Plasma N -Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study

Plasma protein -glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma -glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e.,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Diabetes care Ročník 43; číslo 3; s. 661
Hlavní autori: Wittenbecher, Clemens, Štambuk, Tamara, Kuxhaus, Olga, Rudman, Najda, Vučković, Frano, Štambuk, Jerko, Schiborn, Catarina, Rahelić, Dario, Dietrich, Stefan, Gornik, Olga, Perola, Markus, Boeing, Heiner, Schulze, Matthias B, Lauc, Gordan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.03.2020
Predmet:
ISSN:1935-5548, 1935-5548
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Plasma protein -glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma -glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e., myocardial infarction and stroke). Based on the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort ( = 27,548), we constructed case-cohorts including a random subsample of 2,500 participants and all physician-verified incident cases of type 2 diabetes ( = 820; median follow-up time 6.5 years) and CVD ( = 508; median follow-up time 8.2 years). Information on the relative abundance of 39 -glycan groups in baseline plasma samples was generated by chromatographic profiling. We selected predictive -glycans for type 2 diabetes and CVD separately, based on cross-validated machine learning, nonlinear model building, and construction of weighted prediction scores. This workflow for CVD was applied separately in men and women. The -glycan-based type 2 diabetes score was strongly predictive for diabetes risk in an internal validation cohort (weighted C-index 0.83, 95% CI 0.78-0.88), and this finding was externally validated in the Finland Cardiovascular Risk Study (FINRISK) cohort. -glycans were moderately predictive for CVD incidence (weighted C-indices 0.66, 95% CI 0.60-0.72, for men; 0.64, 95% CI 0.55-0.73, for women). Information on the selected -glycans improved the accuracy of established and clinically applied risk prediction scores for type 2 diabetes and CVD. Selected -glycans improve type 2 diabetes and CVD prediction beyond established risk markers. Plasma protein -glycan profiling may thus be useful for risk stratification in the context of precisely targeted primary prevention of cardiometabolic diseases.
AbstractList Plasma protein -glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma -glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e., myocardial infarction and stroke). Based on the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort ( = 27,548), we constructed case-cohorts including a random subsample of 2,500 participants and all physician-verified incident cases of type 2 diabetes ( = 820; median follow-up time 6.5 years) and CVD ( = 508; median follow-up time 8.2 years). Information on the relative abundance of 39 -glycan groups in baseline plasma samples was generated by chromatographic profiling. We selected predictive -glycans for type 2 diabetes and CVD separately, based on cross-validated machine learning, nonlinear model building, and construction of weighted prediction scores. This workflow for CVD was applied separately in men and women. The -glycan-based type 2 diabetes score was strongly predictive for diabetes risk in an internal validation cohort (weighted C-index 0.83, 95% CI 0.78-0.88), and this finding was externally validated in the Finland Cardiovascular Risk Study (FINRISK) cohort. -glycans were moderately predictive for CVD incidence (weighted C-indices 0.66, 95% CI 0.60-0.72, for men; 0.64, 95% CI 0.55-0.73, for women). Information on the selected -glycans improved the accuracy of established and clinically applied risk prediction scores for type 2 diabetes and CVD. Selected -glycans improve type 2 diabetes and CVD prediction beyond established risk markers. Plasma protein -glycan profiling may thus be useful for risk stratification in the context of precisely targeted primary prevention of cardiometabolic diseases.
Plasma protein N-glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma N-glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e., myocardial infarction and stroke).OBJECTIVEPlasma protein N-glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma N-glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e., myocardial infarction and stroke).Based on the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort (n = 27,548), we constructed case-cohorts including a random subsample of 2,500 participants and all physician-verified incident cases of type 2 diabetes (n = 820; median follow-up time 6.5 years) and CVD (n = 508; median follow-up time 8.2 years). Information on the relative abundance of 39 N-glycan groups in baseline plasma samples was generated by chromatographic profiling. We selected predictive N-glycans for type 2 diabetes and CVD separately, based on cross-validated machine learning, nonlinear model building, and construction of weighted prediction scores. This workflow for CVD was applied separately in men and women.RESEARCH DESIGN AND METHODSBased on the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort (n = 27,548), we constructed case-cohorts including a random subsample of 2,500 participants and all physician-verified incident cases of type 2 diabetes (n = 820; median follow-up time 6.5 years) and CVD (n = 508; median follow-up time 8.2 years). Information on the relative abundance of 39 N-glycan groups in baseline plasma samples was generated by chromatographic profiling. We selected predictive N-glycans for type 2 diabetes and CVD separately, based on cross-validated machine learning, nonlinear model building, and construction of weighted prediction scores. This workflow for CVD was applied separately in men and women.The N-glycan-based type 2 diabetes score was strongly predictive for diabetes risk in an internal validation cohort (weighted C-index 0.83, 95% CI 0.78-0.88), and this finding was externally validated in the Finland Cardiovascular Risk Study (FINRISK) cohort. N-glycans were moderately predictive for CVD incidence (weighted C-indices 0.66, 95% CI 0.60-0.72, for men; 0.64, 95% CI 0.55-0.73, for women). Information on the selected N-glycans improved the accuracy of established and clinically applied risk prediction scores for type 2 diabetes and CVD.RESULTSThe N-glycan-based type 2 diabetes score was strongly predictive for diabetes risk in an internal validation cohort (weighted C-index 0.83, 95% CI 0.78-0.88), and this finding was externally validated in the Finland Cardiovascular Risk Study (FINRISK) cohort. N-glycans were moderately predictive for CVD incidence (weighted C-indices 0.66, 95% CI 0.60-0.72, for men; 0.64, 95% CI 0.55-0.73, for women). Information on the selected N-glycans improved the accuracy of established and clinically applied risk prediction scores for type 2 diabetes and CVD.Selected N-glycans improve type 2 diabetes and CVD prediction beyond established risk markers. Plasma protein N-glycan profiling may thus be useful for risk stratification in the context of precisely targeted primary prevention of cardiometabolic diseases.CONCLUSIONSSelected N-glycans improve type 2 diabetes and CVD prediction beyond established risk markers. Plasma protein N-glycan profiling may thus be useful for risk stratification in the context of precisely targeted primary prevention of cardiometabolic diseases.
Author Schulze, Matthias B
Vučković, Frano
Wittenbecher, Clemens
Kuxhaus, Olga
Schiborn, Catarina
Gornik, Olga
Štambuk, Tamara
Rahelić, Dario
Štambuk, Jerko
Dietrich, Stefan
Perola, Markus
Boeing, Heiner
Rudman, Najda
Lauc, Gordan
Author_xml – sequence: 1
  givenname: Clemens
  orcidid: 0000-0001-7792-877X
  surname: Wittenbecher
  fullname: Wittenbecher, Clemens
  organization: German Center for Diabetes Research (DZD), München-Neuherberg, Germany
– sequence: 2
  givenname: Tamara
  surname: Štambuk
  fullname: Štambuk, Tamara
  organization: Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
– sequence: 3
  givenname: Olga
  surname: Kuxhaus
  fullname: Kuxhaus, Olga
  organization: German Center for Diabetes Research (DZD), München-Neuherberg, Germany
– sequence: 4
  givenname: Najda
  surname: Rudman
  fullname: Rudman, Najda
  organization: Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
– sequence: 5
  givenname: Frano
  surname: Vučković
  fullname: Vučković, Frano
  organization: Genos Glycoscience Research Laboratory, Zagreb, Croatia
– sequence: 6
  givenname: Jerko
  surname: Štambuk
  fullname: Štambuk, Jerko
  organization: Genos Glycoscience Research Laboratory, Zagreb, Croatia
– sequence: 7
  givenname: Catarina
  surname: Schiborn
  fullname: Schiborn, Catarina
  organization: German Center for Diabetes Research (DZD), München-Neuherberg, Germany
– sequence: 8
  givenname: Dario
  surname: Rahelić
  fullname: Rahelić, Dario
  organization: University Clinics for Diabetes, Endocrinology and Metabolism, School of Medicine, University of Zagreb, Zagreb, Croatia
– sequence: 9
  givenname: Stefan
  surname: Dietrich
  fullname: Dietrich, Stefan
  organization: Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
– sequence: 10
  givenname: Olga
  surname: Gornik
  fullname: Gornik, Olga
  organization: Genos Glycoscience Research Laboratory, Zagreb, Croatia
– sequence: 11
  givenname: Markus
  surname: Perola
  fullname: Perola, Markus
  organization: Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
– sequence: 12
  givenname: Heiner
  surname: Boeing
  fullname: Boeing, Heiner
  organization: Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
– sequence: 13
  givenname: Matthias B
  orcidid: 0000-0002-0830-5277
  surname: Schulze
  fullname: Schulze, Matthias B
  email: mschulze@dife.de
  organization: Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
– sequence: 14
  givenname: Gordan
  surname: Lauc
  fullname: Lauc, Gordan
  organization: Genos Glycoscience Research Laboratory, Zagreb, Croatia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31915204$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1LwzAAxYNM3Ice_AckRy_VfLRN622WOQdDix_nkSbpFtcmM0kHu_i3W3GCp_d4PB6P3xgMjDUKgEuMbgil7FYKnEc4QewEjHBOkyhJ4mzwzw_B2PsPhFAcZ9kZGFKc44SgeAS-yob7lsMnGM2bg-DGQ-7hrFVurc0a3mvbcrdVzkNbw4I72Qcq8Mo2WsAX7bd3cApLZ_1OiaD3Ci7MXvmg1zxoa6A2MGwUnJWLIipt8JK3sLAb6wJ8DZ08nIPTmjdeXRx1At4fZm_FY7R8ni-K6TISFOUhYjFTqKJUSCYqJkXFU5JVpGZ1WpOU17mQGc5JldVxqgjBJBO0IljGjOVI1YhMwPXv7s7Zz64_uGq1F6ppuFG286seY4LTHNOf6tWx2lWtkqud0z2Cw-qPGfkGAGhvOQ
CitedBy_id crossref_primary_10_3390_biom13040605
crossref_primary_10_1016_j_molmed_2023_11_013
crossref_primary_10_3390_jcdd9010007
crossref_primary_10_1136_bmjdrc_2021_002263
crossref_primary_10_1186_s12933_025_02853_y
crossref_primary_10_1016_j_ijcard_2021_11_038
crossref_primary_10_1007_s00125_022_05703_8
crossref_primary_10_3389_fimmu_2021_680227
crossref_primary_10_1111_imr_13407
crossref_primary_10_1093_hmg_ddab335
crossref_primary_10_3390_cells10082098
crossref_primary_10_3724_abbs_2024137
crossref_primary_10_3389_fcvm_2021_668059
crossref_primary_10_1016_j_compbiomed_2021_105069
crossref_primary_10_1038_s41569_024_00998_z
crossref_primary_10_1016_j_biotechadv_2023_108169
crossref_primary_10_1016_j_molmet_2023_101774
crossref_primary_10_1038_s41598_022_19964_1
crossref_primary_10_1210_clinem_dgac487
crossref_primary_10_3390_biom13050762
crossref_primary_10_3390_molecules29061281
crossref_primary_10_3390_molecules28041843
crossref_primary_10_1093_glycob_cwab129
crossref_primary_10_2337_dc22_0833
crossref_primary_10_1016_j_aca_2024_342907
crossref_primary_10_1016_j_mam_2020_100891
crossref_primary_10_1371_journal_pone_0284838
crossref_primary_10_3390_biom13060880
crossref_primary_10_1038_s41588_023_01462_3
crossref_primary_10_1016_j_aca_2023_341269
crossref_primary_10_1016_j_diabres_2022_109226
crossref_primary_10_1016_j_soard_2024_01_007
crossref_primary_10_1038_s41467_024_47279_4
crossref_primary_10_1016_j_vph_2025_107474
crossref_primary_10_1097_HJH_0000000000002963
crossref_primary_10_1111_eci_70017
crossref_primary_10_1210_clinem_dgaa953
crossref_primary_10_1007_s11892_020_01353_5
crossref_primary_10_1155_2020_5198359
crossref_primary_10_1007_s11892_021_01444_x
crossref_primary_10_3390_biom13020375
crossref_primary_10_3389_fendo_2023_1101154
crossref_primary_10_1038_s41598_022_15172_z
crossref_primary_10_1186_s10020_022_00543_z
crossref_primary_10_1186_s12916_023_02938_z
crossref_primary_10_1155_2022_9264555
crossref_primary_10_1136_bmjdrc_2021_002345
ContentType Journal Article
Copyright 2020 by the American Diabetes Association.
Copyright_xml – notice: 2020 by the American Diabetes Association.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2337/dc19-1507
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1935-5548
ExternalDocumentID 31915204
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GroupedDBID ---
-ET
..I
.55
.GJ
.XZ
08P
0R~
18M
29F
2WC
3O-
3V.
4.4
41~
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X2
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAIKC
AAKAS
AAMNW
AAQOH
AAQQT
AAWTL
AAYEP
AAYJJ
ABOCM
ABPPZ
ABUWG
ACGFO
ACGOD
ADBBV
ADZCM
AEGXH
AENEX
AERZD
AFFNX
AFKRA
AFOSN
AFRAH
AHMBA
AI.
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
AQUVI
ATCPS
AZQEC
BAWUL
BCR
BCU
BEC
BENPR
BHPHI
BKEYQ
BKNYI
BLC
BNQBC
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EBS
ECM
EDB
EIF
EJD
EMOBN
EX3
F5P
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HZ~
IAG
IAO
IEA
IGG
IHR
INH
INR
IOF
IPO
ITC
J5H
K9-
KQ8
L7B
M0K
M0R
M0T
M1P
M2O
M2P
M2Q
M5~
N4W
NAPCQ
NPM
O5R
O5S
O9-
OK1
OVD
P2P
PCD
PEA
PQQKQ
PROAC
PSQYO
Q2X
RHF
RHI
S0X
SJFOW
SV3
TDI
TEORI
TR2
TWZ
UKHRP
VH1
VVN
VXZ
W8F
WH7
WHG
WOQ
WOW
X7M
YHG
YOC
ZCG
ZGI
ZXP
~KM
7X8
AAFWJ
ID FETCH-LOGICAL-c309t-747e0b33cd7cb7dcba628b2f7f6f26af9cd8192b8f46e22128c3b21d47790ef02
IEDL.DBID 7X8
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517984600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1935-5548
IngestDate Fri Sep 05 09:20:52 EDT 2025
Wed Feb 19 02:30:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2020 by the American Diabetes Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-747e0b33cd7cb7dcba628b2f7f6f26af9cd8192b8f46e22128c3b21d47790ef02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0830-5277
0000-0001-7792-877X
PMID 31915204
PQID 2335169130
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2335169130
pubmed_primary_31915204
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Diabetes care
PublicationTitleAlternate Diabetes Care
PublicationYear 2020
SSID ssj0004488
Score 2.5498393
Snippet Plasma protein -glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational...
Plasma protein N-glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 661
SubjectTerms Adult
Aged
Biomarkers - blood
Cardiovascular Diseases - blood
Cardiovascular Diseases - diagnosis
Cardiovascular Diseases - epidemiology
Cardiovascular Diseases - etiology
Cohort Studies
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - etiology
Female
Finland - epidemiology
Glycosylation
Humans
Incidence
Male
Middle Aged
Myocardial Infarction - blood
Myocardial Infarction - epidemiology
Myocardial Infarction - etiology
Polysaccharides - blood
Prognosis
Prospective Studies
Risk Factors
Stroke - blood
Stroke - epidemiology
Stroke - etiology
Title Plasma N -Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study
URI https://www.ncbi.nlm.nih.gov/pubmed/31915204
https://www.proquest.com/docview/2335169130
Volume 43
WOSCitedRecordID wos000517984600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uiBf3feEJXoNt0tWLjIMb6FBEZW5DmgWLTqPTUZiD_92XTge9CIKX3BrKy8t731vyPUKOtK8SlSpDfZGnNGBeTkUYGiriCK8Wl5GpX8g93sSdTtLtplmTcKuatsqJTawNtbLS5ciPGeeupIMm9_T1jbqpUa662ozQmCazHKGM0-q4-4MtPKjnTiJGCSm6zWTMLIQ7xcdK-il1YOh3ZFl7mIul__7bMllssCW0xsqwQqZ0uUrmb5vq-Rr5zBAq9wV06OXLCEVagajAZaXcoCI4K2zf9eoMKrAG2nWfal8PUUleCgl3RfV8Ai3IBnbyOBN-cHTYEooSEEzCeXbdppkdVkr0oW2fEN6Da1YcrZOHi_P79hVtxi9Qyb10SDHQ0F7OuVSxzGMlcxGxJGcmNpFhkTCpVI5NLU9MEGmGLjCRPGe-ChyFoTYe2yAzpS31FgFfMYORGB5IGAU-Bq6C6whDYxUiGuFabZPDiWB7qN6uZiFKbd-r3rdot8nm-HR6r2Mejh5aD0QfXrDzh693yQJzkXLdPbZHZg1ebr1P5uTHsKgGB7Xe4NrJbr8ACBzNZg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+N-Glycans+as+Emerging+Biomarkers+of+Cardiometabolic+Risk%3A+A+Prospective+Investigation+in+the+EPIC-Potsdam+Cohort+Study&rft.jtitle=Diabetes+care&rft.au=Wittenbecher%2C+Clemens&rft.au=%C5%A0tambuk%2C+Tamara&rft.au=Kuxhaus%2C+Olga&rft.au=Rudman%2C+Najda&rft.date=2020-03-01&rft.issn=1935-5548&rft.eissn=1935-5548&rft.volume=43&rft.issue=3&rft.spage=661&rft_id=info:doi/10.2337%2Fdc19-1507&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-5548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-5548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-5548&client=summon