Voting-based ensemble learning for partial lexicographic preference forests over combinatorial domains

We study preference representation models based on partial lexicographic preference trees (PLP-trees). We propose to represent preference relations as forests of small PLP-trees (PLP-forests), and to use voting rules to aggregate orders represented by the individual trees into a single order to be t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence Jg. 87; H. 1-2; S. 137 - 155
Hauptverfasser: Liu, Xudong, Truszczynski, Miroslaw
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.10.2019
Springer
Springer Nature B.V
Schlagworte:
ISSN:1012-2443, 1573-7470
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study preference representation models based on partial lexicographic preference trees (PLP-trees). We propose to represent preference relations as forests of small PLP-trees (PLP-forests), and to use voting rules to aggregate orders represented by the individual trees into a single order to be taken as a model of the agent’s preference relation. We show that when learned from examples, PLP-forests have better accuracy than single PLP-trees. We also show that the choice of a voting rule does not have a major effect on the aggregated order, thus rendering the problem of selecting the “right” rule less critical. Next, for the proposed PLP-forest preference models, we develop methods to compute optimal and near-optimal outcomes, the tasks that appear difficult for some other common preference models. Lastly, we compare our models with those based on decision trees, which brings up questions for future research.
AbstractList We study preference representation models based on partial lexicographic preference trees (PLP-trees). We propose to represent preference relations as forests of small PLP-trees (PLP-forests), and to use voting rules to aggregate orders represented by the individual trees into a single order to be taken as a model of the agent’s preference relation. We show that when learned from examples, PLP-forests have better accuracy than single PLP-trees. We also show that the choice of a voting rule does not have a major effect on the aggregated order, thus rendering the problem of selecting the “right” rule less critical. Next, for the proposed PLP-forest preference models, we develop methods to compute optimal and near-optimal outcomes, the tasks that appear difficult for some other common preference models. Lastly, we compare our models with those based on decision trees, which brings up questions for future research.
We study preference representation models based on partial lexicographic preference trees (PLP-trees). We propose to represent preference relations as forests of small PLP-trees (PLP-forests), and to use voting rules to aggregate orders represented by the individual trees into a single order to be taken as a model of the agent's preference relation. We show that when learned from examples, PLP-forests have better accuracy than single PLP-trees. We also show that the choice of a voting rule does not have a major effect on the aggregated order, thus rendering the problem of selecting the "right" rule less critical. Next, for the proposed PLP-forest preference models, we develop methods to compute optimal and near-optimal outcomes, the tasks that appear difficult for some other common preference models. Lastly, we compare our models with those based on decision trees, which brings up questions for future research. Keywords Lexicographic preference models * Preference learning * Preference modeling and reasoning * Social choice theory * Computational complexity theory * Voting theory * Maximum satisfiability Mathematics Subject Classification (2010) 68T30
Audience Academic
Author Liu, Xudong
Truszczynski, Miroslaw
Author_xml – sequence: 1
  givenname: Xudong
  orcidid: 0000-0002-5149-5539
  surname: Liu
  fullname: Liu, Xudong
  email: xudong.liu@unf.edu
  organization: School of Computing, University of North Florida
– sequence: 2
  givenname: Miroslaw
  surname: Truszczynski
  fullname: Truszczynski, Miroslaw
  organization: Department of Computer Science, University of Kentucky
BookMark eNp9kU1rFTEUhoNUsK3-AVcDrlPznZtlKWqFght1G86dObmmzCRjMhX9957rCO4kixNe3ud88F6xi1ILMvZaihsphH_bpTBecSEDF8EZy_0zdimt19wbLy7oL6Tiyhj9gl31_igE2Q7ukqWvdcvlxI_QcRqwdFyOMw4zQiukD6m2YYW2ZZhJ_JnHemqwfsvjsDZM2LCMeDZh3_pQf2Abxrocc4GttjMz1QVy6S_Z8wRzx1d_6zX78v7d57t7_vDpw8e72wc-ahE2bpRU4JJPToP0EqSTTmlSDjihm6yEowtIJdigUFtlkwsBvLTaOhBGX7M3e9-11e9PtFR8rE-t0MiogjwoYbWR5LrZXSeYMeaS6tZgpDfhQhcWTJn0W0_DpTPGEaB2YGy1dzo8ri0v0H5FKeI5gLgHECmA-CeA6AnSO9TJXE7Y_u3yH-o3YO6K_A
Cites_doi 10.1016/j.mathsocsci.2008.12.010
10.1007/BF01075297
10.1609/aaai.v24i1.7545
10.1609/aaai.v29i1.9403
10.1007/978-3-642-33558-7_69
10.1007/978-3-319-90050-6_16
10.1007/978-3-642-24873-3_13
10.1016/j.ejor.2016.08.055
10.1007/s10601-016-9245-y
10.1017/S0007123400006542
10.1007/978-3-642-41575-3_19
10.1023/A:1015551010381
10.24963/ijcai.2017/182
10.1023/A:1010933404324
10.1007/978-3-319-23114-3_2
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
COPYRIGHT 2019 Springer
Springer Nature Switzerland AG 2019.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: COPYRIGHT 2019 Springer
– notice: Springer Nature Switzerland AG 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10472-019-09645-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 155
ExternalDocumentID A716216446
10_1007_s10472_019_09645_7
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1618783
  funderid: https://doi.org/10.13039/100000001
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c309t-4212a6f7f63a171a161623a6f8ede6d51ab69e51a9592e3525f699a715356a043
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491609600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1012-2443
IngestDate Wed Nov 05 14:56:20 EST 2025
Sat Nov 29 10:27:22 EST 2025
Sat Nov 29 05:14:37 EST 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Voting theory
Maximum satisfiability
Preference modeling and reasoning
Preference learning
Computational complexity theory
68T30
Lexicographic preference models
Social choice theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-4212a6f7f63a171a161623a6f8ede6d51ab69e51a9592e3525f699a715356a043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5149-5539
PQID 2918205341
PQPubID 2043872
PageCount 19
ParticipantIDs proquest_journals_2918205341
gale_infotracacademiconefile_A716216446
crossref_primary_10_1007_s10472_019_09645_7
springer_journals_10_1007_s10472_019_09645_7
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2019
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Mattei, N.: Empirical evaluation of voting rules with strictly ordered preference data. In: International Conference on Algorithmic Decisiontheory, pp 165–177. Springer (2011)
Liu, X., Truszczynski, M.: Aggregating conditionally lexicographic preferences using answer set programming solvers. In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory, pp 244–258. Springer (2013)
Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI Press (2010)
Myers, J.L., Well, A., Lorch, R.F.: Research design and statistical analysis. Routledge (2010)
BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324
GehrleinWVCondorcet’s paradox and the likelihood of its occurrence: different perspectives on balanced preferencesTheor. Decis.2002522171199192602910.1023/A:1015551010381
Wilson, N., George, A.: Efficient inference and computation of optimal alternatives for preference languages based on lexicographic models. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp 1311–1317 (2017)
Booth, R., Chevaleyre, Y., Lang, J., Mengin, J., Sombattheera, C.: Learning conditionally lexicographic preference relations. In: ECAI, pp 269–274 (2010)
FelsenthalDSMaozZRapoportAAn empirical evaluation of six voting procedures: do they really make any difference?Br. J. Polit. Sci.1993230112710.1017/S0007123400006542
Liu, X., Truszczynski, M.: Learning partial lexicographic preference trees and forests over multi-valued attributes. In: Proceedings of the 2nd Global Conference on Artificial Intelligence (GCAI-16), EPiC Series in Computing, vol. 41, pp 314–328. EasyChair (2016)
BräuningMHüllermeierEKellerTGlaumMLexicographic preferences for predictive modeling of human decision making: a new machine learning method with an application in accountingEur. J. Oper. Res.20172581295306358139110.1016/j.ejor.2016.08.055
Lang, J., Mengin, J., Xia, L.: Aggregating conditionally lexicographic preferences on multi-issue domains. In: Principles and Practice of Constraint Programming, pp 973–987. Springer (2012)
Liu, X., Truszczynski, M.: Preference learning and optimization for partial lexicographic preference forests over combinatorial domains. In: Proceedings of the 10th International Symposium on Foundations of Information and Knowledge Systems. Springer (2018)
Schmitt, M., Martignon, L.: Complexity of lexicographic strategies on binary cues. Preprint (1999)
LangJXiaLSequential composition of voting rules in multi-issue domainsMath. Soc. Sci.2009573304324251261610.1016/j.mathsocsci.2008.12.010
FraserNMOrdinal preference representationsTheor. Decis.1994361456710.1007/BF01075297
Liu, X., Truszczynski, M.: Learning partial lexicographic preference trees over combinatorial domains. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp 1539–1545. AAAI Press (2015)
Wilson, N.: Preference inference based on lexicographic models. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st European Conference on Artificial Intelligence, ECAI 2014, Frontiers in Artificial Intelligence and Applications, vol. 263, pp 921–926. IOS Press (2014)
Liu, X., Truszczynski, M.: Reasoning with Preference Trees over Combinatorial Domains. In: Algorithmic Decision Theory, pp 19–34. Springer (2015)
Allen, J., Moussa, A., Liu, X.: Human-in-the-loop learning of qualitative preference models. In: The 32Nd International Florida Artificial Intelligence Research Society Conference. AAAI Press (2019)
HurleyBO’SullivanBAlloucheDKatsirelosGSchiexTZytnickiMDe GivrySMulti-language evaluation of exact solvers in graphical model discrete optimizationConstraints2016213413434350036210.1007/s10601-016-9245-y
L Breiman (9645_CR5) 2001; 45
9645_CR2
9645_CR10
9645_CR21
9645_CR3
J Lang (9645_CR11) 2009; 57
9645_CR20
M Bräuning (9645_CR4) 2017; 258
9645_CR1
DS Felsenthal (9645_CR6) 1993; 23
WV Gehrlein (9645_CR8) 2002; 52
9645_CR19
NM Fraser (9645_CR7) 1994; 36
9645_CR14
B Hurley (9645_CR9) 2016; 21
9645_CR13
9645_CR12
9645_CR18
9645_CR17
9645_CR16
9645_CR15
References_xml – reference: BräuningMHüllermeierEKellerTGlaumMLexicographic preferences for predictive modeling of human decision making: a new machine learning method with an application in accountingEur. J. Oper. Res.20172581295306358139110.1016/j.ejor.2016.08.055
– reference: Mattei, N.: Empirical evaluation of voting rules with strictly ordered preference data. In: International Conference on Algorithmic Decisiontheory, pp 165–177. Springer (2011)
– reference: Liu, X., Truszczynski, M.: Learning partial lexicographic preference trees over combinatorial domains. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp 1539–1545. AAAI Press (2015)
– reference: Myers, J.L., Well, A., Lorch, R.F.: Research design and statistical analysis. Routledge (2010)
– reference: GehrleinWVCondorcet’s paradox and the likelihood of its occurrence: different perspectives on balanced preferencesTheor. Decis.2002522171199192602910.1023/A:1015551010381
– reference: Wilson, N.: Preference inference based on lexicographic models. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st European Conference on Artificial Intelligence, ECAI 2014, Frontiers in Artificial Intelligence and Applications, vol. 263, pp 921–926. IOS Press (2014)
– reference: FelsenthalDSMaozZRapoportAAn empirical evaluation of six voting procedures: do they really make any difference?Br. J. Polit. Sci.1993230112710.1017/S0007123400006542
– reference: Liu, X., Truszczynski, M.: Learning partial lexicographic preference trees and forests over multi-valued attributes. In: Proceedings of the 2nd Global Conference on Artificial Intelligence (GCAI-16), EPiC Series in Computing, vol. 41, pp 314–328. EasyChair (2016)
– reference: Allen, J., Moussa, A., Liu, X.: Human-in-the-loop learning of qualitative preference models. In: The 32Nd International Florida Artificial Intelligence Research Society Conference. AAAI Press (2019)
– reference: Booth, R., Chevaleyre, Y., Lang, J., Mengin, J., Sombattheera, C.: Learning conditionally lexicographic preference relations. In: ECAI, pp 269–274 (2010)
– reference: Schmitt, M., Martignon, L.: Complexity of lexicographic strategies on binary cues. Preprint (1999)
– reference: Liu, X., Truszczynski, M.: Aggregating conditionally lexicographic preferences using answer set programming solvers. In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory, pp 244–258. Springer (2013)
– reference: LangJXiaLSequential composition of voting rules in multi-issue domainsMath. Soc. Sci.2009573304324251261610.1016/j.mathsocsci.2008.12.010
– reference: Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI Press (2010)
– reference: Liu, X., Truszczynski, M.: Preference learning and optimization for partial lexicographic preference forests over combinatorial domains. In: Proceedings of the 10th International Symposium on Foundations of Information and Knowledge Systems. Springer (2018)
– reference: Lang, J., Mengin, J., Xia, L.: Aggregating conditionally lexicographic preferences on multi-issue domains. In: Principles and Practice of Constraint Programming, pp 973–987. Springer (2012)
– reference: Liu, X., Truszczynski, M.: Reasoning with Preference Trees over Combinatorial Domains. In: Algorithmic Decision Theory, pp 19–34. Springer (2015)
– reference: BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324
– reference: FraserNMOrdinal preference representationsTheor. Decis.1994361456710.1007/BF01075297
– reference: Wilson, N., George, A.: Efficient inference and computation of optimal alternatives for preference languages based on lexicographic models. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp 1311–1317 (2017)
– reference: HurleyBO’SullivanBAlloucheDKatsirelosGSchiexTZytnickiMDe GivrySMulti-language evaluation of exact solvers in graphical model discrete optimizationConstraints2016213413434350036210.1007/s10601-016-9245-y
– volume: 57
  start-page: 304
  issue: 3
  year: 2009
  ident: 9645_CR11
  publication-title: Math. Soc. Sci.
  doi: 10.1016/j.mathsocsci.2008.12.010
– volume: 36
  start-page: 45
  issue: 1
  year: 1994
  ident: 9645_CR7
  publication-title: Theor. Decis.
  doi: 10.1007/BF01075297
– ident: 9645_CR2
  doi: 10.1609/aaai.v24i1.7545
– ident: 9645_CR13
  doi: 10.1609/aaai.v29i1.9403
– ident: 9645_CR10
  doi: 10.1007/978-3-642-33558-7_69
– ident: 9645_CR16
  doi: 10.1007/978-3-319-90050-6_16
– ident: 9645_CR17
  doi: 10.1007/978-3-642-24873-3_13
– volume: 258
  start-page: 295
  issue: 1
  year: 2017
  ident: 9645_CR4
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.08.055
– volume: 21
  start-page: 413
  issue: 3
  year: 2016
  ident: 9645_CR9
  publication-title: Constraints
  doi: 10.1007/s10601-016-9245-y
– ident: 9645_CR18
– ident: 9645_CR19
– ident: 9645_CR15
– ident: 9645_CR3
– volume: 23
  start-page: 1
  issue: 01
  year: 1993
  ident: 9645_CR6
  publication-title: Br. J. Polit. Sci.
  doi: 10.1017/S0007123400006542
– ident: 9645_CR12
  doi: 10.1007/978-3-642-41575-3_19
– volume: 52
  start-page: 171
  issue: 2
  year: 2002
  ident: 9645_CR8
  publication-title: Theor. Decis.
  doi: 10.1023/A:1015551010381
– ident: 9645_CR21
  doi: 10.24963/ijcai.2017/182
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 9645_CR5
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 9645_CR1
– ident: 9645_CR20
– ident: 9645_CR14
  doi: 10.1007/978-3-319-23114-3_2
SSID ssj0009686
Score 2.20628
Snippet We study preference representation models based on partial lexicographic preference trees (PLP-trees). We propose to represent preference relations as forests...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 137
SubjectTerms Accuracy
Analysis
Artificial Intelligence
Cognition & reasoning
Combinatorial analysis
Complex Systems
Computer Science
Decision making
Decision theory
Decision trees
Ensemble learning
Forests and forestry
Majority rule
Mathematics
Optimization
Preferences
Voting
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAY4AYL-WAxAEidW2TNEeEmLiAEI9ptyhLUjQJtmkd_H7srmU8D3Cq1KZpGjuxrdjfB3DkohA7LxT3kQs87SnPszwW3CuRB6czaXNfkk2o6-us29U3VVFYUWe710eS5U79odgtVZRGQCk-MhVczcMimruMCBtu7zozqF1Z8jsScBVH45VUpTI_9_HJHH3dlL-djpZGp732v-Guw2rlZLKzqVZswFwYNGCtJnBg1XpuwMrVO2hrsQl5Z0g50JwMm2cY3obn3lNgFa_EI0P3lo1I07BrgtF0U7TrvmOjd7ISaoS_VDDKDGU4Ugy8Kaynd_zw2fYHxRY8tC_uzy95RcPAXRLpCaczYytzlcvEtlTLoo-IPhPeyYIP0ouW7Ukd8KKFjgPBq-ZSa6twLxXSRmmyDQuD4SDsAEsUdpMqkQav08Rqi_6qt3EvkrF3LaebcFJLw4ymaBtmhqtME2pwQk05oUY14ZgEZmgpTsbW2aqiAL9FoFbmjNCxMBxMZRP2a5maao0WJtYEXi_QjDfhtJbh7PHv3939W_M9WI5JDcoMwH1YmIxfwgEsuddJvxgflrr7BoZi6bI
  priority: 102
  providerName: Springer Nature
Title Voting-based ensemble learning for partial lexicographic preference forests over combinatorial domains
URI https://link.springer.com/article/10.1007/s10472-019-09645-7
https://www.proquest.com/docview/2918205341
Volume 87
WOSCitedRecordID wos000491609600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: M7S
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7x6AEOQHmIUIh8qNRDa7Ev2_EJUQRCQkQRtAj1Yjm2F0UiD7Jpfz8zGy9RW8GFy660D9vSN56HPf4G4LNLQua8UNwnLvCirzzvlJngXokyON2RtvR1sQnV7Xbu73UvLrhVMa2y0Ym1ovZjR2vkx5kmqnGBSvdk8sSpahTtrsYSGsuwSiwJaZ26d7sg3ZV1pUeisOJoxvJ4aCYenSsUJSVQwpAsBFd_GaZ_1fN_-6S1-bnYfO_At2AjOp7sdC4pH2EpjLZhsynqwOIc34b16xci12oHyrsx5UVzMnaeYcgbhv3HwGKtiQeGLi-bkPRh00St6eYM2APHJi8FTOgjHG7FKFuU4aAxGKdQn_7x46EdjKpd-Hlx_uPsksfSDNzliZ5x2ke2slSlzG2qUot-I_pR-KQTfJBepLYvdcCbFjoLRLlaSq2tQv0qpE2KfA9WRuNR2AeWK2ymUKIIXhe51RZ9WG-zfiIz71KnW_C1wcVM5gwcZsG1TCgaRNHUKBrVgi8EnaHpOZtaZ-MpA-yLiK7MKTFmYYhYyBYcNniZOG8rswCrBd8axBevX-_34O3WPsFaRrJWZwEewsps-jscwQf3Zzaopm1Y_X7e7d20YflK8XYtw3jtiV94vbm9ewamrvgM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9UCggFgr4AOIAFlnHj_iAUAVUrbZdcSioN-PYDlqJZpfNFsSf6m_sTDbpChDceuAUKY-J4nzzsD3zDcDTkCURojI8ZiFxWZrIi0ooHo2qUrCF9lVsm02Y8bg4PrYf1uCsr4WhtMreJraGOk4DrZG_EpaoxhUa3Tezb5y6RtHuat9CYwmLUfr5A6dszev9d_h_nwmx-_7o7R7vugrwkGd2wWkL1OvKVDr3QzP0GPJgCIBnihSTjmroS20THqyyIhFbaKWt9QZNg9I-kznKvQJXZV4Y0quR4SuSX912liTKLI5uM--KdLpSPWkoCYISlLRU3PziCH93B3_sy7bubnfzfxuoW3CzC6zZzlITbsNaqrdgs29awTobtgUbhxdEtc0dqD5NKe-bkzOPDKf06aT8mljXS-MLw5CezUi7UDRRh4Ylw_cksNlFgxa6CYenYZQNy3CQyklNSxn0TJye-End3IWPl_Lt92C9ntbpPrDcoBhplEzRytxbjzF69KLMtIhhGOwAXvQ4cLMlw4hbcUkTahyixrWocWYAzwkqjszPYu6D76oo8F1E5OV2iBEMp8BSD2C7x4fr7FLjVuAYwMseYavLf3_vg39LewLX944OD9zB_nj0EG4Iwnmb8bgN64v5aXoE18L3xaSZP241hsHny0beOcjCTSM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9tDE3wAIMN0Q02PyDtYbNIE3_UjwhWgbZVSHyIN8u1nakSpFWT7e_nLk3aAtvDxFOkxHEc39l3J__udwAHPompD1LzkPjIxVAH3stTyYOWefSmp1we6mITejDo3dyY86Us_hrt3h5JznIaiKWpqA4nIT9cSnwTmiAFBPdRQnL9El4JAtJTvH5xvaDdVXWtRyKx4mjIsiZt5u99PDBNjzfoJyeltQHqbz5_6G9go3E-2dFMW7bgRSy2YbMt7MCadb4N6z_nZK7lW8ivx4SN5mTwAsOwN94NbyNr6k38Yuj2sglpIHZN9Jp-xoI98mwyL2JCjfD3SkaIUYajxoCcwn16J4zv3Kgo38FV_9vl8SlvyjNwnyWm4nSW7FSuc5W5ru469B3Rl8I7vRiiCrLrhspEvBhp0ki0q7kyxmncY6Vyich2YKUYF3EXWKaxG6GliMGIzBmHfmxw6TBRafBdbzrwpZWMncxYOOyCb5km1OKE2npCre7AZxKepSVaTZ13TaYBfovIruwRsWZhmChUB_Za-dpm7ZY2NURqL9G8d-BrK8_F439_9_3_Nf8Er89P-vbH2eD7B1hLSSNqkOAerFTT33EfVv2falROP9YqfQ8d3PV6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voting-based+ensemble+learning+for+partial+lexicographic+preference+forests+over+combinatorial+domains&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Liu%2C+Xudong&rft.au=Truszczynski%2C+Miroslaw&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=87&rft.issue=1-2&rft.spage=137&rft.epage=155&rft_id=info:doi/10.1007%2Fs10472-019-09645-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon