Complexity of greedy edge-colouring
The Grundy index of a graph G =(V, E ) is the greatest number of colours that the greedy edge-colouring algorithm can use on G . We prove that the problem of determining the Grundy index of a graph G=(V, E ) is NP-hard for general graphs. We also show that this problem is polynomial-time solvable fo...
Uložené v:
| Vydané v: | Journal of the Brazilian Computer Society Ročník 21; číslo 1; s. 1 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.12.2015
Sociedade Brasileira de Computação Springer Verlag |
| Predmet: | |
| ISSN: | 0104-6500, 1678-4804 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The
Grundy index
of a graph
G =(V, E
) is the greatest number of colours that the greedy edge-colouring algorithm can use on
G
. We prove that the problem of determining the Grundy index of a graph
G=(V, E
) is NP-hard for general graphs. We also show that this problem is polynomial-time solvable for caterpillars. More specifically, we prove that the Grundy index of a caterpillar is
Δ
(
G
) or
Δ
(
G
)+1 and present a polynomial-time algorithm to determine it exactly. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0104-6500 1678-4804 |
| DOI: | 10.1186/s13173-015-0036-x |