Contributions of brain regions to machine learning-based classifications of attention deficit hyperactivity disorder (ADHD) utilizing EEG signals
The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD fr...
Uložené v:
| Vydané v: | Applied neuropsychology. Adult s. 1 - 15 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
08.07.2024
|
| Predmet: | |
| ISSN: | 2327-9095, 2327-9109, 2327-9109 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts.
The EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination.
Study indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels.
The study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings. |
|---|---|
| AbstractList | The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts.OBJECTIVEThe study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts.The EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination.METHODOLOGYThe EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination.Study indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels.FINDINGSStudy indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels.The study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings.NOVELTYThe study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings. The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts. The EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination. Study indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels. The study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings. |
| Author | Deshmukh, Manjusha Khemchandani, Mahi Thakur, Paramjit Mahesh |
| Author_xml | – sequence: 1 givenname: Manjusha surname: Deshmukh fullname: Deshmukh, Manjusha organization: Computer Engineering Department, Saraswati College of Engineering, Navi Mumbai, India – sequence: 2 givenname: Mahi surname: Khemchandani fullname: Khemchandani, Mahi organization: Information Technology, Saraswati College of Engineering, Navi Mumbai, India – sequence: 3 givenname: Paramjit Mahesh surname: Thakur fullname: Thakur, Paramjit Mahesh organization: Mechanical Engineering Department, Saraswati College of Engineering, Navi Mumbai, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38976722$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uGyEUhVGUKn_NI6RimSzGZWAYBnUV2Y5TKVI26XrEz7VDNAYXcCT3LfrGwY7tRTdlc7mX71ykcy7RqQ8eELqpyagmHflOGRWSSD6ihDYjytqu5fwEXWznlayJPD3cC3SOrlN6I-V0lHPKz9A566RoBaUX6O84-BydXmcXfMJhjnVUzuMIi90gB7xU5tV5wAOo6J1fVFolsNgMKiU3d0YdpSpn8NsOWygPLuPXzQqiMtm9u7zB1qUQLUR8ez95nNzh8ung_pSVeDqd4eQWXg3pK_oyLwWu9_UK_XqYvowfq6fn2c_x_VNlGJG54qKRLWhhpe2kobVpgSorGmC2EQpoC0zLjrEOBJeCayVB19C2jBYXqNDsCt1-7l3F8HsNKfdLlwwMg_IQ1qlnRIhaNEKwgn7bo2u9BNuvoluquOkPNhaAfwImhpQizI9ITfptYv0hsX6bWL9PrOh-_KMrpu38zCWF4T_qD3DEnEI |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3582805 crossref_primary_10_1080_21622965_2025_2511691 crossref_primary_10_1109_ACCESS_2025_3567427 crossref_primary_10_1186_s12911_025_03126_0 crossref_primary_10_1080_21622965_2025_2470438 crossref_primary_10_5093_clh2025a16 crossref_primary_10_1109_ACCESS_2025_3601576 |
| Cites_doi | 10.3390/signals4010010 10.1186/s13052-023-01456-1 10.1049/iet-syb.2018.5130 10.32604/cmc.2022.028339 10.3390/app12052737 10.32604/iasc.2021.017478 10.1007/s10802-023-01022-7 10.1016/j.cmpb.2020.105738 10.1080/13803390601186676 10.1038/s41598-021-95673-5 10.1001/jamanetworkopen.2023.3502 10.3390/computation11090180 10.1016/j.artmed.2021.102209 10.37897/RJP.2023.2.1 10.1007/s13246-021-01018-x 10.21227/rzfh-zn36 10.1515/biol-2022-0664 10.1017/S0263574721000382 10.1080/21622965.2023.2300078 10.3390/s22134934 10.1007/978-3-031-40688-1_8 10.9758/cpn.22.1025 10.1109/ACCESS.2023.3302903 10.1016/j.bbe.2020.04.006 10.1016/j.chaos.2022.112021 10.1016/j.neubiorev.2022.104752 10.1109/ComPE49325.2020.9200194 10.22201/icat.24486736e.2021.19.6.1299 10.1038/s41598-022-17126-x |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1080/23279095.2024.2368655 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2327-9109 |
| EndPage | 15 |
| ExternalDocumentID | 38976722 10_1080_23279095_2024_2368655 |
| Genre | Journal Article |
| GroupedDBID | 0BK 0R~ 4.4 53G 6J9 AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AAYXX AAZMC ABCCY ABDBF ABFIM ABIVO ABJNI ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ACGFO ACGFS ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ AECIN AEFOU AEISY AEMXT AEOZL AEZRU AFHDM AFRVT AGDLA AGRBW AIAGR AIJEM AIYEW AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW BEJHT BLEHA BMOTO BOHLJ CCCUG CITATION DGFLZ DKSSO EAP EBC EBD EBS EMB EMK EMOBN EPL EPS ESX E~B E~C FMBMU G-F GTTXZ H13 HF~ IPNFZ J.O KYCEM LJTGL M4Z RIG RNANH ROSJB RSYQP S-F STATR SV3 TASJS TBQAZ TDBHL TFH TFL TFW TNTFI TRJHH TUROJ TUS UT5 ADYSH NPM 7X8 |
| ID | FETCH-LOGICAL-c309t-57496eb7d9d89c21c6e2ad74e3d47ae26e3b98338e75975ba9eb1e663282527b3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001264532900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-9095 2327-9109 |
| IngestDate | Thu Sep 04 18:05:42 EDT 2025 Mon Jul 21 06:00:24 EDT 2025 Tue Nov 18 22:22:16 EST 2025 Sat Nov 29 06:03:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | electroencephalography machine learning Attention deficit hyperactivity disorder supervised learning algorithm channels on brain |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-57496eb7d9d89c21c6e2ad74e3d47ae26e3b98338e75975ba9eb1e663282527b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 38976722 |
| PQID | 3077174773 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_3077174773 pubmed_primary_38976722 crossref_primary_10_1080_23279095_2024_2368655 crossref_citationtrail_10_1080_23279095_2024_2368655 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jul-08 |
| PublicationDateYYYYMMDD | 2024-07-08 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Applied neuropsychology. Adult |
| PublicationTitleAlternate | Appl Neuropsychol Adult |
| PublicationYear | 2024 |
| References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 Hernández-Capistran J. (e_1_3_2_15_1) 2023 |
| References_xml | – ident: e_1_3_2_4_1 doi: 10.3390/signals4010010 – ident: e_1_3_2_24_1 doi: 10.1186/s13052-023-01456-1 – ident: e_1_3_2_7_1 doi: 10.1049/iet-syb.2018.5130 – ident: e_1_3_2_18_1 doi: 10.32604/cmc.2022.028339 – ident: e_1_3_2_17_1 doi: 10.3390/app12052737 – ident: e_1_3_2_23_1 doi: 10.32604/iasc.2021.017478 – ident: e_1_3_2_12_1 doi: 10.1007/s10802-023-01022-7 – ident: e_1_3_2_20_1 doi: 10.1016/j.cmpb.2020.105738 – ident: e_1_3_2_11_1 doi: 10.1080/13803390601186676 – ident: e_1_3_2_10_1 doi: 10.1038/s41598-021-95673-5 – ident: e_1_3_2_16_1 doi: 10.1001/jamanetworkopen.2023.3502 – ident: e_1_3_2_9_1 doi: 10.3390/computation11090180 – ident: e_1_3_2_27_1 doi: 10.1016/j.artmed.2021.102209 – ident: e_1_3_2_3_1 doi: 10.37897/RJP.2023.2.1 – ident: e_1_3_2_28_1 doi: 10.1007/s13246-021-01018-x – ident: e_1_3_2_21_1 doi: 10.21227/rzfh-zn36 – ident: e_1_3_2_8_1 doi: 10.1515/biol-2022-0664 – ident: e_1_3_2_22_1 doi: 10.1017/S0263574721000382 – ident: e_1_3_2_2_1 doi: 10.1080/21622965.2023.2300078 – ident: e_1_3_2_6_1 doi: 10.3390/s22134934 – start-page: 163 volume-title: Innovations in machine and deep learning: Case studies and applications year: 2023 ident: e_1_3_2_15_1 doi: 10.1007/978-3-031-40688-1_8 – ident: e_1_3_2_30_1 doi: 10.9758/cpn.22.1025 – ident: e_1_3_2_25_1 doi: 10.1109/ACCESS.2023.3302903 – ident: e_1_3_2_5_1 doi: 10.1016/j.bbe.2020.04.006 – ident: e_1_3_2_29_1 doi: 10.1016/j.chaos.2022.112021 – ident: e_1_3_2_26_1 doi: 10.1016/j.neubiorev.2022.104752 – ident: e_1_3_2_14_1 doi: 10.1109/ComPE49325.2020.9200194 – ident: e_1_3_2_13_1 doi: 10.22201/icat.24486736e.2021.19.6.1299 – ident: e_1_3_2_19_1 doi: 10.1038/s41598-022-17126-x |
| SSID | ssj0000825525 |
| Score | 2.4023058 |
| Snippet | The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 1 |
| Title | Contributions of brain regions to machine learning-based classifications of attention deficit hyperactivity disorder (ADHD) utilizing EEG signals |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38976722 https://www.proquest.com/docview/3077174773 |
| WOSCitedRecordID | wos001264532900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 2327-9109 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000825525 issn: 2327-9095 databaseCode: TFW dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6wQMvaDAuZTAZCU2gKiXNzfZjxVomURUeOuhbFCcu6dampU2njX_Bf-CHco4Tpy0qYjzwElVObEc5X4-_Y58LIa8SIWN3JDwrCWxleW4iLRnJ2PLt2JNYFUXoDf3PPdbv8-FQfKrVfppYmKsJyzJ-fS3m_1XU0AbCxtDZfxB3NSg0wG8QOlxB7HC9leAx35SpYqX9NCRWgWhgBQZsAK451Q6UylSM-GrhUpY0YiTS6Dm09o7D5JuFO2SiMNVE3kjBbtWBVbrmRFLm7kSe2j49O8U9Bph4Mv6OOxCdzvsG-odEk-UmBzbEV6fSnBsFfNNstDEXSMWs1TKdri7TIqAou1gt02oF-ZCqKUYsJ0VBKrifjtceLtHlalGQ40U0vYB3htsw2Ob-huNpX9gNlQyUj4FKtgvFqna0Faq3tXNBKDwo8XkBZLKJEzQdN8Bw3PUKaE79-x_D7nmvFw46w8HJ_JuFtcnwDL8s1LJH7jjMF-g4OOh-qXby0Mj2dXXf6rVMqBi33-6cepsE_cGy0QxncEDul6YJbReQekBqKntIDttZlM-mN_SEamdhLapD8mMLZXQ2ohpltEQZzWe0RBndRhn9DWXYtUIZLVFGt1BGDcroa8TYG1ohjALCaImwR-S82xm8O7PK6h5W7Noit3zmiUBJloiEi9hpxYFyooR5yk08FiknUK4U3HW5gm_OfBkJoBUKCDJGWztMuo_JfjbL1FNCgWL7dsAjJoORJ33J49ZIchVJ4K8cLOI68cznDuMy9T1WYJmErTJDrpFSiFIKSynVSbPqNi9yv_ytw0sjyxC0NB69RZmarZYhrKQMbH_G3Dp5Ugi5GhJMBhYwx3l2i95H5N76P_Kc7OeLlXpB7sZX-Xi5OCZ7bMiPNTp_AagsvnI |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contributions+of+brain+regions+to+machine+learning-based+classifications+of+attention+deficit+hyperactivity+disorder+%28ADHD%29+utilizing+EEG+signals&rft.jtitle=Applied+neuropsychology.+Adult&rft.au=Deshmukh%2C+Manjusha&rft.au=Khemchandani%2C+Mahi&rft.au=Thakur%2C+Paramjit+Mahesh&rft.date=2024-07-08&rft.issn=2327-9109&rft.eissn=2327-9109&rft.spage=1&rft_id=info:doi/10.1080%2F23279095.2024.2368655&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-9095&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-9095&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-9095&client=summon |