Multimodal Dependent Type Theory

We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Logical methods in computer science Ročník 17, Issue 3
Hlavní autori: Gratzer, Daniel, Kavvos, G. A., Nuyts, Andreas, Birkedal, Lars
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Logical Methods in Computer Science e.V 01.01.2021
Predmet:
ISSN:1860-5974, 1860-5974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.
AbstractList We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.
We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.
Author Nuyts, Andreas
Kavvos, G. A.
Birkedal, Lars
Gratzer, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0003-1944-0789
  surname: Gratzer
  fullname: Gratzer, Daniel
– sequence: 2
  givenname: G. A.
  surname: Kavvos
  fullname: Kavvos, G. A.
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0002-1571-5063
  surname: Nuyts
  fullname: Nuyts, Andreas
– sequence: 4
  givenname: Lars
  surname: Birkedal
  fullname: Birkedal, Lars
BookMark eNpNkD1PwzAURS1UJErpH2DKCEPAn882GyoFKhWxlNly7WdIlSaVE4b-e9IWIe5w79MbznAuyahpGyTkmtE7Cdya-3obupLpG_HA2C2nnJ2RMTNAS2W1HP27L8i06zZ0iBDMcBiT4u277qttG31dPOEOm4hNX6z2OyxWX9jm_RU5T77ucPq7E_LxPF_NXsvl-8ti9rgsg6CmH1pr7a03RgEkr2GIpFEoJSNNTBmMkBRgskFHEbVMXGqvg6fIYQ1STMjixI2t37hdrrY-713rK3d8tPnT-dxXoUZHNdJgwTJvlASdLK7RqOQtSCuB-oHFT6yQ267LmP54jLqjMndQ5ph2wjHmDsrED_M4X3c
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/lmcs-17(3:11)2021
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_07e0c9691a85467f9ebe85fa9649460a
10_46298_lmcs_17_3_11_2021
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c308t-c3777a9a88566fa7666640d3554d0f158ed6f56ef9c7d3d74f247a7ca0e26b643
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679383000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:44:36 EDT 2025
Sat Nov 29 06:21:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-c3777a9a88566fa7666640d3554d0f158ed6f56ef9c7d3d74f247a7ca0e26b643
ORCID 0000-0002-1571-5063
0000-0003-1944-0789
OpenAccessLink https://doaj.org/article/07e0c9691a85467f9ebe85fa9649460a
ParticipantIDs doaj_primary_oai_doaj_org_article_07e0c9691a85467f9ebe85fa9649460a
crossref_primary_10_46298_lmcs_17_3_11_2021
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2021
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.41041
Snippet We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes,...
We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes,...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - logic in computer science
Title Multimodal Dependent Type Theory
URI https://doaj.org/article/07e0c9691a85467f9ebe85fa9649460a
Volume 17, Issue 3
WOSCitedRecordID wos000679383000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1FeysAAQlHt-M3GoxULFQNI3SzHsSUkmqI2MPLbOTspKhMLiwfLip3vdL7vi3J3CJ1rSoqgSpaLilY5c7jKLaWgWnEZIIBKq6RLzSbkeKwmE_200uor_hPWlgdugRtg6bHTQhOrODh10LCr4sFqwTQTOFEjYD0rYirdwbAfEOc2S4aJQqvB29QtciIv6DUhlyD5ya9ItFKwP0WW0Tba7ChhdtMeZQet-XoXbS3bLWSd9-2hLCXLTmcVLL7vetc2WRSSWZthv49eRsPnu4e8a3CQO4pVA6OU0mqrFJCqYCVICcFwFSlAhQPhylcicOGDdhKglCwUTFrpLPaFKIFLHKBePav9Icos99x6XvBCRZ_kVnjhQNoAu7KlC7SPrpYva97bOhYG-H-CxkRoDJGGgh4wEZo-uo14_KyMNajTBFjGdJYxf1nm6D8ecow24oHajx4nqNfMP_wpWnefzetifpaMDuPj1_Ab2favSA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Dependent+Type+Theory&rft.jtitle=Logical+methods+in+computer+science&rft.au=Gratzer%2C+Daniel&rft.au=Kavvos%2C+G.+A.&rft.au=Nuyts%2C+Andreas&rft.au=Birkedal%2C+Lars&rft.date=2021-01-01&rft.issn=1860-5974&rft.eissn=1860-5974&rft.volume=17%2C+Issue+3&rft_id=info:doi/10.46298%2Flmcs-17%283%3A11%292021&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_lmcs_17_3_11_2021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon