Modeling PU learning using probabilistic logic programming
The goal of learning from positive and unlabeled (PU) examples is to learn a classifier that predicts the posterior class probability. The challenge is that the available labels in the data are determined by (1) the true class, and (2) the labeling mechanism that selects which positive examples get...
Gespeichert in:
| Veröffentlicht in: | Machine learning Jg. 113; H. 3; S. 1351 - 1372 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.03.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-6125, 1573-0565, 1573-0565 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The goal of learning from positive and unlabeled (PU) examples is to learn a classifier that predicts the posterior class probability. The challenge is that the available labels in the data are determined by (1) the true class, and (2) the labeling mechanism that selects which positive examples get labeled, where often certain examples have a higher probability to be selected than others. Incorrectly assuming an unbiased labeling mechanism leads to learning a biased classifier. Yet, this is what most existing methods do. A handful of methods makes more realistic assumptions, but they are either so general that it is impossible to distinguish between the effects of the true classification and of the labeling mechanism, or too restrictive to correctly model the real situation, or require knowledge that is typically unavailable. This paper studies how to formulate and integrate more realistic assumptions for learning better classifiers, by exploiting the strengths of probabilistic logic programming (PLP). Concretely, (1) we propose PU ProbLog: a PLP-based general method that allows to (partially) model the labeling mechanism. (2) We show that our method generalizes existing methods, in the sense that it can model the same assumptions. (3) Thanks to the use of PLP, our method supports also PU learning in relational domains. (4) Our empirical analysis shows that partially modeling the labeling bias, improves the learned classifiers. |
|---|---|
| AbstractList | The goal of learning from positive and unlabeled (PU) examples is to learn a classifier that predicts the posterior class probability. The challenge is that the available labels in the data are determined by (1) the true class, and (2) the labeling mechanism that selects which positive examples get labeled, where often certain examples have a higher probability to be selected than others. Incorrectly assuming an unbiased labeling mechanism leads to learning a biased classifier. Yet, this is what most existing methods do. A handful of methods makes more realistic assumptions, but they are either so general that it is impossible to distinguish between the effects of the true classification and of the labeling mechanism, or too restrictive to correctly model the real situation, or require knowledge that is typically unavailable. This paper studies how to formulate and integrate more realistic assumptions for learning better classifiers, by exploiting the strengths of probabilistic logic programming (PLP). Concretely, (1) we propose PU ProbLog: a PLP-based general method that allows to (partially) model the labeling mechanism. (2) We show that our method generalizes existing methods, in the sense that it can model the same assumptions. (3) Thanks to the use of PLP, our method supports also PU learning in relational domains. (4) Our empirical analysis shows that partially modeling the labeling bias, improves the learned classifiers. |
| Author | De Raedt, Luc Bekker, Jessa Verreet, Victor |
| Author_xml | – sequence: 1 givenname: Victor orcidid: 0000-0003-2595-7207 surname: Verreet fullname: Verreet, Victor email: victor.verreet@kuleuven.be organization: Department of Computer Science, Leuven.AI, KU Leuven – sequence: 2 givenname: Luc surname: De Raedt fullname: De Raedt, Luc organization: Department of Computer Science, Leuven.AI, KU Leuven, AASS, Örebro University – sequence: 3 givenname: Jessa surname: Bekker fullname: Bekker, Jessa organization: Department of Computer Science, Leuven.AI, KU Leuven |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-110216$$DView record from Swedish Publication Index (Örebro universitet) |
| BookMark | eNp9kE9PAyEQxYmpiW31C3hq4hmdgYXd9dbUv0mNHqxXwlLYbLNdKnRj_PZS1-jNA8MM_Obl5U3IqPOdJeQc4RIB8quIUJYZBcYpyEwi5UdkjCJPo5BiRMZQFIJKZOKETGLcAACThRyT6ye_tm3T1bOX1ay1OnSHvo-Hugu-0lXTNnHfmFnr61TTWx30dpv-T8mx0220Zz_3lKzubl8XD3T5fP-4mC-p4VDsqTW8ystMukwWWWUsViAtamYzxpwQKMHmzlWZcyBLo7UzaytKbaTLUbK14FNCB934YXd9pXah2erwqbxu1E3zNlc-1On0ChEYysRfDHzy-t7buFcb34cuWVSs5JiCwCJPFBsoE3yMwbpfXQR1yFQNmaqUqfrOVPG0xH-sJLirbfiT_mfrCxeke-I |
| Cites_doi | 10.1609/aaai.v32i1.11715 10.1007/s10994-020-05877-5 10.1109/TPAMI.2021.3061456 10.1016/S0004-3702(98)00034-4 10.1609/aaai.v36i4.20332 10.1007/s10994-015-5481-4 10.1109/IEEECONF44664.2019.9048765 10.1145/1401890.1401920 10.1007/978-3-319-78090-0_2 10.1609/aaai.v36i6.20624 10.7551/mitpress/4298.003.0069 10.1007/978-3-031-01333-1_30 10.1145/2939672.2939744 10.1007/978-3-642-23780-5_47 10.1017/S1471068414000076 10.1609/aaai.v28i1.9072 10.1016/j.patrec.2013.06.010 10.1137/1.9781611977172.3 10.1609/aaai.v34i04.5848 10.1109/ICDM.2003.1250918 10.1007/978-3-030-46147-8_5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTPV AOWAS D91 |
| DOI | 10.1007/s10994-023-06461-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SwePub SwePub Articles SWEPUB Örebro universitet |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 1372 |
| ExternalDocumentID | oai_DiVA_org_oru_110216 10_1007_s10994_023_06461_3 |
| GrantInformation_xml | – fundername: TAILOR – fundername: Vlaamse Overheid funderid: http://dx.doi.org/10.13039/501100002913 |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PHGZM PHGZT PQGLB PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR Z45 Z8Z ZMTXR AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U ADTPV AESKC AOWAS D91 |
| ID | FETCH-LOGICAL-c308t-ec3b7946f4684bce1b06e1a2e422f55160e7ffb4ff069caafcde59ac6f7162d53 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001114982400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Tue Nov 04 16:56:32 EST 2025 Sat Nov 29 03:45:48 EST 2025 Sat Nov 29 07:46:06 EST 2025 Fri Nov 28 01:10:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Unidentifiability Weak supervision Positive unlabeled learning Probabilistic logic programming Modeling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c308t-ec3b7946f4684bce1b06e1a2e422f55160e7ffb4ff069caafcde59ac6f7162d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2595-7207 |
| PQID | 2931885187 |
| PQPubID | 54194 |
| PageCount | 22 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_oru_110216 proquest_journals_2931885187 crossref_primary_10_1007_s10994_023_06461_3 springer_journals_10_1007_s10994_023_06461_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | G Blanchard (6461_CR5) 2010; 11 6461_CR21 6461_CR22 6461_CR23 6461_CR24 6461_CR29 6461_CR25 6461_CR26 6461_CR27 6461_CR28 T Khot (6461_CR20) 2015; 100 6461_CR3 6461_CR2 D Fierens (6461_CR10) 2015; 15 6461_CR1 H Blockeel (6461_CR7) 1998; 101 6461_CR11 6461_CR12 6461_CR9 6461_CR13 6461_CR8 6461_CR6 6461_CR30 6461_CR31 6461_CR18 6461_CR19 6461_CR14 6461_CR15 6461_CR16 6461_CR17 J Bekker (6461_CR4) 2020; 109 |
| References_xml | – ident: 6461_CR1 doi: 10.1609/aaai.v32i1.11715 – volume: 109 start-page: 719 issue: 4 year: 2020 ident: 6461_CR4 publication-title: Machine Learning doi: 10.1007/s10994-020-05877-5 – ident: 6461_CR13 doi: 10.1109/TPAMI.2021.3061456 – volume: 101 start-page: 285 issue: 1–2 year: 1998 ident: 6461_CR7 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(98)00034-4 – ident: 6461_CR29 doi: 10.1609/aaai.v36i4.20332 – ident: 6461_CR18 – volume: 100 start-page: 75 issue: 1 year: 2015 ident: 6461_CR20 publication-title: Machine Learning doi: 10.1007/s10994-015-5481-4 – ident: 6461_CR30 – ident: 6461_CR17 doi: 10.1109/IEEECONF44664.2019.9048765 – ident: 6461_CR9 doi: 10.1145/1401890.1401920 – ident: 6461_CR3 doi: 10.1007/978-3-319-78090-0_2 – ident: 6461_CR27 – ident: 6461_CR11 doi: 10.1609/aaai.v36i6.20624 – ident: 6461_CR21 – ident: 6461_CR23 – ident: 6461_CR28 doi: 10.7551/mitpress/4298.003.0069 – ident: 6461_CR31 doi: 10.1007/978-3-031-01333-1_30 – ident: 6461_CR8 doi: 10.1145/2939672.2939744 – ident: 6461_CR14 doi: 10.1007/978-3-642-23780-5_47 – volume: 15 start-page: 358 year: 2015 ident: 6461_CR10 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068414000076 – ident: 6461_CR19 doi: 10.1609/aaai.v28i1.9072 – volume: 11 start-page: 2973 year: 2010 ident: 6461_CR5 publication-title: Journal of Machine Learning Research – ident: 6461_CR15 – ident: 6461_CR6 – ident: 6461_CR25 doi: 10.1016/j.patrec.2013.06.010 – ident: 6461_CR12 doi: 10.1137/1.9781611977172.3 – ident: 6461_CR16 doi: 10.1609/aaai.v34i04.5848 – ident: 6461_CR22 doi: 10.1109/ICDM.2003.1250918 – ident: 6461_CR2 doi: 10.1007/978-3-030-46147-8_5 – ident: 6461_CR26 – ident: 6461_CR24 |
| SSID | ssj0002686 |
| Score | 2.4306312 |
| Snippet | The goal of learning from positive and unlabeled (PU) examples is to learn a classifier that predicts the posterior class probability. The challenge is that... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1351 |
| SubjectTerms | Artificial Intelligence Classifiers Computer Science Control Empirical analysis Labeling Labels Learning Logic programming Machine Learning Mechatronics Modeling Modelling Natural Language Processing (NLP) Positive unlabeled learning Probabilistic logic programming Robotics Simulation and Modeling Special Issue on Learning and Reasoning 2022 Statistical analysis Unidentifiability Weak supervision |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-YnTKTmIFy20adql3oY6PMgY6MZuIU2TsYOb7MO_35c03VRE0EMPJZCUl7yv5r3fD-AyD6mJWR4FmioVMJ7oIMezhK8ak4PIFNKB6QyeWt0uHw6znm8Km1fV7tWVpLPUn5rdHIwttWwEzP412YStxKLN2Bz9ebCyvzR1_I6oPklg_bdvlfl5jq_uaB1jrq5Fv0GIOrfTqf_vg_dg14eZpF2ei33Y0JMDqFcUDsRr9CHcWi4025FOen3iGSRGxBbDj4jlmnH4uxbKmTgbSXw51yuOH0G_8_By9xh4OoVAxSFfBFrFuYWTNyzlLFc6ysNUR5JqRqmx92WhbhmTM2PCNFNSGlXoJJMqNRZlqkjiY6hNphN9AkShKZBUYfaF6RQaCSlTlhWJUjTjhnLVgOtKquKtRM0Qa3xkKxaBYhFOLCJuQLMSvPAaNBcYhkS4gxFvNeCmku96-LfZrsoNW61sEbTvx4O2mM5G-Cwx68HIJj3927xnsEMxoCnrz5pQW8yW-hy21ftiPJ9duCP4ARlW1aU priority: 102 providerName: Springer Nature |
| Title | Modeling PU learning using probabilistic logic programming |
| URI | https://link.springer.com/article/10.1007/s10994-023-06461-3 https://www.proquest.com/docview/2931885187 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-110216 |
| Volume | 113 |
| WOSCitedRecordID | wos001114982400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0565 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0565 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5By8BCeYpCqTwgFrBInEcTFlSgFRJQRYVWFUuUOHbFQAt98Pu5S51WMLAwxFJkKY5853vY5-8DOE0toR03tbkSUnI38BRPUZfwVWFyYOssycF0-o-NTicYDMLIbLhNTVllYRNzQ52NJe2RX6JbsgMMD4LG9ccnJ9YoOl01FBrrUCakMtTz8k2rE3WXtlj4OdcjLiWPky8312bM5bkcFlcQu4FLuzA_XdMq3lwekf6CE81dULvy35_fhi0TfLLmQlt2YE2NdqFSEDsws8734IoY0uieOot6zPBKDBmVyA8ZMdDkqLwE8Mxyy8lMkdc79u9Dr916ub3nhmSBS8cKZlxJJyWQee36gZtKZaeWr-xEKFcITadolmponbpaW34ok0TLTHlhIn1N2FOZ5xxAaTQeqUNgEg1EIiTmZJhkoelIEt8NM09KEQZaBLIK58X8xh8LLI14hZpM0ohRGnEujdipQq2Yy9isq2m8msgqXBRiWXX_9bWzheiWIxOu9t1bvxmPJ0N85pgLYbzjH_097DFsCgxrFlVoNSjNJnN1Ahvya_Y2ndSN-tVh_aHBsX0SEbaR94pt97n_DZ355OU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6hggQLb0R5egAWiEgcJ02QEOIpEKWqECA2kzh2xUALbQHxp_iN3CVOKxjYGBgyRJFiJXf-7s72fR_ARupy44vUczRXyhFRoJ0UfQlvNRYHnsmSnEznrl5rNKL7-7g5Ap9lLwwdqywxMQfqrKNojXwXw5IXYXoQ1Q6eXxxSjaLd1VJCo3CLS_3xjiVbb__iBO27yfnZ6c3xuWNVBRzlu1Hf0cpPiVXdiDASqdJe6obaS7gWnBvaNnJ1zZhUGOOGsUoSozIdxIkKDZEtZaQSgZA_KnwRBhUYPTptNK8H2M_DXFsSp27gUO5g23Rss15Ow8tJTUHQqs_3UDjMbwdbsj_oS_OQdzb1337WNEza5JodFrNhBkZ0examSuEKZnFsDvZIAY768FnzllndjBajFoAWI4WdnHWYCKxZHhmYPcT2hM_n4fZPvmABKu1OWy8CUwiACVdYc2IRidCYJKGIs0ApHkeGR6oK26U95XPBFSKHrNBkfYnWl7n1pV-FldJ20uJGTw4NV4Wd0g2Gj39721bhKoORiTf85PHuUHa6LbxesdbDfC5c-n3YdRg_v7mqy_pF43IZJjimcMWJuxWo9LuvehXG1Fv_sddds67P4OGvHegL-whAkw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED4hQIiFN6I8PQALRE3cJE2QEEKUCgSqOlCEWEzi2BUDLbQFxF_j13HnOK1g6NaBIUMUJVHiz_ew774PYD91ua74qecoLqXjR4FyUsQSnipMDjydJYZM5_622mhEDw9xcwq-i14YKqssbKIx1FlX0hp5Gd2SF2F4EFXL2pZFNGv1s9c3hxSkaKe1kNPIIXKjvj4xfeufXtdwrA84r1_eXVw5VmHAkRU3GjhKVlJiWNd-GPmpVF7qhspLuPI517SF5Kqq1qmvtRvGMkm0zFQQJzLURLyUkWIEmv-ZKt5O5WTN4HHoBXhoVCZxEgcORRG2Yce27RlCXk66Cj6t__x2iqNId7g5-4fI1Di_-uJ__m1LsGBDbnaez5FlmFKdFVgs5CyYtW6rcEK6cNSdz5otZtU02owaA9qMdHcMFzHRWjPjL5gtbXvB62vQmsgXrMN0p9tRG8AkmsWES8xEMbVEg5kkoR9ngZQ8jjSPZAmOirEVrzmDiBhxRRMSBCJBGCSISgm2i3EU1pr0xWgQS3BcQGJ0edzTDnPYDN9MbOK15_tz0e218XjHDBCjvHBz_Gv3YA5RI26vGzdbMM8xrsvL8LZhetB7VzswKz8Gz_3erpkDDJ4mjZ4fCFJIKA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+PU+learning+using+probabilistic+logic+programming&rft.jtitle=Machine+learning&rft.au=Verreet%2C+V.&rft.au=De+Raedt%2C+Luc&rft.au=Bekker%2C+J.&rft.date=2024-03-01&rft.issn=1573-0565&rft.volume=113&rft.issue=3&rft.spage=1351&rft_id=info:doi/10.1007%2Fs10994-023-06461-3&rft.externalDocID=oai_DiVA_org_oru_110216 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |