Contributions of brain regions to machine learning-based classifications of attention deficit hyperactivity disorder (ADHD) utilizing EEG signals

The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD fr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied neuropsychology. Adult s. 1 - 15
Hlavní autori: Deshmukh, Manjusha, Khemchandani, Mahi, Thakur, Paramjit Mahesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 08.07.2024
Predmet:
ISSN:2327-9095, 2327-9109, 2327-9109
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts. The EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination. Study indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels. The study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings.
AbstractList The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts.OBJECTIVEThe study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts.The EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination.METHODOLOGYThe EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination.Study indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels.FINDINGSStudy indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels.The study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings.NOVELTYThe study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings.
The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts. The EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination. Study indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels. The study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings.
Author Deshmukh, Manjusha
Khemchandani, Mahi
Thakur, Paramjit Mahesh
Author_xml – sequence: 1
  givenname: Manjusha
  surname: Deshmukh
  fullname: Deshmukh, Manjusha
  organization: Computer Engineering Department, Saraswati College of Engineering, Navi Mumbai, India
– sequence: 2
  givenname: Mahi
  surname: Khemchandani
  fullname: Khemchandani, Mahi
  organization: Information Technology, Saraswati College of Engineering, Navi Mumbai, India
– sequence: 3
  givenname: Paramjit Mahesh
  surname: Thakur
  fullname: Thakur, Paramjit Mahesh
  organization: Mechanical Engineering Department, Saraswati College of Engineering, Navi Mumbai, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38976722$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uGyEUhVGUKn_NI6RimSzGZWAYBnUV2Y5TKVI26XrEz7VDNAYXcCT3LfrGwY7tRTdlc7mX71ykcy7RqQ8eELqpyagmHflOGRWSSD6ihDYjytqu5fwEXWznlayJPD3cC3SOrlN6I-V0lHPKz9A566RoBaUX6O84-BydXmcXfMJhjnVUzuMIi90gB7xU5tV5wAOo6J1fVFolsNgMKiU3d0YdpSpn8NsOWygPLuPXzQqiMtm9u7zB1qUQLUR8ez95nNzh8ung_pSVeDqd4eQWXg3pK_oyLwWu9_UK_XqYvowfq6fn2c_x_VNlGJG54qKRLWhhpe2kobVpgSorGmC2EQpoC0zLjrEOBJeCayVB19C2jBYXqNDsCt1-7l3F8HsNKfdLlwwMg_IQ1qlnRIhaNEKwgn7bo2u9BNuvoluquOkPNhaAfwImhpQizI9ITfptYv0hsX6bWL9PrOh-_KMrpu38zCWF4T_qD3DEnEI
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3582805
crossref_primary_10_1080_21622965_2025_2511691
crossref_primary_10_1109_ACCESS_2025_3567427
crossref_primary_10_1186_s12911_025_03126_0
crossref_primary_10_1080_21622965_2025_2470438
crossref_primary_10_5093_clh2025a16
crossref_primary_10_1109_ACCESS_2025_3601576
Cites_doi 10.3390/signals4010010
10.1186/s13052-023-01456-1
10.1049/iet-syb.2018.5130
10.32604/cmc.2022.028339
10.3390/app12052737
10.32604/iasc.2021.017478
10.1007/s10802-023-01022-7
10.1016/j.cmpb.2020.105738
10.1080/13803390601186676
10.1038/s41598-021-95673-5
10.1001/jamanetworkopen.2023.3502
10.3390/computation11090180
10.1016/j.artmed.2021.102209
10.37897/RJP.2023.2.1
10.1007/s13246-021-01018-x
10.21227/rzfh-zn36
10.1515/biol-2022-0664
10.1017/S0263574721000382
10.1080/21622965.2023.2300078
10.3390/s22134934
10.1007/978-3-031-40688-1_8
10.9758/cpn.22.1025
10.1109/ACCESS.2023.3302903
10.1016/j.bbe.2020.04.006
10.1016/j.chaos.2022.112021
10.1016/j.neubiorev.2022.104752
10.1109/ComPE49325.2020.9200194
10.22201/icat.24486736e.2021.19.6.1299
10.1038/s41598-022-17126-x
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/23279095.2024.2368655
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2327-9109
EndPage 15
ExternalDocumentID 38976722
10_1080_23279095_2024_2368655
Genre Journal Article
GroupedDBID 0BK
0R~
4.4
53G
6J9
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AAYXX
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEISY
AEMXT
AEOZL
AEZRU
AFHDM
AFRVT
AGDLA
AGRBW
AIAGR
AIJEM
AIYEW
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CITATION
DGFLZ
DKSSO
EAP
EBC
EBD
EBS
EMB
EMK
EMOBN
EPL
EPS
ESX
E~B
E~C
FMBMU
G-F
GTTXZ
H13
HF~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
SV3
TASJS
TBQAZ
TDBHL
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
TUS
UT5
ADYSH
NPM
7X8
ID FETCH-LOGICAL-c309t-57496eb7d9d89c21c6e2ad74e3d47ae26e3b98338e75975ba9eb1e663282527b3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001264532900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-9095
2327-9109
IngestDate Thu Sep 04 18:05:42 EDT 2025
Mon Jul 21 06:00:24 EDT 2025
Tue Nov 18 22:22:16 EST 2025
Sat Nov 29 06:03:05 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords electroencephalography
machine learning
Attention deficit hyperactivity disorder
supervised learning algorithm
channels on brain
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-57496eb7d9d89c21c6e2ad74e3d47ae26e3b98338e75975ba9eb1e663282527b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38976722
PQID 3077174773
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3077174773
pubmed_primary_38976722
crossref_primary_10_1080_23279095_2024_2368655
crossref_citationtrail_10_1080_23279095_2024_2368655
PublicationCentury 2000
PublicationDate 2024-Jul-08
PublicationDateYYYYMMDD 2024-07-08
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied neuropsychology. Adult
PublicationTitleAlternate Appl Neuropsychol Adult
PublicationYear 2024
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
Hernández-Capistran J. (e_1_3_2_15_1) 2023
References_xml – ident: e_1_3_2_4_1
  doi: 10.3390/signals4010010
– ident: e_1_3_2_24_1
  doi: 10.1186/s13052-023-01456-1
– ident: e_1_3_2_7_1
  doi: 10.1049/iet-syb.2018.5130
– ident: e_1_3_2_18_1
  doi: 10.32604/cmc.2022.028339
– ident: e_1_3_2_17_1
  doi: 10.3390/app12052737
– ident: e_1_3_2_23_1
  doi: 10.32604/iasc.2021.017478
– ident: e_1_3_2_12_1
  doi: 10.1007/s10802-023-01022-7
– ident: e_1_3_2_20_1
  doi: 10.1016/j.cmpb.2020.105738
– ident: e_1_3_2_11_1
  doi: 10.1080/13803390601186676
– ident: e_1_3_2_10_1
  doi: 10.1038/s41598-021-95673-5
– ident: e_1_3_2_16_1
  doi: 10.1001/jamanetworkopen.2023.3502
– ident: e_1_3_2_9_1
  doi: 10.3390/computation11090180
– ident: e_1_3_2_27_1
  doi: 10.1016/j.artmed.2021.102209
– ident: e_1_3_2_3_1
  doi: 10.37897/RJP.2023.2.1
– ident: e_1_3_2_28_1
  doi: 10.1007/s13246-021-01018-x
– ident: e_1_3_2_21_1
  doi: 10.21227/rzfh-zn36
– ident: e_1_3_2_8_1
  doi: 10.1515/biol-2022-0664
– ident: e_1_3_2_22_1
  doi: 10.1017/S0263574721000382
– ident: e_1_3_2_2_1
  doi: 10.1080/21622965.2023.2300078
– ident: e_1_3_2_6_1
  doi: 10.3390/s22134934
– start-page: 163
  volume-title: Innovations in machine and deep learning: Case studies and applications
  year: 2023
  ident: e_1_3_2_15_1
  doi: 10.1007/978-3-031-40688-1_8
– ident: e_1_3_2_30_1
  doi: 10.9758/cpn.22.1025
– ident: e_1_3_2_25_1
  doi: 10.1109/ACCESS.2023.3302903
– ident: e_1_3_2_5_1
  doi: 10.1016/j.bbe.2020.04.006
– ident: e_1_3_2_29_1
  doi: 10.1016/j.chaos.2022.112021
– ident: e_1_3_2_26_1
  doi: 10.1016/j.neubiorev.2022.104752
– ident: e_1_3_2_14_1
  doi: 10.1109/ComPE49325.2020.9200194
– ident: e_1_3_2_13_1
  doi: 10.22201/icat.24486736e.2021.19.6.1299
– ident: e_1_3_2_19_1
  doi: 10.1038/s41598-022-17126-x
SSID ssj0000825525
Score 2.4023058
Snippet The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1
Title Contributions of brain regions to machine learning-based classifications of attention deficit hyperactivity disorder (ADHD) utilizing EEG signals
URI https://www.ncbi.nlm.nih.gov/pubmed/38976722
https://www.proquest.com/docview/3077174773
WOSCitedRecordID wos001264532900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2327-9109
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000825525
  issn: 2327-9095
  databaseCode: TFW
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6wQMvaDAuZTAZCU2gKiXNzfZjxVomURUeOuhbFCcu6dampU2njX_Bf-CHco4Tpy0qYjzwElVObEc5X4-_Y58LIa8SIWN3JDwrCWxleW4iLRnJ2PLt2JNYFUXoDf3PPdbv8-FQfKrVfppYmKsJyzJ-fS3m_1XU0AbCxtDZfxB3NSg0wG8QOlxB7HC9leAx35SpYqX9NCRWgWhgBQZsAK451Q6UylSM-GrhUpY0YiTS6Dm09o7D5JuFO2SiMNVE3kjBbtWBVbrmRFLm7kSe2j49O8U9Bph4Mv6OOxCdzvsG-odEk-UmBzbEV6fSnBsFfNNstDEXSMWs1TKdri7TIqAou1gt02oF-ZCqKUYsJ0VBKrifjtceLtHlalGQ40U0vYB3htsw2Ob-huNpX9gNlQyUj4FKtgvFqna0Faq3tXNBKDwo8XkBZLKJEzQdN8Bw3PUKaE79-x_D7nmvFw46w8HJ_JuFtcnwDL8s1LJH7jjMF-g4OOh-qXby0Mj2dXXf6rVMqBi33-6cepsE_cGy0QxncEDul6YJbReQekBqKntIDttZlM-mN_SEamdhLapD8mMLZXQ2ohpltEQZzWe0RBndRhn9DWXYtUIZLVFGt1BGDcroa8TYG1ohjALCaImwR-S82xm8O7PK6h5W7Noit3zmiUBJloiEi9hpxYFyooR5yk08FiknUK4U3HW5gm_OfBkJoBUKCDJGWztMuo_JfjbL1FNCgWL7dsAjJoORJ33J49ZIchVJ4K8cLOI68cznDuMy9T1WYJmErTJDrpFSiFIKSynVSbPqNi9yv_ytw0sjyxC0NB69RZmarZYhrKQMbH_G3Dp5Ugi5GhJMBhYwx3l2i95H5N76P_Kc7OeLlXpB7sZX-Xi5OCZ7bMiPNTp_AagsvnI
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contributions+of+brain+regions+to+machine+learning-based+classifications+of+attention+deficit+hyperactivity+disorder+%28ADHD%29+utilizing+EEG+signals&rft.jtitle=Applied+neuropsychology.+Adult&rft.au=Deshmukh%2C+Manjusha&rft.au=Khemchandani%2C+Mahi&rft.au=Thakur%2C+Paramjit+Mahesh&rft.date=2024-07-08&rft.issn=2327-9109&rft.eissn=2327-9109&rft.spage=1&rft_id=info:doi/10.1080%2F23279095.2024.2368655&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-9095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-9095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-9095&client=summon