Topological data analysis assisted machine learning for polar topological structures in oxide superlattices

Ferroelectric topological phases and phase transitions have been extensively investigated recently due to the rich physical insights and potential applications in next-generation electronic devices. However, precisely predicting the topological phase transitions under different internal and external...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta materialia Ročník 282; s. 120467
Hlavní autoři: Du, Guanshihan, Zhou, Linming, Huang, Yuhui, Wu, Yongjun, Hong, Zijian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2025
Témata:
ISSN:1359-6454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ferroelectric topological phases and phase transitions have been extensively investigated recently due to the rich physical insights and potential applications in next-generation electronic devices. However, precisely predicting the topological phase transitions under different internal and external conditions in polar oxide superlattice systems is challenging due to the complex energy competitions and highly nonlinear kinetics involved. Herein, we adopted a state-of-the-art mathematical concept called “persistent homology” from topological data analysis to extract the essential topological features for the polarization data in various topological structures. By implementing the persistent image as the descriptor, support vector regression (SVR) based convolutional neural network (CNN) models are developed for the automated and high precision classification and regression of topological states based on high-dimensional phase-field simulation data of the PTO/STO superlattice. Using this method, we can automatically construct the strain and electric field phase diagrams in seconds with high throughput phase-field data. We hope to spur further interest in the integration of state-of-the-art mathematical tools, machine learning algorithms, and condensed matter physics for predictions of topological phase transitions. [Display omitted]
AbstractList Ferroelectric topological phases and phase transitions have been extensively investigated recently due to the rich physical insights and potential applications in next-generation electronic devices. However, precisely predicting the topological phase transitions under different internal and external conditions in polar oxide superlattice systems is challenging due to the complex energy competitions and highly nonlinear kinetics involved. Herein, we adopted a state-of-the-art mathematical concept called “persistent homology” from topological data analysis to extract the essential topological features for the polarization data in various topological structures. By implementing the persistent image as the descriptor, support vector regression (SVR) based convolutional neural network (CNN) models are developed for the automated and high precision classification and regression of topological states based on high-dimensional phase-field simulation data of the PTO/STO superlattice. Using this method, we can automatically construct the strain and electric field phase diagrams in seconds with high throughput phase-field data. We hope to spur further interest in the integration of state-of-the-art mathematical tools, machine learning algorithms, and condensed matter physics for predictions of topological phase transitions. [Display omitted]
ArticleNumber 120467
Author Hong, Zijian
Zhou, Linming
Huang, Yuhui
Du, Guanshihan
Wu, Yongjun
Author_xml – sequence: 1
  givenname: Guanshihan
  surname: Du
  fullname: Du, Guanshihan
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
– sequence: 2
  givenname: Linming
  surname: Zhou
  fullname: Zhou, Linming
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
– sequence: 3
  givenname: Yuhui
  surname: Huang
  fullname: Huang, Yuhui
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
– sequence: 4
  givenname: Yongjun
  surname: Wu
  fullname: Wu, Yongjun
  email: yongjunwu@zju.edu.cn
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
– sequence: 5
  givenname: Zijian
  orcidid: 0000-0002-3491-0884
  surname: Hong
  fullname: Hong, Zijian
  email: hongzijian100@zju.edu.cn
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
BookMark eNqF0MtKQzEQgOEsKtiqjyDkBVpzPRdciIg3KLip6zCdM6emniYlScW-vZW6EDduZlbfwPwTNgoxEGOXUsykkNXVegZYYANlpoQyM6mEqeoRG0tt22llrDllk5zXQkhVGzFm74u4jUNceYSBd1CAQ4Bhn33mkA-zUMc3gG8-EB8IUvBhxfuY-EFB4uWXziXtsOwSZe4Dj5--I553W0oDlOKR8jk76WHIdPGzz9jrw_3i7mk6f3l8vrudT1GLtkyt0gaw7azoLYESdYfa9ktrGm0bakk3jcSqkS0uWzKaar1salyiUapSrSV9xuzxLqaYc6LebZPfQNo7Kdx3Jbd2P5XcdyV3rHRw138c-gLFx1AS-OFffXPUdHjtw1NyGT0FpM4nwuK66P-58AWwUI3V
CitedBy_id crossref_primary_10_1016_j_euromechsol_2025_105733
crossref_primary_10_2478_amns_2025_0323
Cites_doi 10.1021/acs.nanolett.6b04875
10.1002/adts.202100196
10.1038/s41586-019-1092-8
10.1016/j.actamat.2013.08.055
10.1021/acs.nanolett.3c04021
10.1016/j.procs.2020.03.355
10.1038/s41586-023-06734-w
10.1016/j.actamat.2018.04.022
10.1038/s41467-024-45755-5
10.1126/sciadv.aap8672
10.1016/j.matt.2022.01.010
10.1038/s41524-023-00982-0
10.1038/s41524-023-01142-0
10.1126/science.aaa8415
10.1038/s41586-021-04260-1
10.1146/annurev-economics-080217-053433
10.1016/j.scriptamat.2021.114335
10.1038/s41524-018-0135-2
10.1038/nature16961
10.1021/acs.jpclett.2c03706
10.1111/j.1551-2916.2008.02413.x
10.1038/s41524-021-00493-w
10.1126/sciadv.abc2320
10.1038/s41467-021-22356-0
10.1021/acs.jpclett.1c03058
10.1103/PhysRevLett.129.107601
10.1038/nmat4951
10.1103/PhysRevLett.132.116201
10.1021/acs.jpcb.2c09009
10.1063/1.1492025
10.1038/s41586-018-0337-2
10.1016/j.compbiomed.2022.105458
10.1016/j.compchemeng.2020.107202
10.1038/nature16463
10.1146/annurev.matsci.32.112001.132041
10.1038/nature03107
10.1073/pnas.2007248117
10.1039/D2MA00524G
10.1090/S0273-0979-09-01249-X
10.1038/s41467-019-12864-5
10.1038/s41467-020-15616-y
10.1063/5.0034914
10.1090/S0273-0979-07-01191-3
10.1038/s41563-020-0694-8
10.1038/s41563-020-00818-y
10.1007/s00454-006-1276-5
10.1038/s41586-018-0855-y
10.1016/S1359-6454(01)00360-3
10.1038/s41598-021-84499-w
10.1038/s41586-023-06735-9
10.1126/science.1259869
ContentType Journal Article
Copyright 2024 Acta Materialia Inc.
Copyright_xml – notice: 2024 Acta Materialia Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.actamat.2024.120467
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_actamat_2024_120467
S1359645424008164
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
M41
R2-
T9H
ZY4
~HD
ID FETCH-LOGICAL-c309t-5234ac9d50f5ea207dc35fb548358e9e3881c6819cb9e43e73b87cbc4226295e3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334677900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-6454
IngestDate Sat Nov 29 02:48:02 EST 2025
Tue Nov 18 21:22:29 EST 2025
Sat Nov 16 15:58:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Persistent homology
Polar topological structures
Topological data analysis
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-5234ac9d50f5ea207dc35fb548358e9e3881c6819cb9e43e73b87cbc4226295e3
ORCID 0000-0002-3491-0884
ParticipantIDs crossref_primary_10_1016_j_actamat_2024_120467
crossref_citationtrail_10_1016_j_actamat_2024_120467
elsevier_sciencedirect_doi_10_1016_j_actamat_2024_120467
PublicationCentury 2000
PublicationDate 2025-01-01
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Acta materialia
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jiang, Chen, Chen (bib0045) 2021; 7
Hong, Damodaran, Xue (bib0018) 2017; 17
Li, Yang, Zhang (bib0040) 2018; 4
Lund, Wang, Braatz, García (bib0039) 2022; 3
Li, Hu, Liu, Chen (bib0053) 2002; 81
Tang, Zhu, Ma (bib0004) 2015; 348
Zhu, Jiang, Zhang (bib0014) 2022; 129
Chen, Gao, Nguyen (bib0049) 2021; 12
Li, Tan, Liu (bib0022) 2020; 117
Cohen-Steiner, Edelsbrunner, Harer (bib0056) 2007; 37
Chen (bib0052) 2008; 91
Szymanski, Rendy, Fei (bib0032) 2023; 624
Butler, Davies, Cartwright (bib0031) 2018; 559
Li, Hu, Liu, Chen (bib0050) 2002; 50
Zhou, Dai, Meisenheimer (bib0019) 2022
Chen, Zheng, Wei, Pan (bib0048) 2021; 12
Chen, Yuan, Hou (bib0001) 2021; 33
Chen, Liu, Wu (bib0047) 2023; 14
Shehab, Abualigah, Shambour (bib0028) 2022; 145
Shang, Dong, Wu (bib0024) 2024; 132
Athey, Imbens (bib0029) 2019; 11
Sørensen, Biscio, Bauchy (bib0044) 2020; 6
Zhou, Yao, Wu (bib0034) 2021; 4
Guo, Zhou, Roul (bib0010) 2022
Agarwal, Alomar, Alumootil, Shah, Shen, Xu, Yang (bib0057) 2021
Khan, Al-Habsi (bib0026) 2020; 167
Artetxe, Labaka, Agirre, Cho (bib0027) 2018
Tirelli, Nakano (bib0046) 2023; 127
Cohen-Steiner, Edelsbrunner, Harer (bib0055) 2005; 9
Smith, Dłotko, Zavala (bib0043) 2021; 146
Abid, Sun, Hou (bib0020) 2021; 12
Hong, Chen (bib0006) 2018; 152
Silver, Huang, Maddison (bib0030) 2016; 529
Wang, Feng, Zhu (bib0008) 2020; 19
Chen (bib0051) 2002; 32
Rusu, Peters, Hase (bib0009) 2022; 602
Zhou, Huang, Das (bib0013) 2022; 5
Du, Zhang, Dai (bib0021) 2019; 10
Kalinin, Mukherjee, Roccapriore (bib0035) 2023; 9
Das, Hong, McCarter (bib0002) 2020; 8
Wang, Li, Deng (bib0016) 2024; 15
Wang, Ma, Li, Britson, Chen (bib0054) 2013; 61
Merchant, Batzner, Schoenholz (bib0033) 2023; 624
Damodaran, Clarkson, Hong, Liu, Yadav, Nelson, Hsu, McCarter, Park, Kravtsov, Farhan, Dong, Cai, Zhou, Aguado-Puente, García-Fernández, Íñiguez, Junquera, Scholl, Raschke, Chen, Fong, Ramesh, Martin (bib0059) 2017; 16
Terayama, Han, Katsube (bib0038) 2022; 208
Das, Hong, Stoica (bib0012) 2021; 20
Yadav, Nguyen, Hong (bib0011) 2019; 565
Liu, Ji, Yuan (bib0015) 2018; 4
Naumov, Bellaiche, Fu (bib0003) 2004; 432
Das, Tang, Hong (bib0007) 2019; 568
Chen, Zhong, Zorn (bib0023) 2020; 11
Jordan, Mitchell (bib0025) 2015; 349
Ghrist (bib0042) 2008; 45
Dai, Hong, Das, Tang, Martin, Ramesh, Chen (bib0058) 2023; 5
Sriboriboon, Qiao, Kwon (bib0037) 2023; 9
Lin, Zhang, Wang (bib0036) 2021; 11
Yadav, Nelson, Hsu (bib0005) 2016; 530
Carlsson (bib0041) 2009; 46
Hu, Wu, Huang (bib0017) 2023; 23
Ghrist (10.1016/j.actamat.2024.120467_bib0042) 2008; 45
Naumov (10.1016/j.actamat.2024.120467_bib0003) 2004; 432
Smith (10.1016/j.actamat.2024.120467_bib0043) 2021; 146
Guo (10.1016/j.actamat.2024.120467_bib0010) 2022
Chen (10.1016/j.actamat.2024.120467_bib0052) 2008; 91
Szymanski (10.1016/j.actamat.2024.120467_bib0032) 2023; 624
Lund (10.1016/j.actamat.2024.120467_bib0039) 2022; 3
Sørensen (10.1016/j.actamat.2024.120467_bib0044) 2020; 6
Wang (10.1016/j.actamat.2024.120467_bib0054) 2013; 61
Lin (10.1016/j.actamat.2024.120467_bib0036) 2021; 11
Wang (10.1016/j.actamat.2024.120467_bib0016) 2024; 15
Rusu (10.1016/j.actamat.2024.120467_bib0009) 2022; 602
Damodaran (10.1016/j.actamat.2024.120467_bib0059) 2017; 16
Shang (10.1016/j.actamat.2024.120467_bib0024) 2024; 132
Cohen-Steiner (10.1016/j.actamat.2024.120467_bib0056) 2007; 37
Tirelli (10.1016/j.actamat.2024.120467_bib0046) 2023; 127
Chen (10.1016/j.actamat.2024.120467_bib0049) 2021; 12
Zhou (10.1016/j.actamat.2024.120467_bib0019) 2022
Li (10.1016/j.actamat.2024.120467_bib0053) 2002; 81
Wang (10.1016/j.actamat.2024.120467_bib0008) 2020; 19
Kalinin (10.1016/j.actamat.2024.120467_bib0035) 2023; 9
Cohen-Steiner (10.1016/j.actamat.2024.120467_bib0055) 2005; 9
Athey (10.1016/j.actamat.2024.120467_bib0029) 2019; 11
Hu (10.1016/j.actamat.2024.120467_bib0017) 2023; 23
Khan (10.1016/j.actamat.2024.120467_bib0026) 2020; 167
Chen (10.1016/j.actamat.2024.120467_bib0023) 2020; 11
Hong (10.1016/j.actamat.2024.120467_bib0006) 2018; 152
Shehab (10.1016/j.actamat.2024.120467_bib0028) 2022; 145
Li (10.1016/j.actamat.2024.120467_bib0040) 2018; 4
Agarwal (10.1016/j.actamat.2024.120467_bib0057) 2021
Silver (10.1016/j.actamat.2024.120467_bib0030) 2016; 529
Carlsson (10.1016/j.actamat.2024.120467_bib0041) 2009; 46
Hong (10.1016/j.actamat.2024.120467_bib0018) 2017; 17
Chen (10.1016/j.actamat.2024.120467_bib0048) 2021; 12
Terayama (10.1016/j.actamat.2024.120467_bib0038) 2022; 208
Zhou (10.1016/j.actamat.2024.120467_bib0013) 2022; 5
Chen (10.1016/j.actamat.2024.120467_bib0047) 2023; 14
Sriboriboon (10.1016/j.actamat.2024.120467_bib0037) 2023; 9
Artetxe (10.1016/j.actamat.2024.120467_bib0027) 2018
Jordan (10.1016/j.actamat.2024.120467_bib0025) 2015; 349
Dai (10.1016/j.actamat.2024.120467_bib0058) 2023; 5
Chen (10.1016/j.actamat.2024.120467_bib0001) 2021; 33
Yadav (10.1016/j.actamat.2024.120467_bib0011) 2019; 565
Chen (10.1016/j.actamat.2024.120467_bib0051) 2002; 32
Du (10.1016/j.actamat.2024.120467_bib0021) 2019; 10
Merchant (10.1016/j.actamat.2024.120467_bib0033) 2023; 624
Butler (10.1016/j.actamat.2024.120467_bib0031) 2018; 559
Li (10.1016/j.actamat.2024.120467_bib0050) 2002; 50
Tang (10.1016/j.actamat.2024.120467_bib0004) 2015; 348
Zhou (10.1016/j.actamat.2024.120467_bib0034) 2021; 4
Abid (10.1016/j.actamat.2024.120467_bib0020) 2021; 12
Das (10.1016/j.actamat.2024.120467_bib0007) 2019; 568
Zhu (10.1016/j.actamat.2024.120467_bib0014) 2022; 129
Jiang (10.1016/j.actamat.2024.120467_bib0045) 2021; 7
Li (10.1016/j.actamat.2024.120467_bib0022) 2020; 117
Das (10.1016/j.actamat.2024.120467_bib0002) 2020; 8
Yadav (10.1016/j.actamat.2024.120467_bib0005) 2016; 530
Das (10.1016/j.actamat.2024.120467_bib0012) 2021; 20
Liu (10.1016/j.actamat.2024.120467_bib0015) 2018; 4
References_xml – volume: 129
  year: 2022
  ident: bib0014
  article-title: Dynamics of polar skyrmion bubbles under electric fields
  publication-title: Phys. Rev. Lett.
– volume: 529
  start-page: 484
  year: 2016
  end-page: 504
  ident: bib0030
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
– volume: 9
  start-page: 227
  year: 2023
  ident: bib0035
  article-title: Machine learning for automated experimentation in scanning transmission electron microscopy
  publication-title: npj Computat. Mater.
– volume: 568
  start-page: 368
  year: 2019
  ident: bib0007
  article-title: Observation of room-temperature polar skyrmions
  publication-title: Nature
– volume: 32
  start-page: 113
  year: 2002
  ident: bib0051
  article-title: Phase-field models for microstructure evolution
  publication-title: Annu. Rev. Mater. Res.
– volume: 81
  start-page: 427
  year: 2002
  ident: bib0053
  article-title: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 263
  year: 2005
  end-page: 271
  ident: bib0055
  article-title: Stability of persistence diagrams
  publication-title: Assoc. Comput. Mach.
– volume: 8
  year: 2020
  ident: bib0002
  article-title: A new era in ferroelectrics
  publication-title: APL Mater
– volume: 4
  start-page: 78
  year: 2018
  ident: bib0015
  article-title: Controlling polar-toroidal multi-order states in twisted ferroelectric nanowires
  publication-title: npj Computat. Mater.
– volume: 33
  year: 2021
  ident: bib0001
  article-title: Recent progress on topological structures in ferroic thin films and heterostructures
  publication-title: Adv. Mater.
– volume: 12
  start-page: 10793
  year: 2021
  end-page: 10801
  ident: bib0048
  article-title: Extracting predictive representations from hundreds of millions of molecules
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 685
  year: 2019
  end-page: 725
  ident: bib0029
  article-title: Machine learning methods that economists should know about
  publication-title: Annu. Rev. Econ.
– volume: 565
  start-page: 468
  year: 2019
  end-page: 471
  ident: bib0011
  article-title: Spatially resolved steady-state negative capacitance
  publication-title: Nature
– volume: 17
  start-page: 2246
  year: 2017
  end-page: 2252
  ident: bib0018
  article-title: Stability of polar vortex lattice in ferroelectric superlattices
  publication-title: Nano Lett
– year: 2022
  ident: bib0010
  article-title: Theoretical understanding of polar topological phase transitions in functional oxide heterostructures: a review
  publication-title: Small Methods
– volume: 145
  year: 2022
  ident: bib0028
  article-title: Machine learning in medical applications: a review of state-of-the-art methods
  publication-title: Comput. Biol. Med.
– volume: 602
  start-page: 240
  year: 2022
  end-page: 244
  ident: bib0009
  article-title: Ferroelectric incommensurate spin crystals
  publication-title: Nature
– volume: 91
  start-page: 1835
  year: 2008
  ident: bib0052
  article-title: Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review
  publication-title: J. Am. Ceramic Soc.
– volume: 15
  start-page: 1374
  year: 2024
  ident: bib0016
  article-title: Giant electric field-induced second harmonic generation in polar skyrmions
  publication-title: Nat. Commun.
– year: 2021
  ident: bib0057
  article-title: PerSim: data-efficient offline reinforcement learning with heterogeneous agents via personalized simulators
  publication-title: ArXiv: abs/2102.06961
– volume: 530
  start-page: 198
  year: 2016
  ident: bib0005
  article-title: Observation of polar vortices in oxide superlattices
  publication-title: Nature
– volume: 152
  start-page: 155
  year: 2018
  end-page: 161
  ident: bib0006
  article-title: Blowing polar skyrmion bubbles in oxide superlattices
  publication-title: Acta Mater
– volume: 117
  start-page: 18954
  year: 2020
  end-page: 18961
  ident: bib0022
  article-title: Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure
  publication-title: PNAS
– volume: 11
  start-page: 1840
  year: 2020
  ident: bib0023
  article-title: Atomic imaging of mechanically induced topological transition of ferroelectric vortices
  publication-title: Nat. Commun.
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: bib0025
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
– volume: 61
  start-page: 7591
  year: 2013
  ident: bib0054
  article-title: Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity
  publication-title: Acta Mater.
– volume: 432
  start-page: 737
  year: 2004
  end-page: 740
  ident: bib0003
  article-title: Unusual phase transitions in ferroelectric nanodisks and nanorods
  publication-title: Nature
– year: 2022
  ident: bib0019
  article-title: Order-disorder transitions in a polar vortex lattice
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 11353
  year: 2023
  end-page: 11359
  ident: bib0017
  article-title: Dynamic Motion of Polar Skyrmions in Oxide Heterostructures
  publication-title: Nano Lett
– volume: 5
  start-page: 123
  year: 2023
  ident: bib0058
  article-title: Strain effects on stability of topological ferroelectric polar configurations in (PbTiO
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 28
  year: 2021
  ident: bib0045
  article-title: Topological representations of crystalline compounds for the machine-learning prediction of materials properties
  publication-title: npj Comput. Mater.
– volume: 5
  start-page: 1031
  year: 2022
  end-page: 1041
  ident: bib0013
  article-title: Local manipulation and topological phase transitions of polar skyrmions
  publication-title: Matter
– volume: 6
  start-page: eabc2320
  year: 2020
  ident: bib0044
  article-title: Revealing hidden medium-range order in amorphous materials using topological data analysis
  publication-title: Sci. Adv.
– volume: 146
  year: 2021
  ident: bib0043
  article-title: Topological data analysis: concepts, computation, and applications in chemical engineering
  publication-title: Comput. Chem. Eng.
– volume: 37
  start-page: 103
  year: 2007
  end-page: 120
  ident: bib0056
  article-title: Stability of persistence diagrams
  publication-title: Discrete Comput Geom
– volume: 132
  year: 2024
  ident: bib0024
  article-title: Mechanical control of polar patterns in wrinkled thin films via flexoelectricity
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 881
  year: 2020
  end-page: 886
  ident: bib0008
  article-title: Polar meron lattice in strained oxide ferroelectrics
  publication-title: Nat. Mater.
– volume: 4
  year: 2021
  ident: bib0034
  article-title: Machine learning assisted prediction of cathode materials for Zn-Ion batteries
  publication-title: Adv. Theory Simul.
– volume: 45
  start-page: 61
  year: 2008
  end-page: 75
  ident: bib0042
  article-title: Barcodes: the persistent topology of data
  publication-title: Bull. Am. Math. Soc.
– volume: 3
  start-page: 8485
  year: 2022
  end-page: 8497
  ident: bib0039
  article-title: Machine learning of phase diagrams
  publication-title: Mater. Adv.
– volume: 9
  start-page: 28
  year: 2023
  ident: bib0037
  article-title: Deep learning for exploring ultra-thin ferroelectrics with highly improved sensitivity of piezoresponse force microscopy
  publication-title: npj Computat. Mater.
– volume: 10
  start-page: 4864
  year: 2019
  ident: bib0021
  article-title: Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution
  publication-title: Nat. Commun.
– volume: 4
  start-page: eaap8672
  year: 2018
  ident: bib0040
  article-title: Machine learning-enabled identification of material phase transitions based on experimental data: exploring collective dynamics in ferroelectric relaxors
  publication-title: Sci. Adv.
– volume: 50
  start-page: 395
  year: 2002
  ident: bib0050
  article-title: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films
  publication-title: Acta Mater
– volume: 16
  start-page: 1003
  year: 2017
  end-page: 1009
  ident: bib0059
  article-title: Phase coexistence and electric-field control of toroidal order in oxide superlattices
  publication-title: Nat. Mater.
– volume: 167
  start-page: 1444
  year: 2020
  end-page: 1451
  ident: bib0026
  article-title: Machine learning in computer vision
  publication-title: Procedia Comput. Sci.
– volume: 348
  start-page: 547
  year: 2015
  end-page: 551
  ident: bib0004
  article-title: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO
  publication-title: Science
– year: 2018
  ident: bib0027
  article-title: Unsupervised neural machine translation
  publication-title: ICLR 2018-Conference Track Proceedings
– volume: 559
  start-page: 547
  year: 2018
  end-page: 555
  ident: bib0031
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
– volume: 624
  start-page: 86
  year: 2023
  end-page: 91
  ident: bib0032
  article-title: An autonomous laboratory for the accelerated synthesis of novel materials
  publication-title: Nature
– volume: 12
  start-page: 2054
  year: 2021
  ident: bib0020
  article-title: Creating polar antivortex in PbTiO
  publication-title: Nat. Commun.
– volume: 127
  start-page: 3302
  year: 2023
  end-page: 3311
  ident: bib0046
  article-title: Topological data analysis for revealing the structural origin of density anomalies in silica glass
  publication-title: J. Phys. Chem. B
– volume: 20
  start-page: 194
  year: 2021
  end-page: 201
  ident: bib0012
  article-title: Local negative permittivity and topological phase transition in polar skyrmions
  publication-title: Nat. Mater.
– volume: 12
  start-page: 3527
  year: 2021
  ident: bib0049
  article-title: Algebraic graph-assisted bidirectional transformers for molecular prediction
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5386
  year: 2021
  ident: bib0036
  article-title: TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images
  publication-title: Sci. Rep.
– volume: 14
  start-page: 954
  year: 2023
  end-page: 964
  ident: bib0047
  article-title: Path topology in molecular and materials sciences
  publication-title: J. Phys. Chem. Lett.
– volume: 624
  start-page: 80
  year: 2023
  end-page: 85
  ident: bib0033
  article-title: Scaling deep learning for materials discovery
  publication-title: Nature
– volume: 46
  start-page: 255
  year: 2009
  end-page: 308
  ident: bib0041
  article-title: Topology and data
  publication-title: Bull. Am. Math. Soc.
– volume: 208
  year: 2022
  ident: bib0038
  article-title: Acceleration of phase diagram construction by machine learning incorporating Gibbs' phase rule
  publication-title: Scripta Mater
– volume: 17
  start-page: 2246
  year: 2017
  ident: 10.1016/j.actamat.2024.120467_bib0018
  article-title: Stability of polar vortex lattice in ferroelectric superlattices
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b04875
– volume: 4
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0034
  article-title: Machine learning assisted prediction of cathode materials for Zn-Ion batteries
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.202100196
– volume: 568
  start-page: 368
  year: 2019
  ident: 10.1016/j.actamat.2024.120467_bib0007
  article-title: Observation of room-temperature polar skyrmions
  publication-title: Nature
  doi: 10.1038/s41586-019-1092-8
– volume: 61
  start-page: 7591
  year: 2013
  ident: 10.1016/j.actamat.2024.120467_bib0054
  article-title: Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.08.055
– volume: 23
  start-page: 11353
  issue: 23
  year: 2023
  ident: 10.1016/j.actamat.2024.120467_bib0017
  article-title: Dynamic Motion of Polar Skyrmions in Oxide Heterostructures
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.3c04021
– year: 2022
  ident: 10.1016/j.actamat.2024.120467_bib0019
  article-title: Order-disorder transitions in a polar vortex lattice
  publication-title: Adv. Funct. Mater.
– volume: 167
  start-page: 1444
  year: 2020
  ident: 10.1016/j.actamat.2024.120467_bib0026
  article-title: Machine learning in computer vision
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.355
– volume: 624
  start-page: 86
  year: 2023
  ident: 10.1016/j.actamat.2024.120467_bib0032
  article-title: An autonomous laboratory for the accelerated synthesis of novel materials
  publication-title: Nature
  doi: 10.1038/s41586-023-06734-w
– volume: 152
  start-page: 155
  year: 2018
  ident: 10.1016/j.actamat.2024.120467_bib0006
  article-title: Blowing polar skyrmion bubbles in oxide superlattices
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.04.022
– volume: 15
  start-page: 1374
  year: 2024
  ident: 10.1016/j.actamat.2024.120467_bib0016
  article-title: Giant electric field-induced second harmonic generation in polar skyrmions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45755-5
– volume: 4
  start-page: eaap8672
  year: 2018
  ident: 10.1016/j.actamat.2024.120467_bib0040
  article-title: Machine learning-enabled identification of material phase transitions based on experimental data: exploring collective dynamics in ferroelectric relaxors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap8672
– volume: 5
  start-page: 1031
  issue: 3
  year: 2022
  ident: 10.1016/j.actamat.2024.120467_bib0013
  article-title: Local manipulation and topological phase transitions of polar skyrmions
  publication-title: Matter
  doi: 10.1016/j.matt.2022.01.010
– year: 2018
  ident: 10.1016/j.actamat.2024.120467_bib0027
  article-title: Unsupervised neural machine translation
– volume: 9
  start-page: 28
  year: 2023
  ident: 10.1016/j.actamat.2024.120467_bib0037
  article-title: Deep learning for exploring ultra-thin ferroelectrics with highly improved sensitivity of piezoresponse force microscopy
  publication-title: npj Computat. Mater.
  doi: 10.1038/s41524-023-00982-0
– volume: 9
  start-page: 227
  year: 2023
  ident: 10.1016/j.actamat.2024.120467_bib0035
  article-title: Machine learning for automated experimentation in scanning transmission electron microscopy
  publication-title: npj Computat. Mater.
  doi: 10.1038/s41524-023-01142-0
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 10.1016/j.actamat.2024.120467_bib0025
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 602
  start-page: 240
  year: 2022
  ident: 10.1016/j.actamat.2024.120467_bib0009
  article-title: Ferroelectric incommensurate spin crystals
  publication-title: Nature
  doi: 10.1038/s41586-021-04260-1
– volume: 11
  start-page: 685
  year: 2019
  ident: 10.1016/j.actamat.2024.120467_bib0029
  article-title: Machine learning methods that economists should know about
  publication-title: Annu. Rev. Econ.
  doi: 10.1146/annurev-economics-080217-053433
– volume: 208
  year: 2022
  ident: 10.1016/j.actamat.2024.120467_bib0038
  article-title: Acceleration of phase diagram construction by machine learning incorporating Gibbs' phase rule
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2021.114335
– volume: 4
  start-page: 78
  year: 2018
  ident: 10.1016/j.actamat.2024.120467_bib0015
  article-title: Controlling polar-toroidal multi-order states in twisted ferroelectric nanowires
  publication-title: npj Computat. Mater.
  doi: 10.1038/s41524-018-0135-2
– volume: 529
  start-page: 484
  year: 2016
  ident: 10.1016/j.actamat.2024.120467_bib0030
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 14
  start-page: 954
  year: 2023
  ident: 10.1016/j.actamat.2024.120467_bib0047
  article-title: Path topology in molecular and materials sciences
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c03706
– volume: 91
  start-page: 1835
  year: 2008
  ident: 10.1016/j.actamat.2024.120467_bib0052
  article-title: Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review
  publication-title: J. Am. Ceramic Soc.
  doi: 10.1111/j.1551-2916.2008.02413.x
– volume: 7
  start-page: 28
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0045
  article-title: Topological representations of crystalline compounds for the machine-learning prediction of materials properties
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00493-w
– volume: 6
  start-page: eabc2320
  year: 2020
  ident: 10.1016/j.actamat.2024.120467_bib0044
  article-title: Revealing hidden medium-range order in amorphous materials using topological data analysis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc2320
– year: 2022
  ident: 10.1016/j.actamat.2024.120467_bib0010
  article-title: Theoretical understanding of polar topological phase transitions in functional oxide heterostructures: a review
  publication-title: Small Methods
– volume: 12
  start-page: 2054
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0020
  article-title: Creating polar antivortex in PbTiO3/SrTiO3 superlattice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22356-0
– volume: 12
  start-page: 10793
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0048
  article-title: Extracting predictive representations from hundreds of millions of molecules
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03058
– volume: 33
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0001
  article-title: Recent progress on topological structures in ferroic thin films and heterostructures
  publication-title: Adv. Mater.
– volume: 129
  year: 2022
  ident: 10.1016/j.actamat.2024.120467_bib0014
  article-title: Dynamics of polar skyrmion bubbles under electric fields
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.107601
– volume: 12
  start-page: 3527
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0049
  article-title: Algebraic graph-assisted bidirectional transformers for molecular prediction
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1003
  year: 2017
  ident: 10.1016/j.actamat.2024.120467_bib0059
  article-title: Phase coexistence and electric-field control of toroidal order in oxide superlattices
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4951
– volume: 132
  year: 2024
  ident: 10.1016/j.actamat.2024.120467_bib0024
  article-title: Mechanical control of polar patterns in wrinkled thin films via flexoelectricity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.116201
– volume: 127
  start-page: 3302
  issue: 14
  year: 2023
  ident: 10.1016/j.actamat.2024.120467_bib0046
  article-title: Topological data analysis for revealing the structural origin of density anomalies in silica glass
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.2c09009
– volume: 81
  start-page: 427
  year: 2002
  ident: 10.1016/j.actamat.2024.120467_bib0053
  article-title: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1492025
– volume: 559
  start-page: 547
  year: 2018
  ident: 10.1016/j.actamat.2024.120467_bib0031
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 9
  start-page: 263
  year: 2005
  ident: 10.1016/j.actamat.2024.120467_bib0055
  article-title: Stability of persistence diagrams
  publication-title: Assoc. Comput. Mach.
– volume: 145
  year: 2022
  ident: 10.1016/j.actamat.2024.120467_bib0028
  article-title: Machine learning in medical applications: a review of state-of-the-art methods
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105458
– volume: 146
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0043
  article-title: Topological data analysis: concepts, computation, and applications in chemical engineering
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107202
– volume: 530
  start-page: 198
  year: 2016
  ident: 10.1016/j.actamat.2024.120467_bib0005
  article-title: Observation of polar vortices in oxide superlattices
  publication-title: Nature
  doi: 10.1038/nature16463
– volume: 32
  start-page: 113
  year: 2002
  ident: 10.1016/j.actamat.2024.120467_bib0051
  article-title: Phase-field models for microstructure evolution
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.32.112001.132041
– volume: 5
  start-page: 123
  year: 2023
  ident: 10.1016/j.actamat.2024.120467_bib0058
  article-title: Strain effects on stability of topological ferroelectric polar configurations in (PbTiO3)n/(SrTiO3)n superlattices
  publication-title: Appl. Phys. Lett.
– volume: 432
  start-page: 737
  year: 2004
  ident: 10.1016/j.actamat.2024.120467_bib0003
  article-title: Unusual phase transitions in ferroelectric nanodisks and nanorods
  publication-title: Nature
  doi: 10.1038/nature03107
– volume: 117
  start-page: 18954
  issue: 32
  year: 2020
  ident: 10.1016/j.actamat.2024.120467_bib0022
  article-title: Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure
  publication-title: PNAS
  doi: 10.1073/pnas.2007248117
– volume: 3
  start-page: 8485
  year: 2022
  ident: 10.1016/j.actamat.2024.120467_bib0039
  article-title: Machine learning of phase diagrams
  publication-title: Mater. Adv.
  doi: 10.1039/D2MA00524G
– volume: 46
  start-page: 255
  issue: 2
  year: 2009
  ident: 10.1016/j.actamat.2024.120467_bib0041
  article-title: Topology and data
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-09-01249-X
– volume: 10
  start-page: 4864
  year: 2019
  ident: 10.1016/j.actamat.2024.120467_bib0021
  article-title: Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12864-5
– volume: 11
  start-page: 1840
  year: 2020
  ident: 10.1016/j.actamat.2024.120467_bib0023
  article-title: Atomic imaging of mechanically induced topological transition of ferroelectric vortices
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15616-y
– volume: 8
  year: 2020
  ident: 10.1016/j.actamat.2024.120467_bib0002
  article-title: A new era in ferroelectrics
  publication-title: APL Mater
  doi: 10.1063/5.0034914
– volume: 45
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.actamat.2024.120467_bib0042
  article-title: Barcodes: the persistent topology of data
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-07-01191-3
– volume: 19
  start-page: 881
  year: 2020
  ident: 10.1016/j.actamat.2024.120467_bib0008
  article-title: Polar meron lattice in strained oxide ferroelectrics
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0694-8
– volume: 20
  start-page: 194
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0012
  article-title: Local negative permittivity and topological phase transition in polar skyrmions
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00818-y
– volume: 37
  start-page: 103
  year: 2007
  ident: 10.1016/j.actamat.2024.120467_bib0056
  article-title: Stability of persistence diagrams
  publication-title: Discrete Comput Geom
  doi: 10.1007/s00454-006-1276-5
– volume: 565
  start-page: 468
  year: 2019
  ident: 10.1016/j.actamat.2024.120467_bib0011
  article-title: Spatially resolved steady-state negative capacitance
  publication-title: Nature
  doi: 10.1038/s41586-018-0855-y
– volume: 50
  start-page: 395
  year: 2002
  ident: 10.1016/j.actamat.2024.120467_bib0050
  article-title: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00360-3
– volume: 11
  start-page: 5386
  year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0036
  article-title: TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84499-w
– volume: 624
  start-page: 80
  year: 2023
  ident: 10.1016/j.actamat.2024.120467_bib0033
  article-title: Scaling deep learning for materials discovery
  publication-title: Nature
  doi: 10.1038/s41586-023-06735-9
– year: 2021
  ident: 10.1016/j.actamat.2024.120467_bib0057
  article-title: PerSim: data-efficient offline reinforcement learning with heterogeneous agents via personalized simulators
– volume: 348
  start-page: 547
  year: 2015
  ident: 10.1016/j.actamat.2024.120467_bib0004
  article-title: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films
  publication-title: Science
  doi: 10.1126/science.1259869
SSID ssj0012740
Score 2.4736695
Snippet Ferroelectric topological phases and phase transitions have been extensively investigated recently due to the rich physical insights and potential applications...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120467
SubjectTerms Machine learning
Persistent homology
Polar topological structures
Topological data analysis
Title Topological data analysis assisted machine learning for polar topological structures in oxide superlattices
URI https://dx.doi.org/10.1016/j.actamat.2024.120467
Volume 282
WOSCitedRecordID wos001334677900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-6454
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012740
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHVF6iUJAP3FYpaRzH9nFFiwqHCokibblEseNls9Dsqpug_fnM2M4DqHhJXLJRNuMknk_jmfE8CHlheBELUSbRXMU6Sq0ykdbMRJkAfdcY_ClcswlxdiZnM_UubLRvXDsBUddyu1Xr_8pquAbMxtTZv2B3PyhcgHNgOhyB7XD8M8b7tgd--6VoMOcq1B0BPRmZWk4uXQSl7VpG-FDKNRq5oIoO1L62bHvlYrYmq21V2smmXaMHsMGYuc1Ys50aeBSov-4Tq17YH7fO894WGBa2GKD4cbFqg0_gsls9HbqC__qiXbRVv2K4Wy9W9adlW4_9FAn_wU_RJ9AM0UoobxlXERYVGwvkxLcj-km4ez_DEoDWFPA9YNwn6eFRAha-GFazPsbwPY6NQ2OUrASr8CbZTQRXIPp2p29OZm_7zSYwzH0yeXiXIdHr5bUPu16FGakl53vkbrAn6NTj4B65Yev75M6oyuQD8nmECIqIoB0iaIcIGhBBO0RQQAR1iKAjRNABEbSqqUME_Q4RD8mH1yfnr06j0GMjMixWDfoh0sKoksdzboskFqVhfK7BjmVcWmWZlEcmA7XRaGVTZgXTUhhtMAE7UdyyR2SnXtX2MaEx_MNkXGbzkqc2SzVW_s845yAlTJHqfZJ205abUIAe-6B8ybtIw2UeZjvH2c79bO-Tw55s7Suw_I5AdjzJgxrp1cMcgPRr0if_TvqU3B5Qf0B2gB_2GbllvjbV5up5gNw3_dqgFQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+data+analysis+assisted+machine+learning+for+polar+topological+structures+in+oxide+superlattices&rft.jtitle=Acta+materialia&rft.au=Du%2C+Guanshihan&rft.au=Zhou%2C+Linming&rft.au=Huang%2C+Yuhui&rft.au=Wu%2C+Yongjun&rft.date=2025-01-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.volume=282&rft_id=info:doi/10.1016%2Fj.actamat.2024.120467&rft.externalDocID=S1359645424008164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon