Topological data analysis assisted machine learning for polar topological structures in oxide superlattices
Ferroelectric topological phases and phase transitions have been extensively investigated recently due to the rich physical insights and potential applications in next-generation electronic devices. However, precisely predicting the topological phase transitions under different internal and external...
Uložené v:
| Vydané v: | Acta materialia Ročník 282; s. 120467 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2025
|
| Predmet: | |
| ISSN: | 1359-6454 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Ferroelectric topological phases and phase transitions have been extensively investigated recently due to the rich physical insights and potential applications in next-generation electronic devices. However, precisely predicting the topological phase transitions under different internal and external conditions in polar oxide superlattice systems is challenging due to the complex energy competitions and highly nonlinear kinetics involved. Herein, we adopted a state-of-the-art mathematical concept called “persistent homology” from topological data analysis to extract the essential topological features for the polarization data in various topological structures. By implementing the persistent image as the descriptor, support vector regression (SVR) based convolutional neural network (CNN) models are developed for the automated and high precision classification and regression of topological states based on high-dimensional phase-field simulation data of the PTO/STO superlattice. Using this method, we can automatically construct the strain and electric field phase diagrams in seconds with high throughput phase-field data. We hope to spur further interest in the integration of state-of-the-art mathematical tools, machine learning algorithms, and condensed matter physics for predictions of topological phase transitions.
[Display omitted] |
|---|---|
| AbstractList | Ferroelectric topological phases and phase transitions have been extensively investigated recently due to the rich physical insights and potential applications in next-generation electronic devices. However, precisely predicting the topological phase transitions under different internal and external conditions in polar oxide superlattice systems is challenging due to the complex energy competitions and highly nonlinear kinetics involved. Herein, we adopted a state-of-the-art mathematical concept called “persistent homology” from topological data analysis to extract the essential topological features for the polarization data in various topological structures. By implementing the persistent image as the descriptor, support vector regression (SVR) based convolutional neural network (CNN) models are developed for the automated and high precision classification and regression of topological states based on high-dimensional phase-field simulation data of the PTO/STO superlattice. Using this method, we can automatically construct the strain and electric field phase diagrams in seconds with high throughput phase-field data. We hope to spur further interest in the integration of state-of-the-art mathematical tools, machine learning algorithms, and condensed matter physics for predictions of topological phase transitions.
[Display omitted] |
| ArticleNumber | 120467 |
| Author | Hong, Zijian Zhou, Linming Huang, Yuhui Du, Guanshihan Wu, Yongjun |
| Author_xml | – sequence: 1 givenname: Guanshihan surname: Du fullname: Du, Guanshihan organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 2 givenname: Linming surname: Zhou fullname: Zhou, Linming organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 3 givenname: Yuhui surname: Huang fullname: Huang, Yuhui organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 4 givenname: Yongjun surname: Wu fullname: Wu, Yongjun email: yongjunwu@zju.edu.cn organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 5 givenname: Zijian orcidid: 0000-0002-3491-0884 surname: Hong fullname: Hong, Zijian email: hongzijian100@zju.edu.cn organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China |
| BookMark | eNqF0MtKQzEQgOEsKtiqjyDkBVpzPRdciIg3KLip6zCdM6emniYlScW-vZW6EDduZlbfwPwTNgoxEGOXUsykkNXVegZYYANlpoQyM6mEqeoRG0tt22llrDllk5zXQkhVGzFm74u4jUNceYSBd1CAQ4Bhn33mkA-zUMc3gG8-EB8IUvBhxfuY-EFB4uWXziXtsOwSZe4Dj5--I553W0oDlOKR8jk76WHIdPGzz9jrw_3i7mk6f3l8vrudT1GLtkyt0gaw7azoLYESdYfa9ktrGm0bakk3jcSqkS0uWzKaar1salyiUapSrSV9xuzxLqaYc6LebZPfQNo7Kdx3Jbd2P5XcdyV3rHRw138c-gLFx1AS-OFffXPUdHjtw1NyGT0FpM4nwuK66P-58AWwUI3V |
| CitedBy_id | crossref_primary_10_1016_j_euromechsol_2025_105733 crossref_primary_10_2478_amns_2025_0323 |
| Cites_doi | 10.1021/acs.nanolett.6b04875 10.1002/adts.202100196 10.1038/s41586-019-1092-8 10.1016/j.actamat.2013.08.055 10.1021/acs.nanolett.3c04021 10.1016/j.procs.2020.03.355 10.1038/s41586-023-06734-w 10.1016/j.actamat.2018.04.022 10.1038/s41467-024-45755-5 10.1126/sciadv.aap8672 10.1016/j.matt.2022.01.010 10.1038/s41524-023-00982-0 10.1038/s41524-023-01142-0 10.1126/science.aaa8415 10.1038/s41586-021-04260-1 10.1146/annurev-economics-080217-053433 10.1016/j.scriptamat.2021.114335 10.1038/s41524-018-0135-2 10.1038/nature16961 10.1021/acs.jpclett.2c03706 10.1111/j.1551-2916.2008.02413.x 10.1038/s41524-021-00493-w 10.1126/sciadv.abc2320 10.1038/s41467-021-22356-0 10.1021/acs.jpclett.1c03058 10.1103/PhysRevLett.129.107601 10.1038/nmat4951 10.1103/PhysRevLett.132.116201 10.1021/acs.jpcb.2c09009 10.1063/1.1492025 10.1038/s41586-018-0337-2 10.1016/j.compbiomed.2022.105458 10.1016/j.compchemeng.2020.107202 10.1038/nature16463 10.1146/annurev.matsci.32.112001.132041 10.1038/nature03107 10.1073/pnas.2007248117 10.1039/D2MA00524G 10.1090/S0273-0979-09-01249-X 10.1038/s41467-019-12864-5 10.1038/s41467-020-15616-y 10.1063/5.0034914 10.1090/S0273-0979-07-01191-3 10.1038/s41563-020-0694-8 10.1038/s41563-020-00818-y 10.1007/s00454-006-1276-5 10.1038/s41586-018-0855-y 10.1016/S1359-6454(01)00360-3 10.1038/s41598-021-84499-w 10.1038/s41586-023-06735-9 10.1126/science.1259869 |
| ContentType | Journal Article |
| Copyright | 2024 Acta Materialia Inc. |
| Copyright_xml | – notice: 2024 Acta Materialia Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.actamat.2024.120467 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_actamat_2024_120467 S1359645424008164 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABMAC ABNEU ABXRA ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- 9DU AAQXK AATTM AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB M41 R2- T9H ZY4 ~HD |
| ID | FETCH-LOGICAL-c309t-5234ac9d50f5ea207dc35fb548358e9e3881c6819cb9e43e73b87cbc4226295e3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334677900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-6454 |
| IngestDate | Sat Nov 29 02:48:02 EST 2025 Tue Nov 18 21:22:29 EST 2025 Sat Nov 16 15:58:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Persistent homology Polar topological structures Topological data analysis Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-5234ac9d50f5ea207dc35fb548358e9e3881c6819cb9e43e73b87cbc4226295e3 |
| ORCID | 0000-0002-3491-0884 |
| ParticipantIDs | crossref_primary_10_1016_j_actamat_2024_120467 crossref_citationtrail_10_1016_j_actamat_2024_120467 elsevier_sciencedirect_doi_10_1016_j_actamat_2024_120467 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Acta materialia |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jiang, Chen, Chen (bib0045) 2021; 7 Hong, Damodaran, Xue (bib0018) 2017; 17 Li, Yang, Zhang (bib0040) 2018; 4 Lund, Wang, Braatz, García (bib0039) 2022; 3 Li, Hu, Liu, Chen (bib0053) 2002; 81 Tang, Zhu, Ma (bib0004) 2015; 348 Zhu, Jiang, Zhang (bib0014) 2022; 129 Chen, Gao, Nguyen (bib0049) 2021; 12 Li, Tan, Liu (bib0022) 2020; 117 Cohen-Steiner, Edelsbrunner, Harer (bib0056) 2007; 37 Chen (bib0052) 2008; 91 Szymanski, Rendy, Fei (bib0032) 2023; 624 Butler, Davies, Cartwright (bib0031) 2018; 559 Li, Hu, Liu, Chen (bib0050) 2002; 50 Zhou, Dai, Meisenheimer (bib0019) 2022 Chen, Zheng, Wei, Pan (bib0048) 2021; 12 Chen, Yuan, Hou (bib0001) 2021; 33 Chen, Liu, Wu (bib0047) 2023; 14 Shehab, Abualigah, Shambour (bib0028) 2022; 145 Shang, Dong, Wu (bib0024) 2024; 132 Athey, Imbens (bib0029) 2019; 11 Sørensen, Biscio, Bauchy (bib0044) 2020; 6 Zhou, Yao, Wu (bib0034) 2021; 4 Guo, Zhou, Roul (bib0010) 2022 Agarwal, Alomar, Alumootil, Shah, Shen, Xu, Yang (bib0057) 2021 Khan, Al-Habsi (bib0026) 2020; 167 Artetxe, Labaka, Agirre, Cho (bib0027) 2018 Tirelli, Nakano (bib0046) 2023; 127 Cohen-Steiner, Edelsbrunner, Harer (bib0055) 2005; 9 Smith, Dłotko, Zavala (bib0043) 2021; 146 Abid, Sun, Hou (bib0020) 2021; 12 Hong, Chen (bib0006) 2018; 152 Silver, Huang, Maddison (bib0030) 2016; 529 Wang, Feng, Zhu (bib0008) 2020; 19 Chen (bib0051) 2002; 32 Rusu, Peters, Hase (bib0009) 2022; 602 Zhou, Huang, Das (bib0013) 2022; 5 Du, Zhang, Dai (bib0021) 2019; 10 Kalinin, Mukherjee, Roccapriore (bib0035) 2023; 9 Das, Hong, McCarter (bib0002) 2020; 8 Wang, Li, Deng (bib0016) 2024; 15 Wang, Ma, Li, Britson, Chen (bib0054) 2013; 61 Merchant, Batzner, Schoenholz (bib0033) 2023; 624 Damodaran, Clarkson, Hong, Liu, Yadav, Nelson, Hsu, McCarter, Park, Kravtsov, Farhan, Dong, Cai, Zhou, Aguado-Puente, García-Fernández, Íñiguez, Junquera, Scholl, Raschke, Chen, Fong, Ramesh, Martin (bib0059) 2017; 16 Terayama, Han, Katsube (bib0038) 2022; 208 Das, Hong, Stoica (bib0012) 2021; 20 Yadav, Nguyen, Hong (bib0011) 2019; 565 Liu, Ji, Yuan (bib0015) 2018; 4 Naumov, Bellaiche, Fu (bib0003) 2004; 432 Das, Tang, Hong (bib0007) 2019; 568 Chen, Zhong, Zorn (bib0023) 2020; 11 Jordan, Mitchell (bib0025) 2015; 349 Ghrist (bib0042) 2008; 45 Dai, Hong, Das, Tang, Martin, Ramesh, Chen (bib0058) 2023; 5 Sriboriboon, Qiao, Kwon (bib0037) 2023; 9 Lin, Zhang, Wang (bib0036) 2021; 11 Yadav, Nelson, Hsu (bib0005) 2016; 530 Carlsson (bib0041) 2009; 46 Hu, Wu, Huang (bib0017) 2023; 23 Ghrist (10.1016/j.actamat.2024.120467_bib0042) 2008; 45 Naumov (10.1016/j.actamat.2024.120467_bib0003) 2004; 432 Smith (10.1016/j.actamat.2024.120467_bib0043) 2021; 146 Guo (10.1016/j.actamat.2024.120467_bib0010) 2022 Chen (10.1016/j.actamat.2024.120467_bib0052) 2008; 91 Szymanski (10.1016/j.actamat.2024.120467_bib0032) 2023; 624 Lund (10.1016/j.actamat.2024.120467_bib0039) 2022; 3 Sørensen (10.1016/j.actamat.2024.120467_bib0044) 2020; 6 Wang (10.1016/j.actamat.2024.120467_bib0054) 2013; 61 Lin (10.1016/j.actamat.2024.120467_bib0036) 2021; 11 Wang (10.1016/j.actamat.2024.120467_bib0016) 2024; 15 Rusu (10.1016/j.actamat.2024.120467_bib0009) 2022; 602 Damodaran (10.1016/j.actamat.2024.120467_bib0059) 2017; 16 Shang (10.1016/j.actamat.2024.120467_bib0024) 2024; 132 Cohen-Steiner (10.1016/j.actamat.2024.120467_bib0056) 2007; 37 Tirelli (10.1016/j.actamat.2024.120467_bib0046) 2023; 127 Chen (10.1016/j.actamat.2024.120467_bib0049) 2021; 12 Zhou (10.1016/j.actamat.2024.120467_bib0019) 2022 Li (10.1016/j.actamat.2024.120467_bib0053) 2002; 81 Wang (10.1016/j.actamat.2024.120467_bib0008) 2020; 19 Kalinin (10.1016/j.actamat.2024.120467_bib0035) 2023; 9 Cohen-Steiner (10.1016/j.actamat.2024.120467_bib0055) 2005; 9 Athey (10.1016/j.actamat.2024.120467_bib0029) 2019; 11 Hu (10.1016/j.actamat.2024.120467_bib0017) 2023; 23 Khan (10.1016/j.actamat.2024.120467_bib0026) 2020; 167 Chen (10.1016/j.actamat.2024.120467_bib0023) 2020; 11 Hong (10.1016/j.actamat.2024.120467_bib0006) 2018; 152 Shehab (10.1016/j.actamat.2024.120467_bib0028) 2022; 145 Li (10.1016/j.actamat.2024.120467_bib0040) 2018; 4 Agarwal (10.1016/j.actamat.2024.120467_bib0057) 2021 Silver (10.1016/j.actamat.2024.120467_bib0030) 2016; 529 Carlsson (10.1016/j.actamat.2024.120467_bib0041) 2009; 46 Hong (10.1016/j.actamat.2024.120467_bib0018) 2017; 17 Chen (10.1016/j.actamat.2024.120467_bib0048) 2021; 12 Terayama (10.1016/j.actamat.2024.120467_bib0038) 2022; 208 Zhou (10.1016/j.actamat.2024.120467_bib0013) 2022; 5 Chen (10.1016/j.actamat.2024.120467_bib0047) 2023; 14 Sriboriboon (10.1016/j.actamat.2024.120467_bib0037) 2023; 9 Artetxe (10.1016/j.actamat.2024.120467_bib0027) 2018 Jordan (10.1016/j.actamat.2024.120467_bib0025) 2015; 349 Dai (10.1016/j.actamat.2024.120467_bib0058) 2023; 5 Chen (10.1016/j.actamat.2024.120467_bib0001) 2021; 33 Yadav (10.1016/j.actamat.2024.120467_bib0011) 2019; 565 Chen (10.1016/j.actamat.2024.120467_bib0051) 2002; 32 Du (10.1016/j.actamat.2024.120467_bib0021) 2019; 10 Merchant (10.1016/j.actamat.2024.120467_bib0033) 2023; 624 Butler (10.1016/j.actamat.2024.120467_bib0031) 2018; 559 Li (10.1016/j.actamat.2024.120467_bib0050) 2002; 50 Tang (10.1016/j.actamat.2024.120467_bib0004) 2015; 348 Zhou (10.1016/j.actamat.2024.120467_bib0034) 2021; 4 Abid (10.1016/j.actamat.2024.120467_bib0020) 2021; 12 Das (10.1016/j.actamat.2024.120467_bib0007) 2019; 568 Zhu (10.1016/j.actamat.2024.120467_bib0014) 2022; 129 Jiang (10.1016/j.actamat.2024.120467_bib0045) 2021; 7 Li (10.1016/j.actamat.2024.120467_bib0022) 2020; 117 Das (10.1016/j.actamat.2024.120467_bib0002) 2020; 8 Yadav (10.1016/j.actamat.2024.120467_bib0005) 2016; 530 Das (10.1016/j.actamat.2024.120467_bib0012) 2021; 20 Liu (10.1016/j.actamat.2024.120467_bib0015) 2018; 4 |
| References_xml | – volume: 129 year: 2022 ident: bib0014 article-title: Dynamics of polar skyrmion bubbles under electric fields publication-title: Phys. Rev. Lett. – volume: 529 start-page: 484 year: 2016 end-page: 504 ident: bib0030 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature – volume: 9 start-page: 227 year: 2023 ident: bib0035 article-title: Machine learning for automated experimentation in scanning transmission electron microscopy publication-title: npj Computat. Mater. – volume: 568 start-page: 368 year: 2019 ident: bib0007 article-title: Observation of room-temperature polar skyrmions publication-title: Nature – volume: 32 start-page: 113 year: 2002 ident: bib0051 article-title: Phase-field models for microstructure evolution publication-title: Annu. Rev. Mater. Res. – volume: 81 start-page: 427 year: 2002 ident: bib0053 article-title: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films publication-title: Appl. Phys. Lett. – volume: 9 start-page: 263 year: 2005 end-page: 271 ident: bib0055 article-title: Stability of persistence diagrams publication-title: Assoc. Comput. Mach. – volume: 8 year: 2020 ident: bib0002 article-title: A new era in ferroelectrics publication-title: APL Mater – volume: 4 start-page: 78 year: 2018 ident: bib0015 article-title: Controlling polar-toroidal multi-order states in twisted ferroelectric nanowires publication-title: npj Computat. Mater. – volume: 33 year: 2021 ident: bib0001 article-title: Recent progress on topological structures in ferroic thin films and heterostructures publication-title: Adv. Mater. – volume: 12 start-page: 10793 year: 2021 end-page: 10801 ident: bib0048 article-title: Extracting predictive representations from hundreds of millions of molecules publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 685 year: 2019 end-page: 725 ident: bib0029 article-title: Machine learning methods that economists should know about publication-title: Annu. Rev. Econ. – volume: 565 start-page: 468 year: 2019 end-page: 471 ident: bib0011 article-title: Spatially resolved steady-state negative capacitance publication-title: Nature – volume: 17 start-page: 2246 year: 2017 end-page: 2252 ident: bib0018 article-title: Stability of polar vortex lattice in ferroelectric superlattices publication-title: Nano Lett – year: 2022 ident: bib0010 article-title: Theoretical understanding of polar topological phase transitions in functional oxide heterostructures: a review publication-title: Small Methods – volume: 145 year: 2022 ident: bib0028 article-title: Machine learning in medical applications: a review of state-of-the-art methods publication-title: Comput. Biol. Med. – volume: 602 start-page: 240 year: 2022 end-page: 244 ident: bib0009 article-title: Ferroelectric incommensurate spin crystals publication-title: Nature – volume: 91 start-page: 1835 year: 2008 ident: bib0052 article-title: Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review publication-title: J. Am. Ceramic Soc. – volume: 15 start-page: 1374 year: 2024 ident: bib0016 article-title: Giant electric field-induced second harmonic generation in polar skyrmions publication-title: Nat. Commun. – year: 2021 ident: bib0057 article-title: PerSim: data-efficient offline reinforcement learning with heterogeneous agents via personalized simulators publication-title: ArXiv: abs/2102.06961 – volume: 530 start-page: 198 year: 2016 ident: bib0005 article-title: Observation of polar vortices in oxide superlattices publication-title: Nature – volume: 152 start-page: 155 year: 2018 end-page: 161 ident: bib0006 article-title: Blowing polar skyrmion bubbles in oxide superlattices publication-title: Acta Mater – volume: 117 start-page: 18954 year: 2020 end-page: 18961 ident: bib0022 article-title: Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure publication-title: PNAS – volume: 11 start-page: 1840 year: 2020 ident: bib0023 article-title: Atomic imaging of mechanically induced topological transition of ferroelectric vortices publication-title: Nat. Commun. – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: bib0025 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science – volume: 61 start-page: 7591 year: 2013 ident: bib0054 article-title: Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity publication-title: Acta Mater. – volume: 432 start-page: 737 year: 2004 end-page: 740 ident: bib0003 article-title: Unusual phase transitions in ferroelectric nanodisks and nanorods publication-title: Nature – year: 2022 ident: bib0019 article-title: Order-disorder transitions in a polar vortex lattice publication-title: Adv. Funct. Mater. – volume: 23 start-page: 11353 year: 2023 end-page: 11359 ident: bib0017 article-title: Dynamic Motion of Polar Skyrmions in Oxide Heterostructures publication-title: Nano Lett – volume: 5 start-page: 123 year: 2023 ident: bib0058 article-title: Strain effects on stability of topological ferroelectric polar configurations in (PbTiO publication-title: Appl. Phys. Lett. – volume: 7 start-page: 28 year: 2021 ident: bib0045 article-title: Topological representations of crystalline compounds for the machine-learning prediction of materials properties publication-title: npj Comput. Mater. – volume: 5 start-page: 1031 year: 2022 end-page: 1041 ident: bib0013 article-title: Local manipulation and topological phase transitions of polar skyrmions publication-title: Matter – volume: 6 start-page: eabc2320 year: 2020 ident: bib0044 article-title: Revealing hidden medium-range order in amorphous materials using topological data analysis publication-title: Sci. Adv. – volume: 146 year: 2021 ident: bib0043 article-title: Topological data analysis: concepts, computation, and applications in chemical engineering publication-title: Comput. Chem. Eng. – volume: 37 start-page: 103 year: 2007 end-page: 120 ident: bib0056 article-title: Stability of persistence diagrams publication-title: Discrete Comput Geom – volume: 132 year: 2024 ident: bib0024 article-title: Mechanical control of polar patterns in wrinkled thin films via flexoelectricity publication-title: Phys. Rev. Lett. – volume: 19 start-page: 881 year: 2020 end-page: 886 ident: bib0008 article-title: Polar meron lattice in strained oxide ferroelectrics publication-title: Nat. Mater. – volume: 4 year: 2021 ident: bib0034 article-title: Machine learning assisted prediction of cathode materials for Zn-Ion batteries publication-title: Adv. Theory Simul. – volume: 45 start-page: 61 year: 2008 end-page: 75 ident: bib0042 article-title: Barcodes: the persistent topology of data publication-title: Bull. Am. Math. Soc. – volume: 3 start-page: 8485 year: 2022 end-page: 8497 ident: bib0039 article-title: Machine learning of phase diagrams publication-title: Mater. Adv. – volume: 9 start-page: 28 year: 2023 ident: bib0037 article-title: Deep learning for exploring ultra-thin ferroelectrics with highly improved sensitivity of piezoresponse force microscopy publication-title: npj Computat. Mater. – volume: 10 start-page: 4864 year: 2019 ident: bib0021 article-title: Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution publication-title: Nat. Commun. – volume: 4 start-page: eaap8672 year: 2018 ident: bib0040 article-title: Machine learning-enabled identification of material phase transitions based on experimental data: exploring collective dynamics in ferroelectric relaxors publication-title: Sci. Adv. – volume: 50 start-page: 395 year: 2002 ident: bib0050 article-title: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films publication-title: Acta Mater – volume: 16 start-page: 1003 year: 2017 end-page: 1009 ident: bib0059 article-title: Phase coexistence and electric-field control of toroidal order in oxide superlattices publication-title: Nat. Mater. – volume: 167 start-page: 1444 year: 2020 end-page: 1451 ident: bib0026 article-title: Machine learning in computer vision publication-title: Procedia Comput. Sci. – volume: 348 start-page: 547 year: 2015 end-page: 551 ident: bib0004 article-title: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO publication-title: Science – year: 2018 ident: bib0027 article-title: Unsupervised neural machine translation publication-title: ICLR 2018-Conference Track Proceedings – volume: 559 start-page: 547 year: 2018 end-page: 555 ident: bib0031 article-title: Machine learning for molecular and materials science publication-title: Nature – volume: 624 start-page: 86 year: 2023 end-page: 91 ident: bib0032 article-title: An autonomous laboratory for the accelerated synthesis of novel materials publication-title: Nature – volume: 12 start-page: 2054 year: 2021 ident: bib0020 article-title: Creating polar antivortex in PbTiO publication-title: Nat. Commun. – volume: 127 start-page: 3302 year: 2023 end-page: 3311 ident: bib0046 article-title: Topological data analysis for revealing the structural origin of density anomalies in silica glass publication-title: J. Phys. Chem. B – volume: 20 start-page: 194 year: 2021 end-page: 201 ident: bib0012 article-title: Local negative permittivity and topological phase transition in polar skyrmions publication-title: Nat. Mater. – volume: 12 start-page: 3527 year: 2021 ident: bib0049 article-title: Algebraic graph-assisted bidirectional transformers for molecular prediction publication-title: Nat. Commun. – volume: 11 start-page: 5386 year: 2021 ident: bib0036 article-title: TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images publication-title: Sci. Rep. – volume: 14 start-page: 954 year: 2023 end-page: 964 ident: bib0047 article-title: Path topology in molecular and materials sciences publication-title: J. Phys. Chem. Lett. – volume: 624 start-page: 80 year: 2023 end-page: 85 ident: bib0033 article-title: Scaling deep learning for materials discovery publication-title: Nature – volume: 46 start-page: 255 year: 2009 end-page: 308 ident: bib0041 article-title: Topology and data publication-title: Bull. Am. Math. Soc. – volume: 208 year: 2022 ident: bib0038 article-title: Acceleration of phase diagram construction by machine learning incorporating Gibbs' phase rule publication-title: Scripta Mater – volume: 17 start-page: 2246 year: 2017 ident: 10.1016/j.actamat.2024.120467_bib0018 article-title: Stability of polar vortex lattice in ferroelectric superlattices publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b04875 – volume: 4 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0034 article-title: Machine learning assisted prediction of cathode materials for Zn-Ion batteries publication-title: Adv. Theory Simul. doi: 10.1002/adts.202100196 – volume: 568 start-page: 368 year: 2019 ident: 10.1016/j.actamat.2024.120467_bib0007 article-title: Observation of room-temperature polar skyrmions publication-title: Nature doi: 10.1038/s41586-019-1092-8 – volume: 61 start-page: 7591 year: 2013 ident: 10.1016/j.actamat.2024.120467_bib0054 article-title: Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.08.055 – volume: 23 start-page: 11353 issue: 23 year: 2023 ident: 10.1016/j.actamat.2024.120467_bib0017 article-title: Dynamic Motion of Polar Skyrmions in Oxide Heterostructures publication-title: Nano Lett doi: 10.1021/acs.nanolett.3c04021 – year: 2022 ident: 10.1016/j.actamat.2024.120467_bib0019 article-title: Order-disorder transitions in a polar vortex lattice publication-title: Adv. Funct. Mater. – volume: 167 start-page: 1444 year: 2020 ident: 10.1016/j.actamat.2024.120467_bib0026 article-title: Machine learning in computer vision publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.355 – volume: 624 start-page: 86 year: 2023 ident: 10.1016/j.actamat.2024.120467_bib0032 article-title: An autonomous laboratory for the accelerated synthesis of novel materials publication-title: Nature doi: 10.1038/s41586-023-06734-w – volume: 152 start-page: 155 year: 2018 ident: 10.1016/j.actamat.2024.120467_bib0006 article-title: Blowing polar skyrmion bubbles in oxide superlattices publication-title: Acta Mater doi: 10.1016/j.actamat.2018.04.022 – volume: 15 start-page: 1374 year: 2024 ident: 10.1016/j.actamat.2024.120467_bib0016 article-title: Giant electric field-induced second harmonic generation in polar skyrmions publication-title: Nat. Commun. doi: 10.1038/s41467-024-45755-5 – volume: 4 start-page: eaap8672 year: 2018 ident: 10.1016/j.actamat.2024.120467_bib0040 article-title: Machine learning-enabled identification of material phase transitions based on experimental data: exploring collective dynamics in ferroelectric relaxors publication-title: Sci. Adv. doi: 10.1126/sciadv.aap8672 – volume: 5 start-page: 1031 issue: 3 year: 2022 ident: 10.1016/j.actamat.2024.120467_bib0013 article-title: Local manipulation and topological phase transitions of polar skyrmions publication-title: Matter doi: 10.1016/j.matt.2022.01.010 – year: 2018 ident: 10.1016/j.actamat.2024.120467_bib0027 article-title: Unsupervised neural machine translation – volume: 9 start-page: 28 year: 2023 ident: 10.1016/j.actamat.2024.120467_bib0037 article-title: Deep learning for exploring ultra-thin ferroelectrics with highly improved sensitivity of piezoresponse force microscopy publication-title: npj Computat. Mater. doi: 10.1038/s41524-023-00982-0 – volume: 9 start-page: 227 year: 2023 ident: 10.1016/j.actamat.2024.120467_bib0035 article-title: Machine learning for automated experimentation in scanning transmission electron microscopy publication-title: npj Computat. Mater. doi: 10.1038/s41524-023-01142-0 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 10.1016/j.actamat.2024.120467_bib0025 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 602 start-page: 240 year: 2022 ident: 10.1016/j.actamat.2024.120467_bib0009 article-title: Ferroelectric incommensurate spin crystals publication-title: Nature doi: 10.1038/s41586-021-04260-1 – volume: 11 start-page: 685 year: 2019 ident: 10.1016/j.actamat.2024.120467_bib0029 article-title: Machine learning methods that economists should know about publication-title: Annu. Rev. Econ. doi: 10.1146/annurev-economics-080217-053433 – volume: 208 year: 2022 ident: 10.1016/j.actamat.2024.120467_bib0038 article-title: Acceleration of phase diagram construction by machine learning incorporating Gibbs' phase rule publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2021.114335 – volume: 4 start-page: 78 year: 2018 ident: 10.1016/j.actamat.2024.120467_bib0015 article-title: Controlling polar-toroidal multi-order states in twisted ferroelectric nanowires publication-title: npj Computat. Mater. doi: 10.1038/s41524-018-0135-2 – volume: 529 start-page: 484 year: 2016 ident: 10.1016/j.actamat.2024.120467_bib0030 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 14 start-page: 954 year: 2023 ident: 10.1016/j.actamat.2024.120467_bib0047 article-title: Path topology in molecular and materials sciences publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c03706 – volume: 91 start-page: 1835 year: 2008 ident: 10.1016/j.actamat.2024.120467_bib0052 article-title: Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review publication-title: J. Am. Ceramic Soc. doi: 10.1111/j.1551-2916.2008.02413.x – volume: 7 start-page: 28 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0045 article-title: Topological representations of crystalline compounds for the machine-learning prediction of materials properties publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00493-w – volume: 6 start-page: eabc2320 year: 2020 ident: 10.1016/j.actamat.2024.120467_bib0044 article-title: Revealing hidden medium-range order in amorphous materials using topological data analysis publication-title: Sci. Adv. doi: 10.1126/sciadv.abc2320 – year: 2022 ident: 10.1016/j.actamat.2024.120467_bib0010 article-title: Theoretical understanding of polar topological phase transitions in functional oxide heterostructures: a review publication-title: Small Methods – volume: 12 start-page: 2054 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0020 article-title: Creating polar antivortex in PbTiO3/SrTiO3 superlattice publication-title: Nat. Commun. doi: 10.1038/s41467-021-22356-0 – volume: 12 start-page: 10793 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0048 article-title: Extracting predictive representations from hundreds of millions of molecules publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03058 – volume: 33 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0001 article-title: Recent progress on topological structures in ferroic thin films and heterostructures publication-title: Adv. Mater. – volume: 129 year: 2022 ident: 10.1016/j.actamat.2024.120467_bib0014 article-title: Dynamics of polar skyrmion bubbles under electric fields publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.107601 – volume: 12 start-page: 3527 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0049 article-title: Algebraic graph-assisted bidirectional transformers for molecular prediction publication-title: Nat. Commun. – volume: 16 start-page: 1003 year: 2017 ident: 10.1016/j.actamat.2024.120467_bib0059 article-title: Phase coexistence and electric-field control of toroidal order in oxide superlattices publication-title: Nat. Mater. doi: 10.1038/nmat4951 – volume: 132 year: 2024 ident: 10.1016/j.actamat.2024.120467_bib0024 article-title: Mechanical control of polar patterns in wrinkled thin films via flexoelectricity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.116201 – volume: 127 start-page: 3302 issue: 14 year: 2023 ident: 10.1016/j.actamat.2024.120467_bib0046 article-title: Topological data analysis for revealing the structural origin of density anomalies in silica glass publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.2c09009 – volume: 81 start-page: 427 year: 2002 ident: 10.1016/j.actamat.2024.120467_bib0053 article-title: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.1492025 – volume: 559 start-page: 547 year: 2018 ident: 10.1016/j.actamat.2024.120467_bib0031 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 9 start-page: 263 year: 2005 ident: 10.1016/j.actamat.2024.120467_bib0055 article-title: Stability of persistence diagrams publication-title: Assoc. Comput. Mach. – volume: 145 year: 2022 ident: 10.1016/j.actamat.2024.120467_bib0028 article-title: Machine learning in medical applications: a review of state-of-the-art methods publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105458 – volume: 146 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0043 article-title: Topological data analysis: concepts, computation, and applications in chemical engineering publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107202 – volume: 530 start-page: 198 year: 2016 ident: 10.1016/j.actamat.2024.120467_bib0005 article-title: Observation of polar vortices in oxide superlattices publication-title: Nature doi: 10.1038/nature16463 – volume: 32 start-page: 113 year: 2002 ident: 10.1016/j.actamat.2024.120467_bib0051 article-title: Phase-field models for microstructure evolution publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.32.112001.132041 – volume: 5 start-page: 123 year: 2023 ident: 10.1016/j.actamat.2024.120467_bib0058 article-title: Strain effects on stability of topological ferroelectric polar configurations in (PbTiO3)n/(SrTiO3)n superlattices publication-title: Appl. Phys. Lett. – volume: 432 start-page: 737 year: 2004 ident: 10.1016/j.actamat.2024.120467_bib0003 article-title: Unusual phase transitions in ferroelectric nanodisks and nanorods publication-title: Nature doi: 10.1038/nature03107 – volume: 117 start-page: 18954 issue: 32 year: 2020 ident: 10.1016/j.actamat.2024.120467_bib0022 article-title: Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure publication-title: PNAS doi: 10.1073/pnas.2007248117 – volume: 3 start-page: 8485 year: 2022 ident: 10.1016/j.actamat.2024.120467_bib0039 article-title: Machine learning of phase diagrams publication-title: Mater. Adv. doi: 10.1039/D2MA00524G – volume: 46 start-page: 255 issue: 2 year: 2009 ident: 10.1016/j.actamat.2024.120467_bib0041 article-title: Topology and data publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0273-0979-09-01249-X – volume: 10 start-page: 4864 year: 2019 ident: 10.1016/j.actamat.2024.120467_bib0021 article-title: Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution publication-title: Nat. Commun. doi: 10.1038/s41467-019-12864-5 – volume: 11 start-page: 1840 year: 2020 ident: 10.1016/j.actamat.2024.120467_bib0023 article-title: Atomic imaging of mechanically induced topological transition of ferroelectric vortices publication-title: Nat. Commun. doi: 10.1038/s41467-020-15616-y – volume: 8 year: 2020 ident: 10.1016/j.actamat.2024.120467_bib0002 article-title: A new era in ferroelectrics publication-title: APL Mater doi: 10.1063/5.0034914 – volume: 45 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.actamat.2024.120467_bib0042 article-title: Barcodes: the persistent topology of data publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0273-0979-07-01191-3 – volume: 19 start-page: 881 year: 2020 ident: 10.1016/j.actamat.2024.120467_bib0008 article-title: Polar meron lattice in strained oxide ferroelectrics publication-title: Nat. Mater. doi: 10.1038/s41563-020-0694-8 – volume: 20 start-page: 194 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0012 article-title: Local negative permittivity and topological phase transition in polar skyrmions publication-title: Nat. Mater. doi: 10.1038/s41563-020-00818-y – volume: 37 start-page: 103 year: 2007 ident: 10.1016/j.actamat.2024.120467_bib0056 article-title: Stability of persistence diagrams publication-title: Discrete Comput Geom doi: 10.1007/s00454-006-1276-5 – volume: 565 start-page: 468 year: 2019 ident: 10.1016/j.actamat.2024.120467_bib0011 article-title: Spatially resolved steady-state negative capacitance publication-title: Nature doi: 10.1038/s41586-018-0855-y – volume: 50 start-page: 395 year: 2002 ident: 10.1016/j.actamat.2024.120467_bib0050 article-title: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00360-3 – volume: 11 start-page: 5386 year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0036 article-title: TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images publication-title: Sci. Rep. doi: 10.1038/s41598-021-84499-w – volume: 624 start-page: 80 year: 2023 ident: 10.1016/j.actamat.2024.120467_bib0033 article-title: Scaling deep learning for materials discovery publication-title: Nature doi: 10.1038/s41586-023-06735-9 – year: 2021 ident: 10.1016/j.actamat.2024.120467_bib0057 article-title: PerSim: data-efficient offline reinforcement learning with heterogeneous agents via personalized simulators – volume: 348 start-page: 547 year: 2015 ident: 10.1016/j.actamat.2024.120467_bib0004 article-title: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films publication-title: Science doi: 10.1126/science.1259869 |
| SSID | ssj0012740 |
| Score | 2.4736695 |
| Snippet | Ferroelectric topological phases and phase transitions have been extensively investigated recently due to the rich physical insights and potential applications... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 120467 |
| SubjectTerms | Machine learning Persistent homology Polar topological structures Topological data analysis |
| Title | Topological data analysis assisted machine learning for polar topological structures in oxide superlattices |
| URI | https://dx.doi.org/10.1016/j.actamat.2024.120467 |
| Volume | 282 |
| WOSCitedRecordID | wos001334677900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1359-6454 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012740 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFOUl3zgtkrZjeO1fVy1RYBQhURBWy6R7dhstm121U3Q_nzGjzyAipfEJYqijBN7Po1nxvNA6IVmhjNuRVIwRpIMNoSEZ8omIp1qqqVS0ke7f3rHjo_5fC7ex4P2jW8nwKqKb7di_V9ZDc-A2S519i_Y3Q0KD-AemA5XYDtc_4zxoe1BOH6Rtcu5inVHQE92TC1GFz6C0rQtI0Io5doZuaCK9tShtmxz6WO2RqttWZjRplk7D2DtYuY2Q812puFToP76KZadsD9svOe9kS4sbNFD8fNi1USfwEW7e3p0Rf_1abNoym7H8K-erqovy6Ya-ilS-oOfokug6aOVnLwlVCSuqNhQIKehHdFPwj34GZYAtFrCfMC4T7P9SQoWPut3sy7G8IMb2w3tomQ5WIXX0W7KqADRtzt7czR_2x02gWEeksnjv_SJXi-v_NjVKsxALTm5g25HewLPAg7uomumuoduDapM3kdnA0RghwjcIgK3iMAREbhFBAZEYI8IPEAE7hGBywp7RODvEPEAfXx1dHLwOok9NhJNxqJ2fohMalHQsaVGpmNWaEKtAjuWUG6EIZxP9BTURq2EyYhhRHGmlXYJ2KmghjxEO9WqMo8QTCCT1qoJs3qSKc6V1KAeGcOtngpmp3soa5ct17EAveuDcp63kYbLPK527lY7D6u9h_Y7snWowPI7At7yJI9qZFAPcwDSr0kf_zvpE3SzR_1TtAP8MM_QDf21LjeXzyPkvgHemKD7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+data+analysis+assisted+machine+learning+for+polar+topological+structures+in+oxide+superlattices&rft.jtitle=Acta+materialia&rft.au=Du%2C+Guanshihan&rft.au=Zhou%2C+Linming&rft.au=Huang%2C+Yuhui&rft.au=Wu%2C+Yongjun&rft.date=2025-01-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.volume=282&rft_id=info:doi/10.1016%2Fj.actamat.2024.120467&rft.externalDocID=S1359645424008164 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |