FMplex: Exploring a Bridge between Fourier-Motzkin and Simplex

In this paper we present a quantifier elimination method for conjunctions of linear real arithmetic constraints. Our algorithm is based on the Fourier-Motzkin variable elimination procedure, but by case splitting we are able to reduce the worst-case complexity from doubly to singly exponential. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 21, Issue 2
Hlavní autoři: Promies, Valentin, Nalbach, Jasper, Ábrahám, Erika, Kobialka, Paul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 01.01.2025
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we present a quantifier elimination method for conjunctions of linear real arithmetic constraints. Our algorithm is based on the Fourier-Motzkin variable elimination procedure, but by case splitting we are able to reduce the worst-case complexity from doubly to singly exponential. The adaption of the procedure for SMT solving has strong correspondence to the simplex algorithm, therefore we name it FMplex. Besides the theoretical foundations, we provide an experimental evaluation in the context of SMT solving. This is an extended version of the authors' work previously published at the fourteenth International Symposium on Games, Automata, Logics, and Formal Verification (GandALF 2023).
ISSN:1860-5974
1860-5974
DOI:10.46298/lmcs-21(2:6)2025