A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control
•A bottom-up intra-hour proactive scheduling for household peak avoiding.•Physic-based modeling and simulation of thermal appliances.•MPC controller formulation with soft constraints and flat tariffs.•Minimization of high-power appliances’ concurrent operations considering user comfort.•Key factors...
Saved in:
| Published in: | Applied energy Vol. 323; p. 119591 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2022
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A bottom-up intra-hour proactive scheduling for household peak avoiding.•Physic-based modeling and simulation of thermal appliances.•MPC controller formulation with soft constraints and flat tariffs.•Minimization of high-power appliances’ concurrent operations considering user comfort.•Key factors and computational complexity analyzed.
Residential-level peak shaving is beneficial for the supply–demand balance of buildings with a limited power capacity of renewable energy sources like building-integrated photovoltaics. Thermostatically controlled loads (TCLs) are recognized as flexible resources for peak shaving. In practice, most thermal appliances are controlled by local on–off controllers without any communication and coordination. Multiple appliances may operate simultaneously and produce load peaks. Existing studies assume the existence of an electricity market and time-varying tariffs, which are not always available. This paper developed a model predictive control (MPC) based bottom-up proactive method to leverage the thermal inertia of residential thermal appliances for avoiding household peak load without relying on time-varying tariffs. First, we used a physics-based modeling approach to model the thermal dynamics of several residential thermal devices. Then, we designed a centralized MPC controller to minimize the appliance concurrent operations considering occupant comfort zones and appliance rate powers. Consequently, the house peak load is reduced by minimizing concurrent operations. Simulations over homogenous and heterogenous appliance set validated that the MPC-based proactive scheduling method can effectively reduce household peak load without compromising user comfort too much. Finally, we discussed the impact of control interval, appliance rated powers, and penalty factors on peak avoiding and the computational feasibility of the MPC controller. We concluded that the MPC-based proactive scheduling is feasible and effective for a limited number of thermal appliances with short horizons (i.e., six-step). Replacing a mixed-integer nonlinear program solver with a mixed-integer quadratic program solver could significantly reduce the computational burden. However, the application of the MPC controller to multiple households at the system level is still impractical. Further research efforts are emphasized, like mining and forecasting occupant demand and appliance usage patterns in households and designing scalable control strategies for system-level peak shaving. |
|---|---|
| AbstractList | Residential-level peak shaving is beneficial for the supply–demand balance of buildings with a limited power capacity of renewable energy sources like building-integrated photovoltaics. Thermostatically controlled loads (TCLs) are recognized as flexible resources for peak shaving. In practice, most thermal appliances are controlled by local on–off controllers without any communication and coordination. Multiple appliances may operate simultaneously and produce load peaks. Existing studies assume the existence of an electricity market and time-varying tariffs, which are not always available. This paper developed a model predictive control (MPC) based bottom-up proactive method to leverage the thermal inertia of residential thermal appliances for avoiding household peak load without relying on time-varying tariffs. First, we used a physics-based modeling approach to model the thermal dynamics of several residential thermal devices. Then, we designed a centralized MPC controller to minimize the appliance concurrent operations considering occupant comfort zones and appliance rate powers. Consequently, the house peak load is reduced by minimizing concurrent operations. Simulations over homogenous and heterogenous appliance set validated that the MPC-based proactive scheduling method can effectively reduce household peak load without compromising user comfort too much. Finally, we discussed the impact of control interval, appliance rated powers, and penalty factors on peak avoiding and the computational feasibility of the MPC controller. We concluded that the MPC-based proactive scheduling is feasible and effective for a limited number of thermal appliances with short horizons (i.e., six-step). Replacing a mixed-integer nonlinear program solver with a mixed-integer quadratic program solver could significantly reduce the computational burden. However, the application of the MPC controller to multiple households at the system level is still impractical. Further research efforts are emphasized, like mining and forecasting occupant demand and appliance usage patterns in households and designing scalable control strategies for system-level peak shaving. •A bottom-up intra-hour proactive scheduling for household peak avoiding.•Physic-based modeling and simulation of thermal appliances.•MPC controller formulation with soft constraints and flat tariffs.•Minimization of high-power appliances’ concurrent operations considering user comfort.•Key factors and computational complexity analyzed. Residential-level peak shaving is beneficial for the supply–demand balance of buildings with a limited power capacity of renewable energy sources like building-integrated photovoltaics. Thermostatically controlled loads (TCLs) are recognized as flexible resources for peak shaving. In practice, most thermal appliances are controlled by local on–off controllers without any communication and coordination. Multiple appliances may operate simultaneously and produce load peaks. Existing studies assume the existence of an electricity market and time-varying tariffs, which are not always available. This paper developed a model predictive control (MPC) based bottom-up proactive method to leverage the thermal inertia of residential thermal appliances for avoiding household peak load without relying on time-varying tariffs. First, we used a physics-based modeling approach to model the thermal dynamics of several residential thermal devices. Then, we designed a centralized MPC controller to minimize the appliance concurrent operations considering occupant comfort zones and appliance rate powers. Consequently, the house peak load is reduced by minimizing concurrent operations. Simulations over homogenous and heterogenous appliance set validated that the MPC-based proactive scheduling method can effectively reduce household peak load without compromising user comfort too much. Finally, we discussed the impact of control interval, appliance rated powers, and penalty factors on peak avoiding and the computational feasibility of the MPC controller. We concluded that the MPC-based proactive scheduling is feasible and effective for a limited number of thermal appliances with short horizons (i.e., six-step). Replacing a mixed-integer nonlinear program solver with a mixed-integer quadratic program solver could significantly reduce the computational burden. However, the application of the MPC controller to multiple households at the system level is still impractical. Further research efforts are emphasized, like mining and forecasting occupant demand and appliance usage patterns in households and designing scalable control strategies for system-level peak shaving. |
| ArticleNumber | 119591 |
| Author | Pan, Jia Huang, Gongsheng Zheng, Zhuang Luo, Xiaowei |
| Author_xml | – sequence: 1 givenname: Zhuang surname: Zheng fullname: Zheng, Zhuang organization: Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong – sequence: 2 givenname: Jia surname: Pan fullname: Pan, Jia organization: Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong – sequence: 3 givenname: Gongsheng surname: Huang fullname: Huang, Gongsheng organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Yeung Academic Building, Tat Chee Ave, Kowloon, Hong Kong – sequence: 4 givenname: Xiaowei surname: Luo fullname: Luo, Xiaowei email: xiaowluo@cityu.edu.hk organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Yeung Academic Building, Tat Chee Ave, Kowloon, Hong Kong |
| BookMark | eNqFkD1vFDEQhi2USFxC_gJySbPH2PtxXomCKCIEKRIN1NasPZvz4V0vtu-kVPx1fFrS0KSa5n3emXmu2MUcZmLsvYCtANF9PGxxoZni0_NWgpRbIfq2F2_YRqidrHoh1AXbQA1dJTvRv2VXKR0AQAoJG_bnlg8h5zBVx4W7OUes9uEY-RIDmuxOxJPZkz16Nz_xMPK8pzih57gs3uFsKPExRF6YRPvgLV8If3E8BWfPxICJLA8zn4IlX1rJurXWhLIs-HfsckSf6ObfvGY_77_8uHuoHr9__XZ3-1iZGlSuyChh62ZAwJZMB73BkZB6gNbYph26pmkJUVHTjZKUhEHA0Na1tAbrUQ71Nfuw9pbHfh8pZT25ZMh7nKncruVOKKmU3HUl-mmNmhhSijRq4zJmdz4YndcC9Nm7PugX7_rsXa_eC979hy_RTRifXwc_ryAVDydHUSfjqCi2LpLJ2gb3WsVfNymnVw |
| CitedBy_id | crossref_primary_10_1016_j_rser_2023_114023 crossref_primary_10_1016_j_apenergy_2025_126424 crossref_primary_10_1109_TSG_2023_3306044 crossref_primary_10_1007_s44163_025_00368_9 crossref_primary_10_1109_TASE_2024_3389711 crossref_primary_10_1016_j_apenergy_2023_120913 crossref_primary_10_1016_j_jobe_2024_109548 crossref_primary_10_1016_j_jobe_2024_109715 |
| Cites_doi | 10.1016/j.segan.2018.05.001 10.1109/TSG.2012.2222944 10.1109/TSG.2014.2349352 10.1109/TCST.2011.2124461 10.1109/ACC.2012.6315252 10.3390/su10041001 10.1016/j.enbuild.2014.10.019 10.1109/TPWRS.2014.2328865 10.1016/j.apenergy.2020.115543 10.1016/j.enbuild.2014.02.013 10.1016/j.scs.2018.01.030 10.1016/j.apenergy.2018.08.051 10.1016/j.apenergy.2018.09.188 10.1109/ACC.2014.6858967 10.1109/TPWRS.2013.2266121 10.1109/TSG.2013.2265239 10.1109/TSG.2017.2766880 10.1109/TSG.2012.2201182 10.1109/TSG.2011.2177282 10.1016/j.apenergy.2015.01.089 10.1016/j.apenergy.2021.117159 10.1016/j.apenergy.2017.03.055 10.1109/TSG.2020.2977203 10.1109/TSG.2013.2251018 10.1016/j.apenergy.2015.01.145 10.1287/mnsc.31.12.1533 10.1016/B978-0-12-813185-5.00025-5 10.1016/j.scs.2017.04.006 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2022.119591 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2022_119591 S0306261922008996 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c308t-ec81d34ba0a5ec609cafeae9005cd45b6445eaa8e46f2e820b10b5332dca3f2b3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841966600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Mon Sep 29 05:59:43 EDT 2025 Tue Nov 18 22:06:22 EST 2025 Sat Nov 29 07:17:22 EST 2025 Fri Feb 23 02:35:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermal appliances Model predictive control Proactive scheduling Peak avoidance Bottom-up |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c308t-ec81d34ba0a5ec609cafeae9005cd45b6445eaa8e46f2e820b10b5332dca3f2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2718288276 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718288276 crossref_citationtrail_10_1016_j_apenergy_2022_119591 crossref_primary_10_1016_j_apenergy_2022_119591 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_119591 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 2022-10-00 20221001 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mirakhorli, Dong (b0060) 2018; 230 Oldewurtel, Parisio, Jones, Morari, Gyalistras, Gwerder (b0050) 2010 2010. Gridlab-d – Residential module user’s guide n.d. <http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide>. Wu, He, Xu, Lu, Lu, Wang (b0090) 2018; 9 Korkas CD, Baldi S, Kosmatopoulos E. Chapter 9 – Grid-Connected Microgrids_ Demand Management via Distributed Control and Human-in-the-Loop Optimization _ Elsevier Enhanced Reader.pdf. In: Yahyaoui I, editor. Adv renew energies power technol. Biomass, Fuel Cells, Geotherm. Energies, Smart Grids, Elsevier Science, vol. 2; 2018. p. 315–44. doi:https://doi.org/10.1016/C2016-0-04919-7. Martínez-Ballester S, Leon-Moya B, Vesson M, Gonzálvez-Maciá J, Corberán JM. Dynamic performance simulation of a household refrigerator with a quasi-steady approach. Int Refrig Air Cond Conf Purdue, Purdue; 2012. p. 8. doi:http://docs.lib.purdue.edu/iracc. Zheng, Sun, Pan, Luo (b0080) 2021; 298 Borges, Melo, Hermes (b0185) 2015; 147 Santos GZ, Ronzoni AF, Hermes CJL. Quasi-steady-state simulation of the on-off behaviour of household refrigerators: a self-tuning approach 2019;2019–Augus:1871–8. doi:10.18462/iir.icr.2019.0076. Winstead, Bhandari, Nutaro, Kuruganti (b0100) 2020; 277 Rahmani-andebili (b0045) 2017; 32 Baldi, Korkas, Lv, Kosmatopoulos (b0075) 2018; 231 Dongol, Feldmann, Schmidt, Bollin (b0005) 2018; 16 Baeten, Rogiers, Helsen (b0065) 2017; 195 Hu, Member, Nutaro, Member (b0095) 2020; 3053 Sturzenegger D, Gyalistras D, Semeraro V, Morari M, Smith RS. BRCM Matlab Toolbox: Model generation for model predictive building control. In: Proc Am Control Conf, Portland, OR, USA: American Automatic Control Council; 2014. p. 1063–9. doi:10.1109/ACC.2014.6858967. Mirakhorli, Dong (b0200) 2018; 38 Nghiem, Behl, Mangharam, Pappas (b0110) 2012 Gupta, Ravindran (b0220) 1985; 31 Rawlings, Mayne (b0030) 2019 Nghiem TX, Behl M, Mangharam R, Pappas GJ. Green Scheduling of control systems for peak demand reduction. IEEE Conf Decis Control (CDC 2011) 2011:3050–5. doi:10.1109/acc.2012.6315252. Lu, Zhang (b0085) 2013; 4 Ma, Borrelli, Hencey, Coffey, Bengea, Haves (b0055) 2012; 20 Zhou, Shi, Tang, Li, Li, Gong (b0115) 2019; 12 Oldewurtel, Ulbig, Parisio, Andersson, Morari (b0010) 2010 Borges B, Hermes C, Melo C, Gonzalves JM. Transient simulation of household refrigerators : Int Refrig Air Cond Conf, Purdue; 2010. doi:http://docs.lib.purdue.edu/iracc. Zheng, Chen, Luo (b0195) 2018; 10 Chassin DP. New Residential Thermostat for Transactive Systems. PhD; thesis; 2014. Zhao, Lu, Yan, Wang (b0040) 2015; 86 Bonmin, https://github.com/coin-or/Bonmin. Facchinetti, Della (b0130) 2010 Zhao, Lee, Shin, Bin (b0020) 2013; 4 Caprino, Della Vedova, Facchinetti (b0140) 2014; 75 Tesfatsion L, Battula S. Notes on the GridLAB-D household equivalent thermal parameter model. Iowa State Univ; 2020. p. 1–28. doi:http://www2.econ.iastate.edu/tesfatsi/GLDETPHouseholdModel.Notes.LTesfatsionSBattula.pdf. Zong, Kullmann, Thavlov, Gehrke, Bindner (b0015) 2012; 3 Korkas, Baldi, Michailidis, Kosmatopoulos (b0070) 2015; 149 Zhang, Lian, Chang, Kalsi (b0230) 2013; 28 Taylor, Gowri, Katipamula (b0150) 2008 Anvari-Moghaddam, Monsef, Rahimi-Kian (b0170) 2015; 6 Hao, Sanandaji, Poolla, Vincent (b0120) 2015; 30 Chen, Wang, Heo, Kishore (b0035) 2013; 4 Home, COIN-OR, BONMIN Users' Manual. Della Vedova, Facchinetti (b0135) 2012 CasADi – Build efficient optimal control software, with minimal effort. n.d. <https://web.casadi.org/>. Pipattanasomporn, Kuzlu, Rahman (b0025) 2012; 3 Bliek, Bonami, Lodi (b0225) 2014 Mirakhorli (10.1016/j.apenergy.2022.119591_b0060) 2018; 230 Zhao (10.1016/j.apenergy.2022.119591_b0040) 2015; 86 Facchinetti (10.1016/j.apenergy.2022.119591_b0130) 2010 Pipattanasomporn (10.1016/j.apenergy.2022.119591_b0025) 2012; 3 Zhang (10.1016/j.apenergy.2022.119591_b0230) 2013; 28 Oldewurtel (10.1016/j.apenergy.2022.119591_b0010) 2010 Chen (10.1016/j.apenergy.2022.119591_b0035) 2013; 4 Hao (10.1016/j.apenergy.2022.119591_b0120) 2015; 30 Anvari-Moghaddam (10.1016/j.apenergy.2022.119591_b0170) 2015; 6 10.1016/j.apenergy.2022.119591_b0160 Zhao (10.1016/j.apenergy.2022.119591_b0020) 2013; 4 Baldi (10.1016/j.apenergy.2022.119591_b0075) 2018; 231 10.1016/j.apenergy.2022.119591_b0180 Zong (10.1016/j.apenergy.2022.119591_b0015) 2012; 3 Baeten (10.1016/j.apenergy.2022.119591_b0065) 2017; 195 Zheng (10.1016/j.apenergy.2022.119591_b0080) 2021; 298 10.1016/j.apenergy.2022.119591_b0205 10.1016/j.apenergy.2022.119591_b0105 Korkas (10.1016/j.apenergy.2022.119591_b0070) 2015; 149 Oldewurtel (10.1016/j.apenergy.2022.119591_b0050) 2010 10.1016/j.apenergy.2022.119591_b0125 10.1016/j.apenergy.2022.119591_b0145 Mirakhorli (10.1016/j.apenergy.2022.119591_b0200) 2018; 38 Hu (10.1016/j.apenergy.2022.119591_b0095) 2020; 3053 Della Vedova (10.1016/j.apenergy.2022.119591_b0135) 2012 10.1016/j.apenergy.2022.119591_b0165 Lu (10.1016/j.apenergy.2022.119591_b0085) 2013; 4 Gupta (10.1016/j.apenergy.2022.119591_b0220) 1985; 31 Borges (10.1016/j.apenergy.2022.119591_b0185) 2015; 147 10.1016/j.apenergy.2022.119591_b0175 Taylor (10.1016/j.apenergy.2022.119591_b0150) 2008 10.1016/j.apenergy.2022.119591_b0190 Dongol (10.1016/j.apenergy.2022.119591_b0005) 2018; 16 Zheng (10.1016/j.apenergy.2022.119591_b0195) 2018; 10 Wu (10.1016/j.apenergy.2022.119591_b0090) 2018; 9 10.1016/j.apenergy.2022.119591_b0215 Nghiem (10.1016/j.apenergy.2022.119591_b0110) 2012 10.1016/j.apenergy.2022.119591_b0155 10.1016/j.apenergy.2022.119591_b0210 Winstead (10.1016/j.apenergy.2022.119591_b0100) 2020; 277 Zhou (10.1016/j.apenergy.2022.119591_b0115) 2019; 12 Bliek (10.1016/j.apenergy.2022.119591_b0225) 2014 Rahmani-andebili (10.1016/j.apenergy.2022.119591_b0045) 2017; 32 Ma (10.1016/j.apenergy.2022.119591_b0055) 2012; 20 Caprino (10.1016/j.apenergy.2022.119591_b0140) 2014; 75 Rawlings (10.1016/j.apenergy.2022.119591_b0030) 2019 |
| References_xml | – volume: 3 start-page: 2166 year: 2012 end-page: 2173 ident: b0025 article-title: An algorithm for intelligent home energy management and demand response analysis publication-title: IEEE Trans Smart Grid – year: 2012 ident: b0135 article-title: Feedback scheduling of real-time physical systems with integrator dynamics publication-title: IEEE Int Conf Emerg Technol Fact Autom ETFA – volume: 230 start-page: 627 year: 2018 end-page: 642 ident: b0060 article-title: Model predictive control for building loads connected with a residential distribution grid publication-title: Appl Energy – volume: 12 year: 2019 ident: b0115 article-title: Aggregate control strategy for thermostatically controlled loads with demand response publication-title: Energies – volume: 28 start-page: 4655 year: 2013 end-page: 4664 ident: b0230 article-title: Aggregated modeling and control of air conditioning loads for demand response publication-title: IEEE Trans Power Syst – volume: 16 start-page: 1 year: 2018 end-page: 13 ident: b0005 article-title: A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid publication-title: Sustain Energy, Grids Netw – volume: 3053 start-page: 4133 year: 2020 end-page: 4143 ident: b0095 article-title: A priority-based control strategy and performance bound for aggregated HVAC-based load shaping publication-title: IEEE Trans Smart Grid – volume: 6 start-page: 324 year: 2015 end-page: 332 ident: b0170 article-title: Optimal smart home energy management considering energy saving and a comfortable lifestyle publication-title: IEEE Trans Smart Grid – volume: 32 start-page: 338 year: 2017 end-page: 347 ident: b0045 article-title: Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control publication-title: Sustain Cities Soc – volume: 10 year: 2018 ident: b0195 article-title: A supervised event-based non-intrusive load monitoring for non-linear appliances publication-title: Sustainability – volume: 195 start-page: 184 year: 2017 end-page: 195 ident: b0065 article-title: Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response publication-title: Appl Energy – volume: 298 start-page: 117159 year: 2021 ident: b0080 article-title: An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems publication-title: Appl Energy – reference: Borges B, Hermes C, Melo C, Gonzalves JM. Transient simulation of household refrigerators : Int Refrig Air Cond Conf, Purdue; 2010. doi:http://docs.lib.purdue.edu/iracc. – volume: 4 start-page: 1391 year: 2013 end-page: 1400 ident: b0020 article-title: An optimal power scheduling method for demand response in home energy management system publication-title: IEEE Trans Smart Grid – volume: 30 start-page: 189 year: 2015 end-page: 198 ident: b0120 article-title: Aggregate flexibility of thermostatically controlled loads publication-title: IEEE Trans Power Syst – volume: 3 start-page: 1055 year: 2012 end-page: 1062 ident: b0015 article-title: Application of model predictive control for active load management in a distributed power system with high wind penetration publication-title: IEEE Trans Smart Grid – volume: 9 start-page: 3844 year: 2018 end-page: 3856 ident: b0090 article-title: Hierarchical control of residential HVAC units for primary frequency regulation publication-title: IEEE Trans Smart Grid – volume: 20 start-page: 796 year: 2012 end-page: 803 ident: b0055 article-title: Model predictive control for the operation of building cooling systems publication-title: IEEE Trans Control Syst Technol – volume: 4 start-page: 1401 year: 2013 end-page: 1410 ident: b0035 article-title: MPC-based appliance scheduling for residential building energy management controller publication-title: IEEE Trans Smart Grid – reference: Sturzenegger D, Gyalistras D, Semeraro V, Morari M, Smith RS. BRCM Matlab Toolbox: Model generation for model predictive building control. In: Proc Am Control Conf, Portland, OR, USA: American Automatic Control Council; 2014. p. 1063–9. doi:10.1109/ACC.2014.6858967. – reference: Tesfatsion L, Battula S. Notes on the GridLAB-D household equivalent thermal parameter model. Iowa State Univ; 2020. p. 1–28. doi:http://www2.econ.iastate.edu/tesfatsi/GLDETPHouseholdModel.Notes.LTesfatsionSBattula.pdf. – volume: 4 start-page: 914 year: 2013 end-page: 921 ident: b0085 article-title: Design considerations of a centralized load controller using thermostatically controlled appliances for continuous regulation reserves publication-title: IEEE Trans Smart Grid – volume: 277 start-page: 115543 year: 2020 ident: b0100 article-title: Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy ☆ publication-title: Appl Energy – reference: Martínez-Ballester S, Leon-Moya B, Vesson M, Gonzálvez-Maciá J, Corberán JM. Dynamic performance simulation of a household refrigerator with a quasi-steady approach. Int Refrig Air Cond Conf Purdue, Purdue; 2012. p. 8. doi:http://docs.lib.purdue.edu/iracc. – volume: 31 start-page: 1533 year: 1985 end-page: 1546 ident: b0220 article-title: Branch and bound experiments in convex nonlinear integer programming publication-title: Manage Sci – reference: Santos GZ, Ronzoni AF, Hermes CJL. Quasi-steady-state simulation of the on-off behaviour of household refrigerators: a self-tuning approach 2019;2019–Augus:1871–8. doi:10.18462/iir.icr.2019.0076. – reference: Chassin DP. New Residential Thermostat for Transactive Systems. PhD; thesis; 2014. – reference: Korkas CD, Baldi S, Kosmatopoulos E. Chapter 9 – Grid-Connected Microgrids_ Demand Management via Distributed Control and Human-in-the-Loop Optimization _ Elsevier Enhanced Reader.pdf. In: Yahyaoui I, editor. Adv renew energies power technol. Biomass, Fuel Cells, Geotherm. Energies, Smart Grids, Elsevier Science, vol. 2; 2018. p. 315–44. doi:https://doi.org/10.1016/C2016-0-04919-7. – reference: CasADi – Build efficient optimal control software, with minimal effort. n.d. <https://web.casadi.org/>. – reference: Nghiem TX, Behl M, Mangharam R, Pappas GJ. Green Scheduling of control systems for peak demand reduction. IEEE Conf Decis Control (CDC 2011) 2011:3050–5. doi:10.1109/acc.2012.6315252. – year: 2008 ident: b0150 article-title: GridLAB-D technical support document : residential end-use module version 1. 0 publication-title: Pacific Northwest Natl Lab Tech Rep – start-page: 1927 year: 2010 end-page: 1932 ident: b0010 article-title: Reducing peak electricity demand in building climate control using real-time pricing and model predictive control publication-title: Proc IEEE Conf Decis Control – reference: Home, COIN-OR, BONMIN Users' Manual. – start-page: 3050 year: 2012 end-page: 3055 ident: b0110 article-title: Scalable scheduling of building control systems for peak demand reduction publication-title: Proc Am Control Conf – reference: Bonmin, https://github.com/coin-or/Bonmin. – volume: 147 start-page: 386 year: 2015 end-page: 395 ident: b0185 article-title: Transient simulation of a two-door frost-free refrigerator subjected to periodic door opening and evaporator frosting publication-title: Appl Energy – year: 2010 2010. ident: b0050 article-title: Energy efficient building climate control using stochastic model predictive control and weather predictions publication-title: Proc 2010 Am control conf ACC – volume: 149 start-page: 194 year: 2015 end-page: 203 ident: b0070 article-title: Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule publication-title: Appl Energy – volume: 75 start-page: 133 year: 2014 end-page: 148 ident: b0140 article-title: Peak shaving through real-time scheduling of household appliances publication-title: Energy Build – reference: Gridlab-d – Residential module user’s guide n.d. <http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide>. – volume: 38 start-page: 723 year: 2018 end-page: 735 ident: b0200 article-title: Market and behavior driven predictive energy management for residential buildings publication-title: Sustain Cities Soc – start-page: 171 year: 2014 end-page: 180 ident: b0225 article-title: Solving Mixed-Integer Quadratic Programming problems with IBM-CPLEX : a progress report publication-title: Proc Twenty-Sixth RAMP Symp – year: 2019 ident: b0030 publication-title: Diehl MM. Model predictive control: Theory, Computation – volume: 231 start-page: 1246 year: 2018 end-page: 1258 ident: b0075 article-title: Automating occupant-building interaction via smart zoning of thermostatic loads: a switched self-tuning approach publication-title: Appl Energy – start-page: 10 year: 2010 end-page: 17 ident: b0130 article-title: Real-time modeling and control of a cyber-physical energy system publication-title: First Int Work Energy Aware Des Anal Cyber Phys Syst – volume: 86 start-page: 415 year: 2015 end-page: 426 ident: b0040 article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages publication-title: Energy Build – volume: 16 start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2022.119591_b0005 article-title: A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid publication-title: Sustain Energy, Grids Netw doi: 10.1016/j.segan.2018.05.001 – year: 2019 ident: 10.1016/j.apenergy.2022.119591_b0030 – ident: 10.1016/j.apenergy.2022.119591_b0205 – volume: 4 start-page: 914 year: 2013 ident: 10.1016/j.apenergy.2022.119591_b0085 article-title: Design considerations of a centralized load controller using thermostatically controlled appliances for continuous regulation reserves publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2012.2222944 – start-page: 10 year: 2010 ident: 10.1016/j.apenergy.2022.119591_b0130 article-title: Real-time modeling and control of a cyber-physical energy system publication-title: First Int Work Energy Aware Des Anal Cyber Phys Syst – volume: 6 start-page: 324 year: 2015 ident: 10.1016/j.apenergy.2022.119591_b0170 article-title: Optimal smart home energy management considering energy saving and a comfortable lifestyle publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2014.2349352 – volume: 20 start-page: 796 year: 2012 ident: 10.1016/j.apenergy.2022.119591_b0055 article-title: Model predictive control for the operation of building cooling systems publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2011.2124461 – ident: 10.1016/j.apenergy.2022.119591_b0165 – ident: 10.1016/j.apenergy.2022.119591_b0105 doi: 10.1109/ACC.2012.6315252 – ident: 10.1016/j.apenergy.2022.119591_b0160 – volume: 10 issue: 4 year: 2018 ident: 10.1016/j.apenergy.2022.119591_b0195 article-title: A supervised event-based non-intrusive load monitoring for non-linear appliances publication-title: Sustainability doi: 10.3390/su10041001 – volume: 86 start-page: 415 year: 2015 ident: 10.1016/j.apenergy.2022.119591_b0040 article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages publication-title: Energy Build doi: 10.1016/j.enbuild.2014.10.019 – volume: 30 start-page: 189 year: 2015 ident: 10.1016/j.apenergy.2022.119591_b0120 article-title: Aggregate flexibility of thermostatically controlled loads publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2014.2328865 – year: 2010 ident: 10.1016/j.apenergy.2022.119591_b0050 article-title: Energy efficient building climate control using stochastic model predictive control and weather predictions – volume: 277 start-page: 115543 year: 2020 ident: 10.1016/j.apenergy.2022.119591_b0100 article-title: Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy ☆ publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115543 – volume: 75 start-page: 133 year: 2014 ident: 10.1016/j.apenergy.2022.119591_b0140 article-title: Peak shaving through real-time scheduling of household appliances publication-title: Energy Build doi: 10.1016/j.enbuild.2014.02.013 – year: 2008 ident: 10.1016/j.apenergy.2022.119591_b0150 article-title: GridLAB-D technical support document : residential end-use module version 1. 0 publication-title: Pacific Northwest Natl Lab Tech Rep – start-page: 3050 year: 2012 ident: 10.1016/j.apenergy.2022.119591_b0110 article-title: Scalable scheduling of building control systems for peak demand reduction publication-title: Proc Am Control Conf – volume: 38 start-page: 723 year: 2018 ident: 10.1016/j.apenergy.2022.119591_b0200 article-title: Market and behavior driven predictive energy management for residential buildings publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2018.01.030 – ident: 10.1016/j.apenergy.2022.119591_b0210 – year: 2012 ident: 10.1016/j.apenergy.2022.119591_b0135 article-title: Feedback scheduling of real-time physical systems with integrator dynamics publication-title: IEEE Int Conf Emerg Technol Fact Autom ETFA – volume: 230 start-page: 627 year: 2018 ident: 10.1016/j.apenergy.2022.119591_b0060 article-title: Model predictive control for building loads connected with a residential distribution grid publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.051 – ident: 10.1016/j.apenergy.2022.119591_b0145 – volume: 231 start-page: 1246 year: 2018 ident: 10.1016/j.apenergy.2022.119591_b0075 article-title: Automating occupant-building interaction via smart zoning of thermostatic loads: a switched self-tuning approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.188 – ident: 10.1016/j.apenergy.2022.119591_b0155 doi: 10.1109/ACC.2014.6858967 – volume: 28 start-page: 4655 year: 2013 ident: 10.1016/j.apenergy.2022.119591_b0230 article-title: Aggregated modeling and control of air conditioning loads for demand response publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2266121 – volume: 4 start-page: 1401 year: 2013 ident: 10.1016/j.apenergy.2022.119591_b0035 article-title: MPC-based appliance scheduling for residential building energy management controller publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2013.2265239 – volume: 9 start-page: 3844 year: 2018 ident: 10.1016/j.apenergy.2022.119591_b0090 article-title: Hierarchical control of residential HVAC units for primary frequency regulation publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2766880 – ident: 10.1016/j.apenergy.2022.119591_b0180 – volume: 3 start-page: 2166 year: 2012 ident: 10.1016/j.apenergy.2022.119591_b0025 article-title: An algorithm for intelligent home energy management and demand response analysis publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2012.2201182 – start-page: 1927 year: 2010 ident: 10.1016/j.apenergy.2022.119591_b0010 article-title: Reducing peak electricity demand in building climate control using real-time pricing and model predictive control publication-title: Proc IEEE Conf Decis Control – volume: 12 year: 2019 ident: 10.1016/j.apenergy.2022.119591_b0115 article-title: Aggregate control strategy for thermostatically controlled loads with demand response publication-title: Energies – volume: 3 start-page: 1055 year: 2012 ident: 10.1016/j.apenergy.2022.119591_b0015 article-title: Application of model predictive control for active load management in a distributed power system with high wind penetration publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2011.2177282 – volume: 147 start-page: 386 year: 2015 ident: 10.1016/j.apenergy.2022.119591_b0185 article-title: Transient simulation of a two-door frost-free refrigerator subjected to periodic door opening and evaporator frosting publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.089 – ident: 10.1016/j.apenergy.2022.119591_b0215 – volume: 298 start-page: 117159 year: 2021 ident: 10.1016/j.apenergy.2022.119591_b0080 article-title: An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117159 – volume: 195 start-page: 184 year: 2017 ident: 10.1016/j.apenergy.2022.119591_b0065 article-title: Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.055 – ident: 10.1016/j.apenergy.2022.119591_b0190 – volume: 3053 start-page: 4133 year: 2020 ident: 10.1016/j.apenergy.2022.119591_b0095 article-title: A priority-based control strategy and performance bound for aggregated HVAC-based load shaping publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2977203 – volume: 4 start-page: 1391 year: 2013 ident: 10.1016/j.apenergy.2022.119591_b0020 article-title: An optimal power scheduling method for demand response in home energy management system publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2013.2251018 – volume: 149 start-page: 194 year: 2015 ident: 10.1016/j.apenergy.2022.119591_b0070 article-title: Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.145 – volume: 31 start-page: 1533 year: 1985 ident: 10.1016/j.apenergy.2022.119591_b0220 article-title: Branch and bound experiments in convex nonlinear integer programming publication-title: Manage Sci doi: 10.1287/mnsc.31.12.1533 – ident: 10.1016/j.apenergy.2022.119591_b0175 – ident: 10.1016/j.apenergy.2022.119591_b0125 doi: 10.1016/B978-0-12-813185-5.00025-5 – volume: 32 start-page: 338 year: 2017 ident: 10.1016/j.apenergy.2022.119591_b0045 article-title: Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2017.04.006 – start-page: 171 year: 2014 ident: 10.1016/j.apenergy.2022.119591_b0225 article-title: Solving Mixed-Integer Quadratic Programming problems with IBM-CPLEX : a progress report publication-title: Proc Twenty-Sixth RAMP Symp |
| SSID | ssj0002120 |
| Score | 2.4323986 |
| Snippet | •A bottom-up intra-hour proactive scheduling for household peak avoiding.•Physic-based modeling and simulation of thermal appliances.•MPC controller... Residential-level peak shaving is beneficial for the supply–demand balance of buildings with a limited power capacity of renewable energy sources like... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119591 |
| SubjectTerms | Bottom-up electricity energy markets Model predictive control Peak avoidance Proactive scheduling quadratic programming solar energy Thermal appliances |
| Title | A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control |
| URI | https://dx.doi.org/10.1016/j.apenergy.2022.119591 https://www.proquest.com/docview/2718288276 |
| Volume | 323 |
| WOSCitedRecordID | wos000841966600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMcEBQqWhYNEjfLwZ3xeoxQ2FRVSBQp4mKNJ2PqEmwrW3vjzq_mvVlsq4AKQlysyMnMJH5f3jbve0PIc4gweBHHgY_difywTJCsXMS4UximvOSKl1rSx8nJSTqbZe9Ho--OC7NdJHWdXl5m7X8VNdwDYSN19i_E3U0KN-A1CB2uIHa4_pHgJx6eDgaqb9NiM4il8M9gmKepU7pOCOJZsC8LW-6MDuBXbBiA7ihCQDdo8GDMSuHWlNcq8cUT26bS9Be0enPcYdBH6GCLgXllprVF70Nv17m4ShMM-xy1Mgrm09lGWMOpN7EMTaQSPdRsMvt1U39e4Sj3zvFGZ3hnlWguVDXMXEDQ62rgbDrNUWr6-iVN4wpiH8M6Y6CMVk4Thlo5HaptbnjKP5kAk404H4vW_LgxLj3GznbmWLAr7bU_4II6jMRKEIj-bpBdlkQZaMjdydvp7F1n15lt8um-4IBv_uvVfufqXDH62pM5vUvu2BCETgx07pGRqvfI7UFjyj2yP-35j_BRawBW98m3Ce3QRXt00Q5dtEcXbUpq0UV7dFFAF-3QRRFd1KGLanTRpqYaXbRHF7XoekA-vpqevnzj2zM8fMmDdO0rCQERDwsRiEjJOMikKJVQGSh_OQ-jAtzxSAmRqjAumQJ3tDgKCghB2FwKXrKC75OduqnVQ0KDrGQxEyyIMG3NjoqEQbSbZJJlMip5fEAi97hzaRvc4zkri9xVMp7nTkw5iik3YjogL7pxrWnxcu2IzEkzt46qcUBzAOG1Y5858eegyXF7TtQKnnrOwE1kEPAm8eE_zP-I3Or_a4_Jznq5UU_ITbldV6vlU4vpH4rLzKU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bottom-up+intra-hour+proactive+scheduling+of+thermal+appliances+for+household+peak+avoiding+based+on+model+predictive+control&rft.jtitle=Applied+energy&rft.au=Zheng%2C+Zhuang&rft.au=Pan%2C+Jia&rft.au=Huang%2C+Gongsheng&rft.au=Luo%2C+Xiaowei&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=323&rft_id=info:doi/10.1016%2Fj.apenergy.2022.119591&rft.externalDocID=S0306261922008996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |