Complexity of greedy edge-colouring

The Grundy index of a graph G =(V, E ) is the greatest number of colours that the greedy edge-colouring algorithm can use on G . We prove that the problem of determining the Grundy index of a graph G=(V, E ) is NP-hard for general graphs. We also show that this problem is polynomial-time solvable fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Brazilian Computer Society Ročník 21; číslo 1; s. 1
Hlavní autoři: Havet, Frédéric, Maia, A. Karolinna, Yu, Min-Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.12.2015
Sociedade Brasileira de Computação
Springer Verlag
Témata:
ISSN:0104-6500, 1678-4804
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Grundy index of a graph G =(V, E ) is the greatest number of colours that the greedy edge-colouring algorithm can use on G . We prove that the problem of determining the Grundy index of a graph G=(V, E ) is NP-hard for general graphs. We also show that this problem is polynomial-time solvable for caterpillars. More specifically, we prove that the Grundy index of a caterpillar is Δ ( G ) or Δ ( G )+1 and present a polynomial-time algorithm to determine it exactly.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0104-6500
1678-4804
DOI:10.1186/s13173-015-0036-x