A novel interpretable wind speed forecasting based on the multivariate variational mode decomposition and temporal fusion transformer
Accurate and efficient wind speed forecasting is essential for the stable operation of wind farm and power grids. However, the high volatility of wind speed, coupled with its correlation with local meteorological factors, makes accurate wind speed forecasting a significant challenge. To achieve prec...
Saved in:
| Published in: | Energy (Oxford) Vol. 331; p. 136497 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.09.2025
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate and efficient wind speed forecasting is essential for the stable operation of wind farm and power grids. However, the high volatility of wind speed, coupled with its correlation with local meteorological factors, makes accurate wind speed forecasting a significant challenge. To achieve precise wind speed forecasting and model interpretability, this study proposes a short-term interpretable wind speed forecasting model based on the joint decomposition of multi meteorological feature data, combined with the Temporal Fusion Transformer (TFT) and the Crested porcupine optimizer (CPO) algorithm. Initially, wind speed data and various meteorological features are input into the Multi-variant Variational Mode Decomposition (MVMD) algorithm for decomposition, resulting in multiple Intrinsic Mode Functions (IMFs). The CPO algorithm will concurrently be utilized to intelligently optimize the hyperparameters of the MVMD. Mutual Information (MI) will then be employed to select the IMFs derived from MVMD decomposition that exhibit a higher correlation with wind speed. These IMFs, along with various meteorological features, will collectively form the input data for the TFT model. Subsequently, the TFT model will be used to achieve high-precision wind speed predictions and generate interpretable results. Finally, the CPO algorithm is used to finely tune the hyper parameters of the TFT, yielding the optimal hyper parameter combination. Experimental results demonstrate that compared with other common forecasting methods, the proposed CPO-MVMD-MI-CPO-TFT model offers higher forecasting accuracy. Additionally, its interpretable results can provide robust data support for decisions related to wind farm site selection and wind turbine scheduling.
•Proposed a novel interpretable wind speed forecasting method CPO-MVMD-MI-CPO-TFT.•Employed MVMD to decompose multivariate meteorological features, utilized MI to select the IMFs after decomposition.•The latest intelligent optimization algorithm CPO was introduced to optimize the MVMD and TFT models’ parameters.•Interpretability and wind power conversion results validated the application value of the proposed model. |
|---|---|
| AbstractList | Accurate and efficient wind speed forecasting is essential for the stable operation of wind farm and power grids. However, the high volatility of wind speed, coupled with its correlation with local meteorological factors, makes accurate wind speed forecasting a significant challenge. To achieve precise wind speed forecasting and model interpretability, this study proposes a short-term interpretable wind speed forecasting model based on the joint decomposition of multi meteorological feature data, combined with the Temporal Fusion Transformer (TFT) and the Crested porcupine optimizer (CPO) algorithm. Initially, wind speed data and various meteorological features are input into the Multi-variant Variational Mode Decomposition (MVMD) algorithm for decomposition, resulting in multiple Intrinsic Mode Functions (IMFs). The CPO algorithm will concurrently be utilized to intelligently optimize the hyperparameters of the MVMD. Mutual Information (MI) will then be employed to select the IMFs derived from MVMD decomposition that exhibit a higher correlation with wind speed. These IMFs, along with various meteorological features, will collectively form the input data for the TFT model. Subsequently, the TFT model will be used to achieve high-precision wind speed predictions and generate interpretable results. Finally, the CPO algorithm is used to finely tune the hyper parameters of the TFT, yielding the optimal hyper parameter combination. Experimental results demonstrate that compared with other common forecasting methods, the proposed CPO-MVMD-MI-CPO-TFT model offers higher forecasting accuracy. Additionally, its interpretable results can provide robust data support for decisions related to wind farm site selection and wind turbine scheduling.
•Proposed a novel interpretable wind speed forecasting method CPO-MVMD-MI-CPO-TFT.•Employed MVMD to decompose multivariate meteorological features, utilized MI to select the IMFs after decomposition.•The latest intelligent optimization algorithm CPO was introduced to optimize the MVMD and TFT models’ parameters.•Interpretability and wind power conversion results validated the application value of the proposed model. |
| ArticleNumber | 136497 |
| Author | Zeng, Huanze Xu, Rui Fang, Haoyu Wu, Binrong |
| Author_xml | – sequence: 1 givenname: Rui surname: Xu fullname: Xu, Rui email: rxu@hhu.edu.cn – sequence: 2 givenname: Haoyu surname: Fang fullname: Fang, Haoyu email: 221813100002@hhu.edu.cn – sequence: 3 givenname: Huanze surname: Zeng fullname: Zeng, Huanze email: huanze.zeng@hhu.edu.cn – sequence: 4 givenname: Binrong orcidid: 0000-0001-5215-0586 surname: Wu fullname: Wu, Binrong email: binrong.wu@hhu.edu.cn |
| BookMark | eNqFkM1KAzEUhbOoYKu-gYu8QGtmJvPnQijFPyi40XW4Se7UlJmkJGmlD-B7mzquXOjqcM_lHDjfjEyss0jIdcYWGcuqm-0CLfrNcZGzvFxkRcXbekKmrKjYvOQ8PyezELaMsbJp2yn5XFLrDthTYyP6nccIskf6YaymYYeoaec8KgjR2A2VEJLjLI3vSId9H80BvIGIdFTjLPR0cBqpRuWGnQvmZFJIdRHT7dO_24eTFz3YkNoH9JfkrIM-4NWPXpC3h_vX1dN8_fL4vFqu56pgTZzLqmnrtpWqLcsOZQZpG9S1bBrNoWmhqiDPJNfAu46ppiywkyUHXuu8YFKy4oLwsVd5F4LHTuy8GcAfRcbECZ_YihGfOOETI74Uu_0VUyZ-r00bTP9f-G4MYxp2MOhFUAatQm0S2Ci0M38XfAH595ct |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_122518 |
| Cites_doi | 10.1016/j.energy.2024.131802 10.1016/j.enconman.2023.117868 10.1016/j.engappai.2024.108435 10.1016/j.ijepes.2022.108743 10.1016/j.apenergy.2023.121607 10.1016/j.enconman.2021.114002 10.1016/j.energy.2025.135551 10.1016/j.rser.2023.114035 10.1016/j.apenergy.2021.117766 10.1016/j.ijforecast.2021.03.012 10.1016/j.energy.2023.130225 10.1016/j.apenergy.2024.123487 10.1016/j.energy.2024.130782 10.1016/j.enconman.2021.113944 10.1016/j.energy.2024.131332 10.1016/j.enconman.2020.113731 10.1007/s00521-022-07967-y 10.1016/j.enconman.2022.115590 10.1016/j.engappai.2023.105982 10.1016/j.eswa.2023.119878 10.1016/j.energy.2024.130493 10.1016/j.apenergy.2024.124035 10.1016/j.apenergy.2023.122553 10.1109/TSP.2019.2951223 10.1016/j.energy.2024.130875 10.3390/app14114840 10.1016/j.energy.2022.123990 10.1016/j.apenergy.2024.122840 10.1016/j.engappai.2025.110313 10.1016/j.apenergy.2024.124057 10.1016/j.energy.2023.129171 10.1016/j.energy.2024.131448 10.1016/j.knosys.2023.111257 10.1016/j.nucengdes.2024.113026 10.1016/j.renene.2024.119970 10.1016/j.energy.2023.128565 10.1016/j.renene.2023.119101 10.1016/j.energy.2021.120492 10.1016/j.energy.2022.124250 10.1016/j.ins.2023.03.031 10.1016/j.apenergy.2024.122759 10.1016/j.renene.2024.121108 10.1016/j.renene.2023.119391 10.1504/IJSNET.2024.136340 10.1007/s10462-023-10470-y 10.1016/j.apenergy.2024.123882 10.1007/s10311-022-01532-8 10.1016/j.apenergy.2015.02.032 10.1016/j.energy.2018.09.118 10.1016/j.enconman.2024.118333 10.1016/j.engappai.2024.108201 10.1016/j.energy.2024.133826 10.1016/j.energy.2023.129728 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.energy.2025.136497 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2025_136497 S0360544225021395 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAQXK AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ADMUD ADNMO ADXHL AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD |
| ID | FETCH-LOGICAL-c308t-b689799bc955feb1a497a77b88d4a89a66a21b4da4ff0c853efb54a47d230bb03 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514074100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Tue Nov 18 22:18:47 EST 2025 Sat Nov 29 07:00:24 EST 2025 Sat Jul 19 17:11:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intelligent optimization algorithm Multi meteorological features decomposition Interpretable forecasting model Wind speed forecasting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c308t-b689799bc955feb1a497a77b88d4a89a66a21b4da4ff0c853efb54a47d230bb03 |
| ORCID | 0000-0001-5215-0586 |
| ParticipantIDs | crossref_primary_10_1016_j_energy_2025_136497 crossref_citationtrail_10_1016_j_energy_2025_136497 elsevier_sciencedirect_doi_10_1016_j_energy_2025_136497 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-15 |
| PublicationDateYYYYMMDD | 2025-09-15 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shang, Chen, Chen, Guo, Yang (b44) 2023; 223 Wu, Wang, Lv, Zeng (b49) 2022 ur Rehman, Aftab (b41) 2019; 67 Ban, Chen, Xiong, Zhuo, Huang (b57) 2024; 290 Li, Wang, Wu, Gao, Dan (b43) 2024; 299 Jaseena, Binsu (b27) 2021; 234 Dai, Fu (b13) 2024; 298 Liu, Wang, Dong, Chen, Chen, Li (b9) 2024; 374 Wu, Wang, Zeng (b11) 2022; 252 Zheng, Zhou, Liu, Nakanishi (b32) 2023; 349 Hu, Wang, Zhang, Ling (b37) 2023; 216 Huang, Karimi, Mei, Yang, Shi (b47) 2023; 632 Maatallah, Achuthan, Janoyan, Marzocca (b19) 2015; 145 Neshat, Nezhad, Abbasnejad, Mirjalili, Tjernberg, Garcia (b48) 2021; 236 Baggio, Muzy (b17) 2024; 360 Yang, Li, Guo, Du (b39) 2024; 375 Du, Yang, Li, Wang (b21) 2024; 358 Ali, Aly (b26) 2024; 133 Wang, Ying, Nan (b46) 2024; 133 Parri, Teeparthi, Kosana (b25) 2023; 219 Neshat, Nezhad, Mirjalili, Piras, Garcia (b35) 2022; 259 Moreno, Seman, Stefenon, Coelho, Mariani (b4) 2024; 292 Liang, Zhang, Zhang, Hu (b54) 2024; 313 Capelletti, Raimondo, De Nicolao (b10) 2024; 223 Wu, Wang (b51) 2024; 288 Ahmad, Khan, Anser, Nassani, Hassan, Zaman (b5) 2024; 232 Zhang, Ma, Hua, Sun, Nazir, Peng (b29) 2022; 254 Jiang, Liu, Niu, Zhang (b42) 2021; 217 Abdel-Basset, Mohamed, Abouhawwash (b50) 2024; 284 Rajwar, Deep, Das (b52) 2023; 56 Xu, Hu, Shao, Shi, Li, Li (b22) 2023; 284 Hao, Wang, Wang, Yang (b16) 2024; 299 Fantini, Silva, Siqueira, Pinto, Guimarães, Brasil (b36) 2024; 308 Wang, Qi, Liu, Song (b14) 2018; 165 Boadu, Otoo (b3) 2024; 191 Yang, Che, Yu, Su (b15) 2024; 302 Wang, Zou, Liu, Zhang, Liu (b12) 2021; 304 Liang, Qian, Yu, Griffith, Golmie (b34) 2024; 44 Xiang, Liu, Su, Hu, Zhu (b38) 2022; 43 Acikgoz, Korkmaz (b40) 2025; 146 Gong, Yan, Xu, Zhao, Li, Liu (b56) 2023; 283 de Azevedo Takara, Teixeira, Yazdanpanah, Mariani, dos Santos Coelho (b7) 2024; 369 Zhao, Yun, Jia, Guo, Meng, He (b23) 2023; 121 Gong, Zaehle (b1) 2024 Cunha, Pereira (b20) 2024; 421 Kim, Ryu, Moon, Kim (b6) 2024; 373 Wu, Yu, Peng, Wang (b55) 2024; 294 Liu, Lin, Feng (b18) 2021; 227 Yang, Yang, Li, Wang (b8) 2024; 360 Zhang, Wang, Qian, Li (b24) 2024; 294 Wu, Wang, Tao, Zeng (b33) 2023; 35 Lim, Arık, Loeff, Pfister (b31) 2021; 37 Li, Tan, Zhang, Miao, He (b30) 2023; 146 Zang, Cao, Hong (b53) 2024; 14 Osman, Chen, Yang, Msigwa, Farghali, Fawzy, Rooney, Yap (b2) 2023; 21 Yildiz, Acikgoz, Korkmaz, Budak (b28) 2021; 228 Leng, Chen, Yi, Liu, Xie, Mei (b45) 2025; 322 Du (10.1016/j.energy.2025.136497_b21) 2024; 358 Hu (10.1016/j.energy.2025.136497_b37) 2023; 216 Ali (10.1016/j.energy.2025.136497_b26) 2024; 133 Liang (10.1016/j.energy.2025.136497_b54) 2024; 313 Jaseena (10.1016/j.energy.2025.136497_b27) 2021; 234 Gong (10.1016/j.energy.2025.136497_b56) 2023; 283 Li (10.1016/j.energy.2025.136497_b43) 2024; 299 Ban (10.1016/j.energy.2025.136497_b57) 2024; 290 Baggio (10.1016/j.energy.2025.136497_b17) 2024; 360 Neshat (10.1016/j.energy.2025.136497_b48) 2021; 236 Xiang (10.1016/j.energy.2025.136497_b38) 2022; 43 Hao (10.1016/j.energy.2025.136497_b16) 2024; 299 Huang (10.1016/j.energy.2025.136497_b47) 2023; 632 Yang (10.1016/j.energy.2025.136497_b8) 2024; 360 Xu (10.1016/j.energy.2025.136497_b22) 2023; 284 Wang (10.1016/j.energy.2025.136497_b46) 2024; 133 Zang (10.1016/j.energy.2025.136497_b53) 2024; 14 Neshat (10.1016/j.energy.2025.136497_b35) 2022; 259 Rajwar (10.1016/j.energy.2025.136497_b52) 2023; 56 Liang (10.1016/j.energy.2025.136497_b34) 2024; 44 Abdel-Basset (10.1016/j.energy.2025.136497_b50) 2024; 284 Cunha (10.1016/j.energy.2025.136497_b20) 2024; 421 Ahmad (10.1016/j.energy.2025.136497_b5) 2024; 232 Zhang (10.1016/j.energy.2025.136497_b24) 2024; 294 Acikgoz (10.1016/j.energy.2025.136497_b40) 2025; 146 ur Rehman (10.1016/j.energy.2025.136497_b41) 2019; 67 Wu (10.1016/j.energy.2025.136497_b49) 2022 Yang (10.1016/j.energy.2025.136497_b15) 2024; 302 Fantini (10.1016/j.energy.2025.136497_b36) 2024; 308 Wu (10.1016/j.energy.2025.136497_b51) 2024; 288 Parri (10.1016/j.energy.2025.136497_b25) 2023; 219 Dai (10.1016/j.energy.2025.136497_b13) 2024; 298 Jiang (10.1016/j.energy.2025.136497_b42) 2021; 217 Capelletti (10.1016/j.energy.2025.136497_b10) 2024; 223 Zhang (10.1016/j.energy.2025.136497_b29) 2022; 254 Lim (10.1016/j.energy.2025.136497_b31) 2021; 37 Moreno (10.1016/j.energy.2025.136497_b4) 2024; 292 Shang (10.1016/j.energy.2025.136497_b44) 2023; 223 Yang (10.1016/j.energy.2025.136497_b39) 2024; 375 Wu (10.1016/j.energy.2025.136497_b11) 2022; 252 Wu (10.1016/j.energy.2025.136497_b55) 2024; 294 Maatallah (10.1016/j.energy.2025.136497_b19) 2015; 145 Li (10.1016/j.energy.2025.136497_b30) 2023; 146 Gong (10.1016/j.energy.2025.136497_b1) 2024 Zheng (10.1016/j.energy.2025.136497_b32) 2023; 349 Osman (10.1016/j.energy.2025.136497_b2) 2023; 21 Liu (10.1016/j.energy.2025.136497_b18) 2021; 227 Yildiz (10.1016/j.energy.2025.136497_b28) 2021; 228 Zhao (10.1016/j.energy.2025.136497_b23) 2023; 121 de Azevedo Takara (10.1016/j.energy.2025.136497_b7) 2024; 369 Wu (10.1016/j.energy.2025.136497_b33) 2023; 35 Liu (10.1016/j.energy.2025.136497_b9) 2024; 374 Leng (10.1016/j.energy.2025.136497_b45) 2025; 322 Boadu (10.1016/j.energy.2025.136497_b3) 2024; 191 Wang (10.1016/j.energy.2025.136497_b12) 2021; 304 Wang (10.1016/j.energy.2025.136497_b14) 2018; 165 Kim (10.1016/j.energy.2025.136497_b6) 2024; 373 |
| References_xml | – volume: 322 year: 2025 ident: b45 article-title: Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition publication-title: Energy – volume: 234 year: 2021 ident: b27 article-title: Kovoor decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers Manage – year: 2022 ident: b49 article-title: Forecasting oil consumption with attention-based IndRNN optimized by adaptive differential evolution publication-title: Appl Intell – volume: 373 year: 2024 ident: b6 article-title: Accuracy of a short-term wind power forecasting model based on deep learning using lidar-scada integration: A case study of the 400-mw anholt offshore wind farm publication-title: Appl Energy – volume: 374 year: 2024 ident: b9 article-title: Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series publication-title: Appl Energy – volume: 302 year: 2024 ident: b15 article-title: Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction publication-title: Energy – volume: 632 start-page: 390 year: 2023 end-page: 410 ident: b47 article-title: Evolving long short-term memory neural network for wind speed forecasting publication-title: Inform Sci – volume: 259 year: 2022 ident: b35 article-title: Quaternion convolutional long short-term memory neural model with an adaptive decomposition method for wind speed forecasting: North aegean islands case studies publication-title: Energy Convers Manage – volume: 133 year: 2024 ident: b26 article-title: Short term wind speed forecasting using artificial and wavelet neural networks with and without wavelet filtered data based on feature selections technique publication-title: Eng Appl Artif Intell – volume: 299 year: 2024 ident: b43 article-title: Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN publication-title: Energy – volume: 252 year: 2022 ident: b11 article-title: Interpretable wind speed prediction with multivariate time series and temporal fusion transformers publication-title: Energy – volume: 375 year: 2024 ident: b39 article-title: An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting publication-title: Appl Energy – volume: 294 year: 2024 ident: b55 article-title: Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition publication-title: Energy – volume: 67 start-page: 6039 year: 2019 end-page: 6052 ident: b41 article-title: Multivariate variational mode decomposition publication-title: IEEE Trans Signal Process – volume: 232 year: 2024 ident: b5 article-title: The influence of grid connectivity, electricity pricing, policy-driven power incentives, and carbon emissions on renewable energy adoption: Exploring key factors publication-title: Renew Energy – volume: 146 year: 2025 ident: b40 article-title: Short-term offshore wind speed forecasting approach based on multi-stage decomposition and deep residual network with self-attention publication-title: Eng Appl Artif Intell – year: 2024 ident: b1 article-title: How nitrogen compounds in fertilizers and fossil-fuel emissions affect global warming publication-title: Nature – volume: 284 year: 2024 ident: b50 article-title: Crested porcupine optimizer: A new nature-inspired metaheuristic publication-title: Knowl-Based Syst – volume: 254 year: 2022 ident: b29 article-title: An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction publication-title: Energy – volume: 369 year: 2024 ident: b7 article-title: Optimizing multi-step wind power forecasting: Integrating advanced deep neuralnetworks with stacking-based probabilistic learning publication-title: Appl Energy – volume: 360 year: 2024 ident: b8 article-title: A short-term wind power forecasting method based on multivariate signal decomposition and variable selection publication-title: Appl Energy – volume: 294 year: 2024 ident: b24 article-title: Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM publication-title: Energy – volume: 349 year: 2023 ident: b32 article-title: Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture publication-title: Appl Energy – volume: 35 start-page: 5437 year: 2023 end-page: 5463 ident: b33 article-title: Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19 publication-title: Neural Comput Appl – volume: 44 start-page: 36 year: 2024 end-page: 48 ident: b34 article-title: Assessing deep learning performance in power demand forecasting for smart grid publication-title: Int J Sens Networks – volume: 308 year: 2024 ident: b36 article-title: Wind speed short-term prediction using recurrent neural network GRU model and stationary wavelet transform GRU hybrid model publication-title: Energy Convers Manage – volume: 288 year: 2024 ident: b51 article-title: Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting publication-title: Energy – volume: 299 year: 2024 ident: b16 article-title: A new perspective of wind speed forecasting: Multi-objective and model selection-based ensemble interval-valued wind speed forecasting system publication-title: Energy Convers Manage – volume: 133 year: 2024 ident: b46 article-title: Refined offshore wind speed prediction: Leveraging a two-layer decomposition technique, gated recurrent unit, and kernel density estimation for precise point and interval forecasts publication-title: Eng Appl Artif Intell – volume: 283 year: 2023 ident: b56 article-title: Short-term wind power forecasting model based on temporal convolutional network and informer publication-title: Energy – volume: 146 year: 2023 ident: b30 article-title: Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model publication-title: Int J Electr Power Energy Syst – volume: 223 year: 2023 ident: b44 article-title: Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism publication-title: Expert Syst Appl – volume: 313 year: 2024 ident: b54 article-title: A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model publication-title: Energy – volume: 358 year: 2024 ident: b21 article-title: An innovative interpretable combined learning model for wind speed forecasting publication-title: Appl Energy – volume: 421 year: 2024 ident: b20 article-title: A hybrid model based on STL with simple exponential smoothing and ARMA for wind forecast in a Brazilian nuclear power plant site publication-title: Nucl Eng Des – volume: 165 start-page: 840 year: 2018 end-page: 852 ident: b14 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy – volume: 298 year: 2024 ident: b13 article-title: A wind speed forecasting model using nonlinear auto-regressive model optimized by the hybrid chaos-cloud salp swarm algorithm publication-title: Energy – volume: 43 start-page: 334 year: 2022 end-page: 339 ident: b38 article-title: Research on multi-stepwind speed forecast based on CEEMDAN secondary decomposition and LSTM publication-title: Acta Energiae Solaris Sin – volume: 292 year: 2024 ident: b4 article-title: Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition publication-title: Energy – volume: 191 year: 2024 ident: b3 article-title: A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations publication-title: Renew Sustain Energy Rev – volume: 219 year: 2023 ident: b25 article-title: A hybrid VMD based contextual feature representation approach for wind speed forecasting publication-title: Renew Energy – volume: 37 start-page: 1748 year: 2021 end-page: 1764 ident: b31 article-title: Temporal Fusion Transformers for interpretable multi-horizon time series forecasting publication-title: Int J Forecast – volume: 236 year: 2021 ident: b48 article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm publication-title: Energy Convers Manage – volume: 216 year: 2023 ident: b37 article-title: Rolling decomposition method in fusion with echo state network for wind speed forecasting publication-title: Renew Energy – volume: 217 year: 2021 ident: b42 article-title: A combined forecasting system based on statistical method publication-title: Artif Neural Networks, Deep Learn Methods Short- Term Wind Speed Forecast Energy – volume: 304 year: 2021 ident: b12 article-title: A review of wind speed and wind power forecasting with deep neural networks publication-title: Appl Energy – volume: 145 start-page: 191 year: 2015 end-page: 197 ident: b19 article-title: Recursive wind speed forecasting based on Hammerstein auto-regressive model publication-title: Appl Energy – volume: 21 start-page: 741 year: 2023 end-page: 764 ident: b2 article-title: Cost, environmental impact, and resilience of renewable energy under a changing climate: A review publication-title: Environ Chem Lett – volume: 228 year: 2021 ident: b28 article-title: An improved residual-based convolutional neural network for very short-term wind power forecasting publication-title: Energy Convers Manage – volume: 56 start-page: 13187 year: 2023 end-page: 13257 ident: b52 article-title: An exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challenges publication-title: Artif Intell Rev – volume: 360 year: 2024 ident: b17 article-title: Improving probabilistic wind speed forecasting using M-Rice distribution and spatial data integration publication-title: Appl Energy – volume: 223 year: 2024 ident: b10 article-title: Wind power curve modeling: A probabilistic beta regression approach publication-title: Renew Energy – volume: 14 start-page: 4840 year: 2024 ident: b53 article-title: Research on the fiber-to-the-room network traffic prediction method based on crested porcupine optimizer optimization publication-title: Appl Sci – volume: 227 year: 2021 ident: b18 article-title: Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM publication-title: Energy – volume: 284 year: 2023 ident: b22 article-title: A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm publication-title: Energy – volume: 290 year: 2024 ident: b57 article-title: The univariate model for long-term wind speed forecasting based on wavelet soft threshold denoising and improved autoformer publication-title: Energy – volume: 121 year: 2023 ident: b23 article-title: Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features publication-title: Eng Appl Artif Intell – volume: 302 year: 2024 ident: 10.1016/j.energy.2025.136497_b15 article-title: Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction publication-title: Energy doi: 10.1016/j.energy.2024.131802 – volume: 299 year: 2024 ident: 10.1016/j.energy.2025.136497_b16 article-title: A new perspective of wind speed forecasting: Multi-objective and model selection-based ensemble interval-valued wind speed forecasting system publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2023.117868 – volume: 133 year: 2024 ident: 10.1016/j.energy.2025.136497_b46 article-title: Refined offshore wind speed prediction: Leveraging a two-layer decomposition technique, gated recurrent unit, and kernel density estimation for precise point and interval forecasts publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2024.108435 – volume: 146 year: 2023 ident: 10.1016/j.energy.2025.136497_b30 article-title: Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2022.108743 – volume: 349 year: 2023 ident: 10.1016/j.energy.2025.136497_b32 article-title: Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121607 – volume: 236 year: 2021 ident: 10.1016/j.energy.2025.136497_b48 article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2021.114002 – year: 2022 ident: 10.1016/j.energy.2025.136497_b49 article-title: Forecasting oil consumption with attention-based IndRNN optimized by adaptive differential evolution publication-title: Appl Intell – volume: 322 year: 2025 ident: 10.1016/j.energy.2025.136497_b45 article-title: Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition publication-title: Energy doi: 10.1016/j.energy.2025.135551 – volume: 191 year: 2024 ident: 10.1016/j.energy.2025.136497_b3 article-title: A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2023.114035 – volume: 304 year: 2021 ident: 10.1016/j.energy.2025.136497_b12 article-title: A review of wind speed and wind power forecasting with deep neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117766 – volume: 37 start-page: 1748 issue: 4 year: 2021 ident: 10.1016/j.energy.2025.136497_b31 article-title: Temporal Fusion Transformers for interpretable multi-horizon time series forecasting publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2021.03.012 – volume: 290 year: 2024 ident: 10.1016/j.energy.2025.136497_b57 article-title: The univariate model for long-term wind speed forecasting based on wavelet soft threshold denoising and improved autoformer publication-title: Energy doi: 10.1016/j.energy.2023.130225 – volume: 369 year: 2024 ident: 10.1016/j.energy.2025.136497_b7 article-title: Optimizing multi-step wind power forecasting: Integrating advanced deep neuralnetworks with stacking-based probabilistic learning publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.123487 – volume: 294 year: 2024 ident: 10.1016/j.energy.2025.136497_b55 article-title: Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition publication-title: Energy doi: 10.1016/j.energy.2024.130782 – volume: 234 year: 2021 ident: 10.1016/j.energy.2025.136497_b27 article-title: Kovoor decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2021.113944 – volume: 298 year: 2024 ident: 10.1016/j.energy.2025.136497_b13 article-title: A wind speed forecasting model using nonlinear auto-regressive model optimized by the hybrid chaos-cloud salp swarm algorithm publication-title: Energy doi: 10.1016/j.energy.2024.131332 – volume: 228 year: 2021 ident: 10.1016/j.energy.2025.136497_b28 article-title: An improved residual-based convolutional neural network for very short-term wind power forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113731 – volume: 35 start-page: 5437 issue: 7 year: 2023 ident: 10.1016/j.energy.2025.136497_b33 article-title: Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07967-y – volume: 259 year: 2022 ident: 10.1016/j.energy.2025.136497_b35 article-title: Quaternion convolutional long short-term memory neural model with an adaptive decomposition method for wind speed forecasting: North aegean islands case studies publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2022.115590 – volume: 121 year: 2023 ident: 10.1016/j.energy.2025.136497_b23 article-title: Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.105982 – volume: 43 start-page: 334 issue: 8 year: 2022 ident: 10.1016/j.energy.2025.136497_b38 article-title: Research on multi-stepwind speed forecast based on CEEMDAN secondary decomposition and LSTM publication-title: Acta Energiae Solaris Sin – volume: 223 year: 2023 ident: 10.1016/j.energy.2025.136497_b44 article-title: Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119878 – volume: 292 year: 2024 ident: 10.1016/j.energy.2025.136497_b4 article-title: Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition publication-title: Energy doi: 10.1016/j.energy.2024.130493 – volume: 374 year: 2024 ident: 10.1016/j.energy.2025.136497_b9 article-title: Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.124035 – volume: 358 year: 2024 ident: 10.1016/j.energy.2025.136497_b21 article-title: An innovative interpretable combined learning model for wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.122553 – volume: 67 start-page: 6039 issue: 23 year: 2019 ident: 10.1016/j.energy.2025.136497_b41 article-title: Multivariate variational mode decomposition publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2019.2951223 – volume: 294 year: 2024 ident: 10.1016/j.energy.2025.136497_b24 article-title: Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM publication-title: Energy doi: 10.1016/j.energy.2024.130875 – volume: 14 start-page: 4840 issue: 11 year: 2024 ident: 10.1016/j.energy.2025.136497_b53 article-title: Research on the fiber-to-the-room network traffic prediction method based on crested porcupine optimizer optimization publication-title: Appl Sci doi: 10.3390/app14114840 – volume: 252 year: 2022 ident: 10.1016/j.energy.2025.136497_b11 article-title: Interpretable wind speed prediction with multivariate time series and temporal fusion transformers publication-title: Energy doi: 10.1016/j.energy.2022.123990 – volume: 360 year: 2024 ident: 10.1016/j.energy.2025.136497_b17 article-title: Improving probabilistic wind speed forecasting using M-Rice distribution and spatial data integration publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.122840 – volume: 146 year: 2025 ident: 10.1016/j.energy.2025.136497_b40 article-title: Short-term offshore wind speed forecasting approach based on multi-stage decomposition and deep residual network with self-attention publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2025.110313 – volume: 375 year: 2024 ident: 10.1016/j.energy.2025.136497_b39 article-title: An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.124057 – volume: 283 year: 2023 ident: 10.1016/j.energy.2025.136497_b56 article-title: Short-term wind power forecasting model based on temporal convolutional network and informer publication-title: Energy doi: 10.1016/j.energy.2023.129171 – volume: 299 year: 2024 ident: 10.1016/j.energy.2025.136497_b43 article-title: Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN publication-title: Energy doi: 10.1016/j.energy.2024.131448 – volume: 284 year: 2024 ident: 10.1016/j.energy.2025.136497_b50 article-title: Crested porcupine optimizer: A new nature-inspired metaheuristic publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.111257 – volume: 421 year: 2024 ident: 10.1016/j.energy.2025.136497_b20 article-title: A hybrid model based on STL with simple exponential smoothing and ARMA for wind forecast in a Brazilian nuclear power plant site publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2024.113026 – volume: 223 year: 2024 ident: 10.1016/j.energy.2025.136497_b10 article-title: Wind power curve modeling: A probabilistic beta regression approach publication-title: Renew Energy doi: 10.1016/j.renene.2024.119970 – volume: 284 year: 2023 ident: 10.1016/j.energy.2025.136497_b22 article-title: A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm publication-title: Energy doi: 10.1016/j.energy.2023.128565 – volume: 216 year: 2023 ident: 10.1016/j.energy.2025.136497_b37 article-title: Rolling decomposition method in fusion with echo state network for wind speed forecasting publication-title: Renew Energy doi: 10.1016/j.renene.2023.119101 – volume: 227 year: 2021 ident: 10.1016/j.energy.2025.136497_b18 article-title: Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM publication-title: Energy doi: 10.1016/j.energy.2021.120492 – volume: 254 year: 2022 ident: 10.1016/j.energy.2025.136497_b29 article-title: An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction publication-title: Energy doi: 10.1016/j.energy.2022.124250 – volume: 632 start-page: 390 year: 2023 ident: 10.1016/j.energy.2025.136497_b47 article-title: Evolving long short-term memory neural network for wind speed forecasting publication-title: Inform Sci doi: 10.1016/j.ins.2023.03.031 – volume: 360 year: 2024 ident: 10.1016/j.energy.2025.136497_b8 article-title: A short-term wind power forecasting method based on multivariate signal decomposition and variable selection publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.122759 – volume: 232 year: 2024 ident: 10.1016/j.energy.2025.136497_b5 article-title: The influence of grid connectivity, electricity pricing, policy-driven power incentives, and carbon emissions on renewable energy adoption: Exploring key factors publication-title: Renew Energy doi: 10.1016/j.renene.2024.121108 – volume: 219 year: 2023 ident: 10.1016/j.energy.2025.136497_b25 article-title: A hybrid VMD based contextual feature representation approach for wind speed forecasting publication-title: Renew Energy doi: 10.1016/j.renene.2023.119391 – volume: 44 start-page: 36 issue: 1 year: 2024 ident: 10.1016/j.energy.2025.136497_b34 article-title: Assessing deep learning performance in power demand forecasting for smart grid publication-title: Int J Sens Networks doi: 10.1504/IJSNET.2024.136340 – volume: 56 start-page: 13187 issue: 11 year: 2023 ident: 10.1016/j.energy.2025.136497_b52 article-title: An exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challenges publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10470-y – volume: 217 year: 2021 ident: 10.1016/j.energy.2025.136497_b42 article-title: A combined forecasting system based on statistical method publication-title: Artif Neural Networks, Deep Learn Methods Short- Term Wind Speed Forecast Energy – volume: 373 year: 2024 ident: 10.1016/j.energy.2025.136497_b6 article-title: Accuracy of a short-term wind power forecasting model based on deep learning using lidar-scada integration: A case study of the 400-mw anholt offshore wind farm publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.123882 – volume: 21 start-page: 741 issue: 2 year: 2023 ident: 10.1016/j.energy.2025.136497_b2 article-title: Cost, environmental impact, and resilience of renewable energy under a changing climate: A review publication-title: Environ Chem Lett doi: 10.1007/s10311-022-01532-8 – volume: 145 start-page: 191 year: 2015 ident: 10.1016/j.energy.2025.136497_b19 article-title: Recursive wind speed forecasting based on Hammerstein auto-regressive model publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.032 – volume: 165 start-page: 840 year: 2018 ident: 10.1016/j.energy.2025.136497_b14 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy doi: 10.1016/j.energy.2018.09.118 – volume: 308 year: 2024 ident: 10.1016/j.energy.2025.136497_b36 article-title: Wind speed short-term prediction using recurrent neural network GRU model and stationary wavelet transform GRU hybrid model publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2024.118333 – year: 2024 ident: 10.1016/j.energy.2025.136497_b1 article-title: How nitrogen compounds in fertilizers and fossil-fuel emissions affect global warming publication-title: Nature – volume: 133 year: 2024 ident: 10.1016/j.energy.2025.136497_b26 article-title: Short term wind speed forecasting using artificial and wavelet neural networks with and without wavelet filtered data based on feature selections technique publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2024.108201 – volume: 313 year: 2024 ident: 10.1016/j.energy.2025.136497_b54 article-title: A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model publication-title: Energy doi: 10.1016/j.energy.2024.133826 – volume: 288 year: 2024 ident: 10.1016/j.energy.2025.136497_b51 article-title: Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2023.129728 |
| SSID | ssj0005899 |
| Score | 2.484471 |
| Snippet | Accurate and efficient wind speed forecasting is essential for the stable operation of wind farm and power grids. However, the high volatility of wind speed,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 136497 |
| SubjectTerms | Intelligent optimization algorithm Interpretable forecasting model Multi meteorological features decomposition Wind speed forecasting |
| Title | A novel interpretable wind speed forecasting based on the multivariate variational mode decomposition and temporal fusion transformer |
| URI | https://dx.doi.org/10.1016/j.energy.2025.136497 |
| Volume | 331 |
| WOSCitedRecordID | wos001514074100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFwkuCBZWLC_5wK3KKiRO7BwLKloQWiGxoN4iJ3Gkrqqkaptu-QH8b2Y8zqMs4iVxSSsrdtLM1_jz-JsZxl6WfpwEmS3uoo0nApN4SuvMS4xUhTZhEdhqDV8-yIsLNZ8nH0ej6zYWZreUVaX2-2T1X00NbWBsDJ39C3N3g0IDfAejwxHMDsc_Mvx0UtU7s7SJIEhOiMFR1wt0kK9grkJhocn1xuqdcRIr3IYBiQt3sHgG_jmhT3IUYrmcSWFQfu40XiS8pLRWy0nZoM8Ny00QCXaK39bhT-GFmNd0T1L6zvkwb6yJm0UHI-e-Ptf116ZzahvX2ACR7feSbN_Xi2pdu9nXOS-CCJUWFL5JHrU2qqaXMFEkl-9FQhy8pV1g1403Pjkfrs6M_S1neBGU7glS_f6QS_sTDo0jA_ELgPtGt9hRIKNEjdnR9N1s_r5XBylberS7lTbq0koDb17r56xmwFQu77N7bonBpwSNB2xkqmN2p41A3xyzk1kf3Qgnutf75iH7NuUWO_wAOxyxwy12-AA73GKH1xUH7PAhdvgAOxyxww-wwwE7vMUOJ-zwAXYesc9vZ5dvzj1Xp8PLQ19tvSxWuDmc5UkUlTD3a3ggWspMqUJoleg41sGrTBRalKWfAz80ZRYJLWQB698s88MTNq7qyjxmXOZ-WMAaWgKxFnFYqBzjJZWWQEvLws9PWdg-5zR3SeyxlsoybdWKVylZJ0XrpGSdU-Z1vVaUxOU358vWhKkjokQwU0DdL3s--eeeT9nd_g_yjI2368Y8Z7fz3XaxWb9w8PwOzHa2yA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+interpretable+wind+speed+forecasting+based+on+the+multivariate+variational+mode+decomposition+and+temporal+fusion+transformer&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Rui&rft.au=Fang%2C+Haoyu&rft.au=Zeng%2C+Huanze&rft.au=Wu%2C+Binrong&rft.date=2025-09-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=331&rft_id=info:doi/10.1016%2Fj.energy.2025.136497&rft.externalDocID=S0360544225021395 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |