication-title: Construct. Build. Mater.
– volume: 31
  year: 2022
  ident: bib21
  article-title: Understanding the self‐healing mechanism of polyurethane elastomer based on hydrogen bonding interactions through molecular dynamics simulation
  publication-title: Macromol. Theory Simul.
– volume: 40
  start-page: E1397
  year: 2019
  end-page: E1406
  ident: bib17
  article-title: A novel method to prepare homogeneous biocompatible graphene-based PDMS composites with enhanced mechanical, thermal and antibacterial properties
  publication-title: Polym. Compos.
– volume: 45
  start-page: 955
  year: 2013
  end-page: 961
  ident: bib1
  article-title: A crystalline supramolecular polymer with self-healing capability at room temperature
  publication-title: Polym. J.
– volume: 1
  start-page: 425
  year: 2019
  ident: bib12
  article-title: From fragile plastic to room-temperature self-healing elastomer: tuning quadruple hydrogen bonding interaction through one-pot synthesis
  publication-title: ACS Appl. Polym. Mater.
– volume: 18
  start-page: 7721
  year: 2018
  end-page: 7731
  ident: bib9
  article-title: One-step fabrication of self-healing and durable superhydrophobic cotton fabrics based on silica aerogel
  publication-title: J. Nanosci. Nanotechnol.
– volume: 12
  start-page: 21433
  year: 2020
  end-page: 21440
  ident: bib32
  article-title: Dipeptide self-assembled hydrogels with shear-thinning and instantaneous self-healing properties determined by peptide sequences
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 4643
  year: 2021
  end-page: 4652
  ident: bib6
  article-title: Stretchable dual cross-linked silicon elastomer with a superhydrophobic surface and fast triple self-healing ability at room temperature
  publication-title: Soft Matter
– volume: 56
  start-page: 429
  year: 2016
  end-page: 485
  ident: bib30
  article-title: The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review
  publication-title: Polym. Rev.
– volume: 7
  start-page: 15207
  year: 2019
  end-page: 15214
  ident: bib2
  article-title: A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 272
  year: 2021
  end-page: 280
  ident: bib10
  article-title: Polymer composite material with both thermal conduction and self-healing functions
  publication-title: Acta Polym. Sin.
– volume: 34
  start-page: 290
  issue: 4
  year: 2013
  ident: 10.1016/j.polymer.2024.127151_bib3
  article-title: Chemistry of Crosslinking processes for self-healing polymers
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201200689
– volume: 18
  start-page: 7721
  issue: 11
  year: 2018
  ident: 10.1016/j.polymer.2024.127151_bib9
  article-title: One-step fabrication of self-healing and durable superhydrophobic cotton fabrics based on silica aerogel
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2018.15548
– volume: 29
  start-page: 2899
  issue: 12
  year: 2018
  ident: 10.1016/j.polymer.2024.127151_bib16
  article-title: A deep insight into the intrinsic healing mechanism in ureido-pyrimidinone copolymers
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.4409
– volume: 22
  start-page: 6942
  issue: 13
  year: 2020
  ident: 10.1016/j.polymer.2024.127151_bib23
  article-title: Understanding the properties of dithienylethenes functionalized for supramolecular self-assembly: a molecular modeling study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP06590C
– volume: 583
  year: 2022
  ident: 10.1016/j.polymer.2024.127151_bib34
  article-title: Study of the interfacial adhesion properties of a novel Self-healable siloxane polymer material via molecular dynamics simulation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.152471
– volume: 56
  start-page: 429
  issue: 3
  year: 2016
  ident: 10.1016/j.polymer.2024.127151_bib30
  article-title: The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2015.1107098
– volume: 123
  start-page: 4540
  issue: 7
  year: 2019
  ident: 10.1016/j.polymer.2024.127151_bib29
  article-title: Mechanistic understanding and nanomechanics of multiple hydrogen-bonding interactions in aqueous environment
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b11790
– volume: 24
  start-page: 2322
  issue: 16
  year: 2014
  ident: 10.1016/j.polymer.2024.127151_bib33
  article-title: Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303013
– volume: 124
  year: 2020
  ident: 10.1016/j.polymer.2024.127151_bib14
  article-title: A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.109475
– volume: 17
  start-page: 4643
  issue: 17
  year: 2021
  ident: 10.1016/j.polymer.2024.127151_bib6
  article-title: Stretchable dual cross-linked silicon elastomer with a superhydrophobic surface and fast triple self-healing ability at room temperature
  publication-title: Soft Matter
  doi: 10.1039/D0SM02175J
– volume: 9
  year: 2022
  ident: 10.1016/j.polymer.2024.127151_bib24
  article-title: Combined DFT and MD simulation protocol to characterize self-healing properties in disulfide-containing materials: polyurethanes and polymethacrylates as case studies
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2022.859482
– volume: 22
  start-page: 107
  issue: 2
  year: 2013
  ident: 10.1016/j.polymer.2024.127151_bib26
  article-title: Effect of hydrogen bonds on structures and glass transition temperatures of MaleimideIsobutene alternating copolymers: molecular dynamics simulation study
  publication-title: Macromol. Theory Simul.
  doi: 10.1002/mats.201200057
– volume: 67
  start-page: 91
  issue: 2
  year: 2020
  ident: 10.1016/j.polymer.2024.127151_bib20
  article-title: Self-repair performance of modified silica/modified silicone rubber composite elastomers
  publication-title: Rubber Ind.
– volume: 52
  start-page: 272
  issue: 3
  year: 2021
  ident: 10.1016/j.polymer.2024.127151_bib10
  article-title: Polymer composite material with both thermal conduction and self-healing functions
  publication-title: Acta Polym. Sin.
– volume: 41
  start-page: 548
  issue: 3
  year: 2020
  ident: 10.1016/j.polymer.2024.127151_bib4
  article-title: Analysis of composition and Antigenic atomic oxygen performance of silica-reinforced silicone rubber
  publication-title: Chem. J. Chin. Univ.Chin.
– volume: 3
  start-page: 4865
  issue: 12
  year: 2011
  ident: 10.1016/j.polymer.2024.127151_bib11
  article-title: Self-repairing systems based on ionomers and epoxidized natural rubber blends
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201417h
– volume: 212
  year: 2021
  ident: 10.1016/j.polymer.2024.127151_bib25
  article-title: A molecular dynamics simulation on self-healing behavior based on disulfide bond exchange reactions
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.123111
– volume: 40
  start-page: E1397
  year: 2019
  ident: 10.1016/j.polymer.2024.127151_bib17
  article-title: A novel method to prepare homogeneous biocompatible graphene-based PDMS composites with enhanced mechanical, thermal and antibacterial properties
  publication-title: Polym. Compos.
  doi: 10.1002/pc.25019
– volume: 31
  issue: 2
  year: 2022
  ident: 10.1016/j.polymer.2024.127151_bib21
  article-title: Understanding the self‐healing mechanism of polyurethane elastomer based on hydrogen bonding interactions through molecular dynamics simulation
  publication-title: Macromol. Theory Simul.
  doi: 10.1002/mats.202270003
– volume: 45
  start-page: 955
  issue: 9
  year: 2013
  ident: 10.1016/j.polymer.2024.127151_bib1
  article-title: A crystalline supramolecular polymer with self-healing capability at room temperature
  publication-title: Polym. J.
  doi: 10.1038/pj.2012.230
– volume: 22
  start-page: 17620
  issue: 31
  year: 2020
  ident: 10.1016/j.polymer.2024.127151_bib22
  article-title: Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP03013A
– volume: 36
  start-page: 1255
  issue: 13
  year: 2015
  ident: 10.1016/j.polymer.2024.127151_bib15
  article-title: Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201500123
– volume: 12
  year: 2017
  ident: 10.1016/j.polymer.2024.127151_bib19
  article-title: Nanooxide/polymer composites with silica@PDMS and ceria- zirconia-silica@PDMS: textural, morphological, and hydrophilic/hydrophobic features
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-1935-x
– volume: 34
  start-page: 630
  issue: 3
  year: 2019
  ident: 10.1016/j.polymer.2024.127151_bib13
  article-title: Evaluation on self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane
  publication-title: J. Wuhan Univ. Technol.-Materials Sci. Ed.
  doi: 10.1007/s11595-019-2097-8
– volume: 59
  start-page: 1148
  issue: 11
  year: 2020
  ident: 10.1016/j.polymer.2024.127151_bib18
  article-title: Polydimethylsiloxane-based nanocomposite: present research scenario and emergent future trends
  publication-title: Polym.Plast. Technol. Mater.
– volume: 16
  start-page: 7810
  issue: 5
  year: 2023
  ident: 10.1016/j.polymer.2024.127151_bib8
  article-title: Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5563-8
– volume: 12
  start-page: 21433
  issue: 19
  year: 2020
  ident: 10.1016/j.polymer.2024.127151_bib32
  article-title: Dipeptide self-assembled hydrogels with shear-thinning and instantaneous self-healing properties determined by peptide sequences
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03038
– volume: 14
  issue: 8
  year: 2021
  ident: 10.1016/j.polymer.2024.127151_bib28
  article-title: Molecular dynamics simulation for evaluating fracture entropy of a polymer material under various combined stress states
  publication-title: Materials
  doi: 10.3390/ma14081884
– volume: 421
  year: 2021
  ident: 10.1016/j.polymer.2024.127151_bib7
  article-title: Optimization of intrinsic self-healing silicone coatings by benzotriazole loaded mesoporous silica
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2021.127388
– volume: 1
  start-page: 425
  issue: 3
  year: 2019
  ident: 10.1016/j.polymer.2024.127151_bib12
  article-title: From fragile plastic to room-temperature self-healing elastomer: tuning quadruple hydrogen bonding interaction through one-pot synthesis
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.8b00153
– volume: 258
  start-page: 2544
  issue: 7
  year: 2012
  ident: 10.1016/j.polymer.2024.127151_bib27
  article-title: Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.10.090
– volume: 3
  start-page: 3373
  issue: 7
  year: 2021
  ident: 10.1016/j.polymer.2024.127151_bib5
  article-title: SupramolecularPolydimethylsiloxane elastomer with enhanced mechanical properties and self-healing ability Engineered by synergetic dynamic bonds
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.1c00271
– volume: 104
  start-page: 72
  year: 2016
  ident: 10.1016/j.polymer.2024.127151_bib31
  article-title: The application of coated superabsorbent polymer in well cement for plugging the microcrack
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.12.058
– volume: 7
  start-page: 15207
  issue: 25
  year: 2019
  ident: 10.1016/j.polymer.2024.127151_bib2
  article-title: A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03775F
SSID ssj0002524
Score 2.4677453
Snippet Previous studies have shown that the self-healing properties of modified polydimethylsiloxane (PDMS) elastomer are primarily attributed to hydrogen bonding...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127151
SubjectTerms Hydrogen bonds
Molecular dynamics simulation
Polydimethylsiloxane
Self-healing
Title Synthesis and preparation of thermoplastic silicone elastomer and molecular dynamics simulation of self healing and mechanical properties
URI https://dx.doi.org/10.1016/j.polymer.2024.127151
Volume 304
WOSCitedRecordID wos001242238500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-2291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002524
  issn: 0032-3861
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVZO9j2MLZuY90XetjbsGdLtiU9ltCwjVEKDSNvxpalkWI7JklL-xP2uH-8K0uyU1b2BXsxQViSk3NydX2591yE3qqSVYZHgWREBklayIDrTASZytKS6KQivc72l8_s5IQvFuJ0Mvnua2Eua9a2_OpKdP8VahgDsE3p7F_APSwKA_AZQIcrwA7XPwL-7LoFp87ojDgNAKvubf1C4-41qw5cZiPUulnWQARwM5UZWDXKJlQ2vmXuu8r2q9_AnY3r82VW2ajaupi-wrFRpoC4x7sz0f311ucmOr_3dFVfm-VNUOJiWduM-iEGMVN9TsFsZOrUtcleLNuReH0-IBgvf9qaPCI7qEwn5K-7EQyS9JlWdAyr-dKaMY-pN9WUBJRbpfZQWevMGQ0Ise29vPmmtn3xT0eBjUqch539gqHZOYwJi53A7U2V7TOzn9mO9EaNsTton7BUgKHcP_p4vPg0HO8kJVba2z3fWBb2_tbNbnd4dpyY-SP00L194CPLmsdootoDdG_qm_4doAc7-pRP0LeBSxhQxjtcwiuNb3AJey7hgUv9nIFL2HMJj1wyqxguYcclO2PgEh659BTNZ8fz6YfA9e4IJI3ENmCFyrQkkqdRkkkhS8ELSrTiFU90FVURI4rrisQK3lBURnQqKJWqqiJVVnFJn6G9Fp75OcKZjhOti0SDMUm4KgQQQMDtZVqksU7EIUr875tLp2tv2qvUuU9gPM8dLLmBJbewHKJwmNZZYZffTeAevNx5p9brzIFxv5764t-nvkT3x7_MK7S3XV-o1-iuvNwuN-s3jps_ALQbvzA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+preparation+of+thermoplastic+silicone+elastomer+and+molecular+dynamics+simulation+of+self+healing+and+mechanical+properties&rft.jtitle=Polymer+%28Guilford%29&rft.au=Fei%2C+Fan&rft.au=Chai%2C+Xin&rft.au=Hu%2C+Wanying&rft.au=Lu%2C+Wentong&rft.date=2024-06-03&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=304&rft_id=info:doi/10.1016%2Fj.polymer.2024.127151&rft.externalDocID=S0032386124004877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon