Computation of the Survival Probability of Brownian Motion with Drift Subject to an Intermittent Step Barrier

This article provides an exact formula for the survival probability of Brownian motion with drift when the absorbing boundary is defined as an intermittent step barrier, i.e., an alternate sequence of time intervals when the boundary is piecewise constant, and time intervals without any defined boun...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AppliedMath Ročník 4; číslo 3; s. 1080 - 1097
Hlavní autor: Guillaume, Tristan
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI AG 01.09.2024
Témata:
ISSN:2673-9909, 2673-9909
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article provides an exact formula for the survival probability of Brownian motion with drift when the absorbing boundary is defined as an intermittent step barrier, i.e., an alternate sequence of time intervals when the boundary is piecewise constant, and time intervals without any defined boundary. Numerical implementation is dealt with by a simple and robust Monte Carlo integration algorithm directly derived from the formula, which compares favorably with conditional Monte Carlo simulation. Exact analytical benchmarks are also provided to assess the accuracy of the numerical implementation.
ISSN:2673-9909
2673-9909
DOI:10.3390/appliedmath4030058