Hybrid deep learning framework for robust time-series classification: Integrating inception modules with residual networks

Accurate time-series classification (TSC) remains a fundamental challenge in deep learning due to the complexity and variability of temporal patterns. While recurrent neural networks (RNNs) such as LSTM and GRU have shown promise in modeling sequential dependencies, they often suffer from limitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms & computational technology Jg. 19
Hauptverfasser: Kim Chi, Duong Thi, Mai Trang, Nguyen Thi, Minh Son, Tran Ba, Ngoc Thao, Nguyen, Nguyen, Thanh Q.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: SAGE Publishing 01.06.2025
ISSN:1748-3018, 1748-3026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate time-series classification (TSC) remains a fundamental challenge in deep learning due to the complexity and variability of temporal patterns. While recurrent neural networks (RNNs) such as LSTM and GRU have shown promise in modeling sequential dependencies, they often suffer from limitations like vanishing gradients and high computational cost when handling long sequences. To overcome these issues, convolutional neural networks (CNNs), particularly the Inception architecture, have emerged as powerful alternatives due to their ability to capture multiscale local patterns efficiently. In this study, we propose InceptionResNet, a hybrid deep learning framework that integrates the residual learning mechanism of ResNet into the InceptionTime architecture. By replacing the fully convolutional network (FCN) shortcut module in InceptionFCN with ResNet-50, the model gains deeper representational capacity and improved gradient flow during training. We conduct extensive experiments on the UCR-85 benchmark dataset, comparing our model against state-of-the-art approaches, including InceptionTime, InceptionFCN, ResNet, FCN, and MLP. The results show that InceptionResNet achieves superior accuracy on 49 of 85 datasets, demonstrating its robustness and effectiveness in handling diverse and complex time series data. This work highlights the potential of integrating multiscale feature extraction and deep residual learning to advance the performance of TSC models in practical applications.
AbstractList Accurate time-series classification (TSC) remains a fundamental challenge in deep learning due to the complexity and variability of temporal patterns. While recurrent neural networks (RNNs) such as LSTM and GRU have shown promise in modeling sequential dependencies, they often suffer from limitations like vanishing gradients and high computational cost when handling long sequences. To overcome these issues, convolutional neural networks (CNNs), particularly the Inception architecture, have emerged as powerful alternatives due to their ability to capture multiscale local patterns efficiently. In this study, we propose InceptionResNet, a hybrid deep learning framework that integrates the residual learning mechanism of ResNet into the InceptionTime architecture. By replacing the fully convolutional network (FCN) shortcut module in InceptionFCN with ResNet-50, the model gains deeper representational capacity and improved gradient flow during training. We conduct extensive experiments on the UCR-85 benchmark dataset, comparing our model against state-of-the-art approaches, including InceptionTime, InceptionFCN, ResNet, FCN, and MLP. The results show that InceptionResNet achieves superior accuracy on 49 of 85 datasets, demonstrating its robustness and effectiveness in handling diverse and complex time series data. This work highlights the potential of integrating multiscale feature extraction and deep residual learning to advance the performance of TSC models in practical applications.
Author Kim Chi, Duong Thi
Ngoc Thao, Nguyen
Nguyen, Thanh Q.
Minh Son, Tran Ba
Mai Trang, Nguyen Thi
Author_xml – sequence: 1
  givenname: Duong Thi
  orcidid: 0000-0003-1744-3249
  surname: Kim Chi
  fullname: Kim Chi, Duong Thi
  organization: Faculty of Engineering and Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
– sequence: 2
  givenname: Nguyen Thi
  surname: Mai Trang
  fullname: Mai Trang, Nguyen Thi
  organization: Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
– sequence: 3
  givenname: Tran Ba
  surname: Minh Son
  fullname: Minh Son, Tran Ba
  organization: Institute of Information Technology and Digital Transformation, Thu Dau Mot University, Binh Duong Province, Vietnam
– sequence: 4
  givenname: Nguyen
  surname: Ngoc Thao
  fullname: Ngoc Thao, Nguyen
  organization: Dong Nai Provincial Police, Tan Tien Ward, Bien Hoa, Dong Nai, Vietnam
– sequence: 5
  givenname: Thanh Q.
  orcidid: 0000-0003-4898-091X
  surname: Nguyen
  fullname: Nguyen, Thanh Q.
  organization: Institute of Interdisciplinary Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
BookMark eNplkcFOwzAMhiM0JMbYA3DLCxTqpmlSbmgCNmkSFzhXbuKOjK6Zkk7TeHpahrjgi_3_sr-D_2s26XxHjN1Cegeg1D2oXIs0KzIJItdawgWbjl4ympO_GfQVm8e4TYcSmdIgpuxreaqDs9wS7XlLGDrXbXgTcEdHHz554wMPvj7EnvduR0mk4Chy02KMrnEGe-e7B77qetqEQQzHrjO0H22-8_bQDttH13_wQNHZA7a8o35Exxt22WAbaf7bZ-z9-eltsUzWry-rxeM6MSLVfUJ1mdu0RigRpVRlUyhVyNJIKyQWZJSAQiqT60FZSSYzCqAsG4QMlam1mLHVmWs9bqt9cDsMp8qjq34MHzYVht6ZlqoUhcDhNbYUJsdGaSuNIrCiJkkg1cCCM8sEH2Og5o8HaTVmUf3LQnwD0i6Ajg
Cites_doi 10.1016/j.jrmge.2023.06.015
10.1186/s13677-023-00560-1
10.3390/math11030590
10.3389/fdata.2023.1282541
10.1016/j.ins.2023.119147
10.1002/oca.3122
10.1016/j.jeconom.2022.12.008
10.1109/ACCESS.2018.2814605
10.1007/s10489-024-05649-x
10.1007/s12145-024-01414-3
10.1007/s12541-024-01069-6
10.1080/17499518.2022.2138918
10.1007/s12517-021-08259-w
10.1007/s11269-022-03419-3
10.1007/s11063-022-10929-z
10.1063/5.0172297
10.1007/s10618-020-00710-y
10.7717/peerj-cs.1795
10.3390/s22010157
10.1007/s41066-023-00444-4
10.1201/9781003254515-8
10.1080/00273171.2023.2214787
10.1145/3649448
10.1007/s42979-020-00180-5
10.3390/en17091998
10.1007/s00521-024-09962-x
10.1016/j.jeconom.2023.105544
10.1016/j.compag.2023.107705
10.3390/a17020076
10.1109/ACCESS.2024.3369891
10.1609/aaai.v31i1.11231
10.1016/j.neucom.2021.02.046
10.1089/big.2022.0155
10.1109/ACCESS.2021.3091162
10.1016/j.procs.2024.03.007
10.1016/j.asoc.2022.109945
10.1109/ACCESS.2020.3023273
10.1016/j.ins.2023.119951
10.1007/s11042-021-11885-x
10.1007/s10618-021-00745-9
10.1016/j.eswa.2023.121177
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1177/17483026251348851
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1748-3026
ExternalDocumentID oai_doaj_org_article_0a33a327d93c4af78d5c7e1d3be5e157
10_1177_17483026251348851
GroupedDBID .4S
.DC
0R~
29J
4.4
54M
5GY
5VS
8G5
AAJPV
AAOTM
AATZT
AAYXX
ABAWP
ABQXT
ABUWG
ACDXX
ACGFS
ACHEB
ACROE
ADBBV
ADEBD
ADMLS
ADOGD
AEDFJ
AEWDL
AFCOW
AFFHD
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AUTPY
AYAKG
AZQEC
BCNDV
BDDNI
BENPR
BPHCQ
CCPQU
CITATION
CKLRP
CS3
DWQXO
EBS
EDO
EJD
F5P
GNUQQ
GROUPED_DOAJ
GUQSH
H13
IL9
IPNFZ
J8X
J9A
K.F
KQ8
M2O
MET
MK~
MV1
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
RIG
ROL
SAUOL
SCDPB
SCNPE
SFC
AASGM
ID FETCH-LOGICAL-c308t-eb94d0ba19aa5579f677659c5d35a6ec731657c485a6d5ec2c71199fa12a7cb83
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001505375500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-3018
IngestDate Fri Oct 03 12:42:47 EDT 2025
Sat Nov 29 07:47:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-eb94d0ba19aa5579f677659c5d35a6ec731657c485a6d5ec2c71199fa12a7cb83
ORCID 0000-0003-1744-3249
0000-0003-4898-091X
OpenAccessLink https://doaj.org/article/0a33a327d93c4af78d5c7e1d3be5e157
ParticipantIDs doaj_primary_oai_doaj_org_article_0a33a327d93c4af78d5c7e1d3be5e157
crossref_primary_10_1177_17483026251348851
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of algorithms & computational technology
PublicationYear 2025
Publisher SAGE Publishing
Publisher_xml – name: SAGE Publishing
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
Jadon A (e_1_3_2_8_2)
e_1_3_2_18_2
e_1_3_2_39_2
Cao C (e_1_3_2_17_2) 2024; 13
Amalou I (e_1_3_2_35_2)
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
Jaman GG (e_1_3_2_32_2) 2020; 44
e_1_3_2_50_2
He K (e_1_3_2_43_2)
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_46_2
Zhou Z (e_1_3_2_51_2)
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_6_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
Yadav DK (e_1_3_2_11_2)
Szegedy C (e_1_3_2_41_2)
Babu BM (e_1_3_2_19_2)
Saini KP (e_1_3_2_25_2) 2024; 30
References_xml – ident: e_1_3_2_16_2
  doi: 10.1016/j.jrmge.2023.06.015
– volume-title: Deep learning-based classification of neurodegenerative diseases using gait dataset: A comparative studyIn Proceedings of the 2023 International Conference on Robotics, Control and Vision Engineering
  ident: e_1_3_2_51_2
– ident: e_1_3_2_22_2
  doi: 10.1186/s13677-023-00560-1
– ident: e_1_3_2_38_2
  doi: 10.3390/math11030590
– volume-title: A Comprehensive Survey of Regression-Based Loss Functions for Time Series ForecastingIn International Conference on Data Management, Analytics & Innovation
  ident: e_1_3_2_8_2
– ident: e_1_3_2_26_2
  doi: 10.3389/fdata.2023.1282541
– ident: e_1_3_2_50_2
  doi: 10.1016/j.ins.2023.119147
– ident: e_1_3_2_18_2
  doi: 10.1002/oca.3122
– volume: 44
  start-page: 47
  year: 2020
  ident: e_1_3_2_32_2
  article-title: Convolutional neural networks for time series data processing applicable to sEMG controlled hand prosthesis
  publication-title: Technische Mechanik-European Journal of Engineering Mechanics
– ident: e_1_3_2_9_2
  doi: 10.1016/j.jeconom.2022.12.008
– volume-title: CNN-LSTM architectures for non-stationary time series: decomposition approachIn 2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST)
  ident: e_1_3_2_35_2
– ident: e_1_3_2_44_2
  doi: 10.1109/ACCESS.2018.2814605
– volume: 13
  start-page: 2834
  year: 2024
  ident: e_1_3_2_17_2
  article-title: A multivariate time series prediction method based on convolution-residual gated recurrent neural network and double-layer attention
  publication-title: Electronics (Basel)
– ident: e_1_3_2_53_2
  doi: 10.1007/s10489-024-05649-x
– ident: e_1_3_2_28_2
  doi: 10.1007/s12145-024-01414-3
– ident: e_1_3_2_34_2
  doi: 10.1007/s12541-024-01069-6
– ident: e_1_3_2_20_2
  doi: 10.1080/17499518.2022.2138918
– ident: e_1_3_2_48_2
  doi: 10.1007/s12517-021-08259-w
– ident: e_1_3_2_40_2
  doi: 10.1007/s11269-022-03419-3
– ident: e_1_3_2_46_2
  doi: 10.1007/s11063-022-10929-z
– volume-title: Deep residual learning for image recognitionIn Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: e_1_3_2_43_2
– ident: e_1_3_2_31_2
  doi: 10.1063/5.0172297
– ident: e_1_3_2_42_2
  doi: 10.1007/s10618-020-00710-y
– ident: e_1_3_2_13_2
  doi: 10.7717/peerj-cs.1795
– ident: e_1_3_2_52_2
  doi: 10.3390/s22010157
– ident: e_1_3_2_29_2
  doi: 10.1007/s41066-023-00444-4
– volume-title: Autoregressive Integrated Moving Average Model for Time Series AnalysisInternational Conference on Optimization Computing and Wireless Communication (ICOCWC)
  ident: e_1_3_2_11_2
– ident: e_1_3_2_24_2
  doi: 10.1007/s10618-020-00710-y
– ident: e_1_3_2_2_2
  doi: 10.1201/9781003254515-8
– ident: e_1_3_2_12_2
  doi: 10.1080/00273171.2023.2214787
– volume-title: Going deeper with convolutionsIn Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: e_1_3_2_41_2
– ident: e_1_3_2_6_2
  doi: 10.1145/3649448
– ident: e_1_3_2_5_2
  doi: 10.1007/s42979-020-00180-5
– ident: e_1_3_2_33_2
  doi: 10.3390/en17091998
– ident: e_1_3_2_27_2
  doi: 10.1007/s00521-024-09962-x
– ident: e_1_3_2_10_2
  doi: 10.1016/j.jeconom.2023.105544
– ident: e_1_3_2_39_2
  doi: 10.1016/j.compag.2023.107705
– ident: e_1_3_2_23_2
  doi: 10.3390/a17020076
– volume-title: A novel time series classification for multivariate data using improved deep belief-recurrent neural network with optimal dynamic time warpingIn MATEC Web of Conferences
  ident: e_1_3_2_19_2
– ident: e_1_3_2_14_2
  doi: 10.1109/ACCESS.2024.3369891
– ident: e_1_3_2_45_2
  doi: 10.1609/aaai.v31i1.11231
– ident: e_1_3_2_7_2
  doi: 10.1016/j.neucom.2021.02.046
– ident: e_1_3_2_21_2
  doi: 10.1089/big.2022.0155
– volume: 30
  start-page: 8760
  year: 2024
  ident: e_1_3_2_25_2
  article-title: A comparison between long short-term memory and prophet for time series analysis and forecasting technique
  publication-title: Educational Administration: Theory and Practice
– ident: e_1_3_2_3_2
  doi: 10.1109/ACCESS.2021.3091162
– ident: e_1_3_2_36_2
  doi: 10.1016/j.procs.2024.03.007
– ident: e_1_3_2_37_2
  doi: 10.1016/j.asoc.2022.109945
– ident: e_1_3_2_47_2
  doi: 10.1109/ACCESS.2020.3023273
– ident: e_1_3_2_15_2
  doi: 10.1016/j.ins.2023.119951
– ident: e_1_3_2_49_2
  doi: 10.1007/s11042-021-11885-x
– ident: e_1_3_2_4_2
  doi: 10.1007/s10618-021-00745-9
– ident: e_1_3_2_30_2
  doi: 10.1016/j.eswa.2023.121177
SSID ssj0000327813
Score 2.3068964
Snippet Accurate time-series classification (TSC) remains a fundamental challenge in deep learning due to the complexity and variability of temporal patterns. While...
SourceID doaj
crossref
SourceType Open Website
Index Database
Title Hybrid deep learning framework for robust time-series classification: Integrating inception modules with residual networks
URI https://doaj.org/article/0a33a327d93c4af78d5c7e1d3be5e157
Volume 19
WOSCitedRecordID wos001505375500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: M2O
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPehB_MT5MXLwJBSbpmkSbyqODdzYQWGeSj5loN1YO0H_epO0GxMPXjy2JKG890h-L33v9wPgEkmX-2srIiZoGqVKuX1QxDgiEmspLXeQIzQKP9LhkI3HfLQm9eVrwmp64Npw17HAWOCEao5VKixlmihqkMbSEINI6COPKV9LpsIe7GYwhJvfmJ5hySFvT3Xl4D7CLmgJ-nEQrfH1h4Oluwd2G0QIb-sv2QcbpjgAO4MVnWp5CL56n76xCmpjZrDReXiFdllXBR3whPOpXJQV9FrxkQ8rU0LlkbEvBQrWv4H9hhrCT54UTT0LfJ_qxZsb7W9koUu-Q3cWLOry8PIIPHcfnu57USOaECkcsyoykqc6lgJxIQih3GaUZoQrojERmVFeqYpQlTL3pIlRiaIIcW4FSgRVkuFj0CqmhTkBUIlEGk8uo1WacmWZoToTglIr4hRL3AZXSwvms5obI0cNffgvc7fBnbfxaqCntQ4vnLPzxtn5X84-_Y9FzsB24kV8w1XKOWhV84W5AFvqo5qU806Iow7YHPUHo5dvrGzRgg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+deep+learning+framework+for+robust+time-series+classification%3A+Integrating+inception+modules+with+residual+networks&rft.jtitle=Journal+of+algorithms+%26+computational+technology&rft.au=Duong+Thi+Kim+Chi&rft.au=Nguyen+Thi+Mai+Trang&rft.au=Tran+Ba+Minh+Son&rft.au=Nguyen+Ngoc+Thao&rft.date=2025-06-01&rft.pub=SAGE+Publishing&rft.eissn=1748-3026&rft.volume=19&rft_id=info:doi/10.1177%2F17483026251348851&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0a33a327d93c4af78d5c7e1d3be5e157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3018&client=summon