A novel interpretable wind speed forecasting based on the multivariate variational mode decomposition and temporal fusion transformer

Accurate and efficient wind speed forecasting is essential for the stable operation of wind farm and power grids. However, the high volatility of wind speed, coupled with its correlation with local meteorological factors, makes accurate wind speed forecasting a significant challenge. To achieve prec...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 331; p. 136497
Main Authors: Xu, Rui, Fang, Haoyu, Zeng, Huanze, Wu, Binrong
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.09.2025
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate and efficient wind speed forecasting is essential for the stable operation of wind farm and power grids. However, the high volatility of wind speed, coupled with its correlation with local meteorological factors, makes accurate wind speed forecasting a significant challenge. To achieve precise wind speed forecasting and model interpretability, this study proposes a short-term interpretable wind speed forecasting model based on the joint decomposition of multi meteorological feature data, combined with the Temporal Fusion Transformer (TFT) and the Crested porcupine optimizer (CPO) algorithm. Initially, wind speed data and various meteorological features are input into the Multi-variant Variational Mode Decomposition (MVMD) algorithm for decomposition, resulting in multiple Intrinsic Mode Functions (IMFs). The CPO algorithm will concurrently be utilized to intelligently optimize the hyperparameters of the MVMD. Mutual Information (MI) will then be employed to select the IMFs derived from MVMD decomposition that exhibit a higher correlation with wind speed. These IMFs, along with various meteorological features, will collectively form the input data for the TFT model. Subsequently, the TFT model will be used to achieve high-precision wind speed predictions and generate interpretable results. Finally, the CPO algorithm is used to finely tune the hyper parameters of the TFT, yielding the optimal hyper parameter combination. Experimental results demonstrate that compared with other common forecasting methods, the proposed CPO-MVMD-MI-CPO-TFT model offers higher forecasting accuracy. Additionally, its interpretable results can provide robust data support for decisions related to wind farm site selection and wind turbine scheduling. •Proposed a novel interpretable wind speed forecasting method CPO-MVMD-MI-CPO-TFT.•Employed MVMD to decompose multivariate meteorological features, utilized MI to select the IMFs after decomposition.•The latest intelligent optimization algorithm CPO was introduced to optimize the MVMD and TFT models’ parameters.•Interpretability and wind power conversion results validated the application value of the proposed model.
AbstractList Accurate and efficient wind speed forecasting is essential for the stable operation of wind farm and power grids. However, the high volatility of wind speed, coupled with its correlation with local meteorological factors, makes accurate wind speed forecasting a significant challenge. To achieve precise wind speed forecasting and model interpretability, this study proposes a short-term interpretable wind speed forecasting model based on the joint decomposition of multi meteorological feature data, combined with the Temporal Fusion Transformer (TFT) and the Crested porcupine optimizer (CPO) algorithm. Initially, wind speed data and various meteorological features are input into the Multi-variant Variational Mode Decomposition (MVMD) algorithm for decomposition, resulting in multiple Intrinsic Mode Functions (IMFs). The CPO algorithm will concurrently be utilized to intelligently optimize the hyperparameters of the MVMD. Mutual Information (MI) will then be employed to select the IMFs derived from MVMD decomposition that exhibit a higher correlation with wind speed. These IMFs, along with various meteorological features, will collectively form the input data for the TFT model. Subsequently, the TFT model will be used to achieve high-precision wind speed predictions and generate interpretable results. Finally, the CPO algorithm is used to finely tune the hyper parameters of the TFT, yielding the optimal hyper parameter combination. Experimental results demonstrate that compared with other common forecasting methods, the proposed CPO-MVMD-MI-CPO-TFT model offers higher forecasting accuracy. Additionally, its interpretable results can provide robust data support for decisions related to wind farm site selection and wind turbine scheduling. •Proposed a novel interpretable wind speed forecasting method CPO-MVMD-MI-CPO-TFT.•Employed MVMD to decompose multivariate meteorological features, utilized MI to select the IMFs after decomposition.•The latest intelligent optimization algorithm CPO was introduced to optimize the MVMD and TFT models’ parameters.•Interpretability and wind power conversion results validated the application value of the proposed model.
ArticleNumber 136497
Author Zeng, Huanze
Xu, Rui
Fang, Haoyu
Wu, Binrong
Author_xml – sequence: 1
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  email: rxu@hhu.edu.cn
– sequence: 2
  givenname: Haoyu
  surname: Fang
  fullname: Fang, Haoyu
  email: 221813100002@hhu.edu.cn
– sequence: 3
  givenname: Huanze
  surname: Zeng
  fullname: Zeng, Huanze
  email: huanze.zeng@hhu.edu.cn
– sequence: 4
  givenname: Binrong
  orcidid: 0000-0001-5215-0586
  surname: Wu
  fullname: Wu, Binrong
  email: binrong.wu@hhu.edu.cn
BookMark eNqFkM1KAzEUhbOoYKu-gYu8QGtmJvPnQijFPyi40XW4Se7UlJmkJGmlD-B7mzquXOjqcM_lHDjfjEyss0jIdcYWGcuqm-0CLfrNcZGzvFxkRcXbekKmrKjYvOQ8PyezELaMsbJp2yn5XFLrDthTYyP6nccIskf6YaymYYeoaec8KgjR2A2VEJLjLI3vSId9H80BvIGIdFTjLPR0cBqpRuWGnQvmZFJIdRHT7dO_24eTFz3YkNoH9JfkrIM-4NWPXpC3h_vX1dN8_fL4vFqu56pgTZzLqmnrtpWqLcsOZQZpG9S1bBrNoWmhqiDPJNfAu46ppiywkyUHXuu8YFKy4oLwsVd5F4LHTuy8GcAfRcbECZ_YihGfOOETI74Uu_0VUyZ-r00bTP9f-G4MYxp2MOhFUAatQm0S2Ci0M38XfAH595ct
CitedBy_id crossref_primary_10_1016_j_oceaneng_2025_122518
Cites_doi 10.1016/j.energy.2024.131802
10.1016/j.enconman.2023.117868
10.1016/j.engappai.2024.108435
10.1016/j.ijepes.2022.108743
10.1016/j.apenergy.2023.121607
10.1016/j.enconman.2021.114002
10.1016/j.energy.2025.135551
10.1016/j.rser.2023.114035
10.1016/j.apenergy.2021.117766
10.1016/j.ijforecast.2021.03.012
10.1016/j.energy.2023.130225
10.1016/j.apenergy.2024.123487
10.1016/j.energy.2024.130782
10.1016/j.enconman.2021.113944
10.1016/j.energy.2024.131332
10.1016/j.enconman.2020.113731
10.1007/s00521-022-07967-y
10.1016/j.enconman.2022.115590
10.1016/j.engappai.2023.105982
10.1016/j.eswa.2023.119878
10.1016/j.energy.2024.130493
10.1016/j.apenergy.2024.124035
10.1016/j.apenergy.2023.122553
10.1109/TSP.2019.2951223
10.1016/j.energy.2024.130875
10.3390/app14114840
10.1016/j.energy.2022.123990
10.1016/j.apenergy.2024.122840
10.1016/j.engappai.2025.110313
10.1016/j.apenergy.2024.124057
10.1016/j.energy.2023.129171
10.1016/j.energy.2024.131448
10.1016/j.knosys.2023.111257
10.1016/j.nucengdes.2024.113026
10.1016/j.renene.2024.119970
10.1016/j.energy.2023.128565
10.1016/j.renene.2023.119101
10.1016/j.energy.2021.120492
10.1016/j.energy.2022.124250
10.1016/j.ins.2023.03.031
10.1016/j.apenergy.2024.122759
10.1016/j.renene.2024.121108
10.1016/j.renene.2023.119391
10.1504/IJSNET.2024.136340
10.1007/s10462-023-10470-y
10.1016/j.apenergy.2024.123882
10.1007/s10311-022-01532-8
10.1016/j.apenergy.2015.02.032
10.1016/j.energy.2018.09.118
10.1016/j.enconman.2024.118333
10.1016/j.engappai.2024.108201
10.1016/j.energy.2024.133826
10.1016/j.energy.2023.129728
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2025.136497
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2025_136497
S0360544225021395
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ADMUD
ADNMO
ADXHL
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
ID FETCH-LOGICAL-c308t-b689799bc955feb1a497a77b88d4a89a66a21b4da4ff0c853efb54a47d230bb03
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514074100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Tue Nov 18 22:18:47 EST 2025
Sat Nov 29 07:00:24 EST 2025
Sat Jul 19 17:11:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Intelligent optimization algorithm
Multi meteorological features decomposition
Interpretable forecasting model
Wind speed forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-b689799bc955feb1a497a77b88d4a89a66a21b4da4ff0c853efb54a47d230bb03
ORCID 0000-0001-5215-0586
ParticipantIDs crossref_primary_10_1016_j_energy_2025_136497
crossref_citationtrail_10_1016_j_energy_2025_136497
elsevier_sciencedirect_doi_10_1016_j_energy_2025_136497
PublicationCentury 2000
PublicationDate 2025-09-15
PublicationDateYYYYMMDD 2025-09-15
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shang, Chen, Chen, Guo, Yang (b44) 2023; 223
Wu, Wang, Lv, Zeng (b49) 2022
ur Rehman, Aftab (b41) 2019; 67
Ban, Chen, Xiong, Zhuo, Huang (b57) 2024; 290
Li, Wang, Wu, Gao, Dan (b43) 2024; 299
Jaseena, Binsu (b27) 2021; 234
Dai, Fu (b13) 2024; 298
Liu, Wang, Dong, Chen, Chen, Li (b9) 2024; 374
Wu, Wang, Zeng (b11) 2022; 252
Zheng, Zhou, Liu, Nakanishi (b32) 2023; 349
Hu, Wang, Zhang, Ling (b37) 2023; 216
Huang, Karimi, Mei, Yang, Shi (b47) 2023; 632
Maatallah, Achuthan, Janoyan, Marzocca (b19) 2015; 145
Neshat, Nezhad, Abbasnejad, Mirjalili, Tjernberg, Garcia (b48) 2021; 236
Baggio, Muzy (b17) 2024; 360
Yang, Li, Guo, Du (b39) 2024; 375
Du, Yang, Li, Wang (b21) 2024; 358
Ali, Aly (b26) 2024; 133
Wang, Ying, Nan (b46) 2024; 133
Parri, Teeparthi, Kosana (b25) 2023; 219
Neshat, Nezhad, Mirjalili, Piras, Garcia (b35) 2022; 259
Moreno, Seman, Stefenon, Coelho, Mariani (b4) 2024; 292
Liang, Zhang, Zhang, Hu (b54) 2024; 313
Capelletti, Raimondo, De Nicolao (b10) 2024; 223
Wu, Wang (b51) 2024; 288
Ahmad, Khan, Anser, Nassani, Hassan, Zaman (b5) 2024; 232
Zhang, Ma, Hua, Sun, Nazir, Peng (b29) 2022; 254
Jiang, Liu, Niu, Zhang (b42) 2021; 217
Abdel-Basset, Mohamed, Abouhawwash (b50) 2024; 284
Rajwar, Deep, Das (b52) 2023; 56
Xu, Hu, Shao, Shi, Li, Li (b22) 2023; 284
Hao, Wang, Wang, Yang (b16) 2024; 299
Fantini, Silva, Siqueira, Pinto, Guimarães, Brasil (b36) 2024; 308
Wang, Qi, Liu, Song (b14) 2018; 165
Boadu, Otoo (b3) 2024; 191
Yang, Che, Yu, Su (b15) 2024; 302
Wang, Zou, Liu, Zhang, Liu (b12) 2021; 304
Liang, Qian, Yu, Griffith, Golmie (b34) 2024; 44
Xiang, Liu, Su, Hu, Zhu (b38) 2022; 43
Acikgoz, Korkmaz (b40) 2025; 146
Gong, Yan, Xu, Zhao, Li, Liu (b56) 2023; 283
de Azevedo Takara, Teixeira, Yazdanpanah, Mariani, dos Santos Coelho (b7) 2024; 369
Zhao, Yun, Jia, Guo, Meng, He (b23) 2023; 121
Gong, Zaehle (b1) 2024
Cunha, Pereira (b20) 2024; 421
Kim, Ryu, Moon, Kim (b6) 2024; 373
Wu, Yu, Peng, Wang (b55) 2024; 294
Liu, Lin, Feng (b18) 2021; 227
Yang, Yang, Li, Wang (b8) 2024; 360
Zhang, Wang, Qian, Li (b24) 2024; 294
Wu, Wang, Tao, Zeng (b33) 2023; 35
Lim, Arık, Loeff, Pfister (b31) 2021; 37
Li, Tan, Zhang, Miao, He (b30) 2023; 146
Zang, Cao, Hong (b53) 2024; 14
Osman, Chen, Yang, Msigwa, Farghali, Fawzy, Rooney, Yap (b2) 2023; 21
Yildiz, Acikgoz, Korkmaz, Budak (b28) 2021; 228
Leng, Chen, Yi, Liu, Xie, Mei (b45) 2025; 322
Du (10.1016/j.energy.2025.136497_b21) 2024; 358
Hu (10.1016/j.energy.2025.136497_b37) 2023; 216
Ali (10.1016/j.energy.2025.136497_b26) 2024; 133
Liang (10.1016/j.energy.2025.136497_b54) 2024; 313
Jaseena (10.1016/j.energy.2025.136497_b27) 2021; 234
Gong (10.1016/j.energy.2025.136497_b56) 2023; 283
Li (10.1016/j.energy.2025.136497_b43) 2024; 299
Ban (10.1016/j.energy.2025.136497_b57) 2024; 290
Baggio (10.1016/j.energy.2025.136497_b17) 2024; 360
Neshat (10.1016/j.energy.2025.136497_b48) 2021; 236
Xiang (10.1016/j.energy.2025.136497_b38) 2022; 43
Hao (10.1016/j.energy.2025.136497_b16) 2024; 299
Huang (10.1016/j.energy.2025.136497_b47) 2023; 632
Yang (10.1016/j.energy.2025.136497_b8) 2024; 360
Xu (10.1016/j.energy.2025.136497_b22) 2023; 284
Wang (10.1016/j.energy.2025.136497_b46) 2024; 133
Zang (10.1016/j.energy.2025.136497_b53) 2024; 14
Neshat (10.1016/j.energy.2025.136497_b35) 2022; 259
Rajwar (10.1016/j.energy.2025.136497_b52) 2023; 56
Liang (10.1016/j.energy.2025.136497_b34) 2024; 44
Abdel-Basset (10.1016/j.energy.2025.136497_b50) 2024; 284
Cunha (10.1016/j.energy.2025.136497_b20) 2024; 421
Ahmad (10.1016/j.energy.2025.136497_b5) 2024; 232
Zhang (10.1016/j.energy.2025.136497_b24) 2024; 294
Acikgoz (10.1016/j.energy.2025.136497_b40) 2025; 146
ur Rehman (10.1016/j.energy.2025.136497_b41) 2019; 67
Wu (10.1016/j.energy.2025.136497_b49) 2022
Yang (10.1016/j.energy.2025.136497_b15) 2024; 302
Fantini (10.1016/j.energy.2025.136497_b36) 2024; 308
Wu (10.1016/j.energy.2025.136497_b51) 2024; 288
Parri (10.1016/j.energy.2025.136497_b25) 2023; 219
Dai (10.1016/j.energy.2025.136497_b13) 2024; 298
Jiang (10.1016/j.energy.2025.136497_b42) 2021; 217
Capelletti (10.1016/j.energy.2025.136497_b10) 2024; 223
Zhang (10.1016/j.energy.2025.136497_b29) 2022; 254
Lim (10.1016/j.energy.2025.136497_b31) 2021; 37
Moreno (10.1016/j.energy.2025.136497_b4) 2024; 292
Shang (10.1016/j.energy.2025.136497_b44) 2023; 223
Yang (10.1016/j.energy.2025.136497_b39) 2024; 375
Wu (10.1016/j.energy.2025.136497_b11) 2022; 252
Wu (10.1016/j.energy.2025.136497_b55) 2024; 294
Maatallah (10.1016/j.energy.2025.136497_b19) 2015; 145
Li (10.1016/j.energy.2025.136497_b30) 2023; 146
Gong (10.1016/j.energy.2025.136497_b1) 2024
Zheng (10.1016/j.energy.2025.136497_b32) 2023; 349
Osman (10.1016/j.energy.2025.136497_b2) 2023; 21
Liu (10.1016/j.energy.2025.136497_b18) 2021; 227
Yildiz (10.1016/j.energy.2025.136497_b28) 2021; 228
Zhao (10.1016/j.energy.2025.136497_b23) 2023; 121
de Azevedo Takara (10.1016/j.energy.2025.136497_b7) 2024; 369
Wu (10.1016/j.energy.2025.136497_b33) 2023; 35
Liu (10.1016/j.energy.2025.136497_b9) 2024; 374
Leng (10.1016/j.energy.2025.136497_b45) 2025; 322
Boadu (10.1016/j.energy.2025.136497_b3) 2024; 191
Wang (10.1016/j.energy.2025.136497_b12) 2021; 304
Wang (10.1016/j.energy.2025.136497_b14) 2018; 165
Kim (10.1016/j.energy.2025.136497_b6) 2024; 373
References_xml – volume: 322
  year: 2025
  ident: b45
  article-title: Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition
  publication-title: Energy
– volume: 234
  year: 2021
  ident: b27
  article-title: Kovoor decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks
  publication-title: Energy Convers Manage
– year: 2022
  ident: b49
  article-title: Forecasting oil consumption with attention-based IndRNN optimized by adaptive differential evolution
  publication-title: Appl Intell
– volume: 373
  year: 2024
  ident: b6
  article-title: Accuracy of a short-term wind power forecasting model based on deep learning using lidar-scada integration: A case study of the 400-mw anholt offshore wind farm
  publication-title: Appl Energy
– volume: 374
  year: 2024
  ident: b9
  article-title: Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series
  publication-title: Appl Energy
– volume: 302
  year: 2024
  ident: b15
  article-title: Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction
  publication-title: Energy
– volume: 632
  start-page: 390
  year: 2023
  end-page: 410
  ident: b47
  article-title: Evolving long short-term memory neural network for wind speed forecasting
  publication-title: Inform Sci
– volume: 259
  year: 2022
  ident: b35
  article-title: Quaternion convolutional long short-term memory neural model with an adaptive decomposition method for wind speed forecasting: North aegean islands case studies
  publication-title: Energy Convers Manage
– volume: 133
  year: 2024
  ident: b26
  article-title: Short term wind speed forecasting using artificial and wavelet neural networks with and without wavelet filtered data based on feature selections technique
  publication-title: Eng Appl Artif Intell
– volume: 299
  year: 2024
  ident: b43
  article-title: Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN
  publication-title: Energy
– volume: 252
  year: 2022
  ident: b11
  article-title: Interpretable wind speed prediction with multivariate time series and temporal fusion transformers
  publication-title: Energy
– volume: 375
  year: 2024
  ident: b39
  article-title: An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting
  publication-title: Appl Energy
– volume: 294
  year: 2024
  ident: b55
  article-title: Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition
  publication-title: Energy
– volume: 67
  start-page: 6039
  year: 2019
  end-page: 6052
  ident: b41
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Trans Signal Process
– volume: 232
  year: 2024
  ident: b5
  article-title: The influence of grid connectivity, electricity pricing, policy-driven power incentives, and carbon emissions on renewable energy adoption: Exploring key factors
  publication-title: Renew Energy
– volume: 146
  year: 2025
  ident: b40
  article-title: Short-term offshore wind speed forecasting approach based on multi-stage decomposition and deep residual network with self-attention
  publication-title: Eng Appl Artif Intell
– year: 2024
  ident: b1
  article-title: How nitrogen compounds in fertilizers and fossil-fuel emissions affect global warming
  publication-title: Nature
– volume: 284
  year: 2024
  ident: b50
  article-title: Crested porcupine optimizer: A new nature-inspired metaheuristic
  publication-title: Knowl-Based Syst
– volume: 254
  year: 2022
  ident: b29
  article-title: An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction
  publication-title: Energy
– volume: 369
  year: 2024
  ident: b7
  article-title: Optimizing multi-step wind power forecasting: Integrating advanced deep neuralnetworks with stacking-based probabilistic learning
  publication-title: Appl Energy
– volume: 360
  year: 2024
  ident: b8
  article-title: A short-term wind power forecasting method based on multivariate signal decomposition and variable selection
  publication-title: Appl Energy
– volume: 294
  year: 2024
  ident: b24
  article-title: Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM
  publication-title: Energy
– volume: 349
  year: 2023
  ident: b32
  article-title: Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture
  publication-title: Appl Energy
– volume: 35
  start-page: 5437
  year: 2023
  end-page: 5463
  ident: b33
  article-title: Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19
  publication-title: Neural Comput Appl
– volume: 44
  start-page: 36
  year: 2024
  end-page: 48
  ident: b34
  article-title: Assessing deep learning performance in power demand forecasting for smart grid
  publication-title: Int J Sens Networks
– volume: 308
  year: 2024
  ident: b36
  article-title: Wind speed short-term prediction using recurrent neural network GRU model and stationary wavelet transform GRU hybrid model
  publication-title: Energy Convers Manage
– volume: 288
  year: 2024
  ident: b51
  article-title: Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting
  publication-title: Energy
– volume: 299
  year: 2024
  ident: b16
  article-title: A new perspective of wind speed forecasting: Multi-objective and model selection-based ensemble interval-valued wind speed forecasting system
  publication-title: Energy Convers Manage
– volume: 133
  year: 2024
  ident: b46
  article-title: Refined offshore wind speed prediction: Leveraging a two-layer decomposition technique, gated recurrent unit, and kernel density estimation for precise point and interval forecasts
  publication-title: Eng Appl Artif Intell
– volume: 283
  year: 2023
  ident: b56
  article-title: Short-term wind power forecasting model based on temporal convolutional network and informer
  publication-title: Energy
– volume: 146
  year: 2023
  ident: b30
  article-title: Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model
  publication-title: Int J Electr Power Energy Syst
– volume: 223
  year: 2023
  ident: b44
  article-title: Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism
  publication-title: Expert Syst Appl
– volume: 313
  year: 2024
  ident: b54
  article-title: A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model
  publication-title: Energy
– volume: 358
  year: 2024
  ident: b21
  article-title: An innovative interpretable combined learning model for wind speed forecasting
  publication-title: Appl Energy
– volume: 421
  year: 2024
  ident: b20
  article-title: A hybrid model based on STL with simple exponential smoothing and ARMA for wind forecast in a Brazilian nuclear power plant site
  publication-title: Nucl Eng Des
– volume: 165
  start-page: 840
  year: 2018
  end-page: 852
  ident: b14
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
– volume: 298
  year: 2024
  ident: b13
  article-title: A wind speed forecasting model using nonlinear auto-regressive model optimized by the hybrid chaos-cloud salp swarm algorithm
  publication-title: Energy
– volume: 43
  start-page: 334
  year: 2022
  end-page: 339
  ident: b38
  article-title: Research on multi-stepwind speed forecast based on CEEMDAN secondary decomposition and LSTM
  publication-title: Acta Energiae Solaris Sin
– volume: 292
  year: 2024
  ident: b4
  article-title: Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition
  publication-title: Energy
– volume: 191
  year: 2024
  ident: b3
  article-title: A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations
  publication-title: Renew Sustain Energy Rev
– volume: 219
  year: 2023
  ident: b25
  article-title: A hybrid VMD based contextual feature representation approach for wind speed forecasting
  publication-title: Renew Energy
– volume: 37
  start-page: 1748
  year: 2021
  end-page: 1764
  ident: b31
  article-title: Temporal Fusion Transformers for interpretable multi-horizon time series forecasting
  publication-title: Int J Forecast
– volume: 236
  year: 2021
  ident: b48
  article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm
  publication-title: Energy Convers Manage
– volume: 216
  year: 2023
  ident: b37
  article-title: Rolling decomposition method in fusion with echo state network for wind speed forecasting
  publication-title: Renew Energy
– volume: 217
  year: 2021
  ident: b42
  article-title: A combined forecasting system based on statistical method
  publication-title: Artif Neural Networks, Deep Learn Methods Short- Term Wind Speed Forecast Energy
– volume: 304
  year: 2021
  ident: b12
  article-title: A review of wind speed and wind power forecasting with deep neural networks
  publication-title: Appl Energy
– volume: 145
  start-page: 191
  year: 2015
  end-page: 197
  ident: b19
  article-title: Recursive wind speed forecasting based on Hammerstein auto-regressive model
  publication-title: Appl Energy
– volume: 21
  start-page: 741
  year: 2023
  end-page: 764
  ident: b2
  article-title: Cost, environmental impact, and resilience of renewable energy under a changing climate: A review
  publication-title: Environ Chem Lett
– volume: 228
  year: 2021
  ident: b28
  article-title: An improved residual-based convolutional neural network for very short-term wind power forecasting
  publication-title: Energy Convers Manage
– volume: 56
  start-page: 13187
  year: 2023
  end-page: 13257
  ident: b52
  article-title: An exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challenges
  publication-title: Artif Intell Rev
– volume: 360
  year: 2024
  ident: b17
  article-title: Improving probabilistic wind speed forecasting using M-Rice distribution and spatial data integration
  publication-title: Appl Energy
– volume: 223
  year: 2024
  ident: b10
  article-title: Wind power curve modeling: A probabilistic beta regression approach
  publication-title: Renew Energy
– volume: 14
  start-page: 4840
  year: 2024
  ident: b53
  article-title: Research on the fiber-to-the-room network traffic prediction method based on crested porcupine optimizer optimization
  publication-title: Appl Sci
– volume: 227
  year: 2021
  ident: b18
  article-title: Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM
  publication-title: Energy
– volume: 284
  year: 2023
  ident: b22
  article-title: A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm
  publication-title: Energy
– volume: 290
  year: 2024
  ident: b57
  article-title: The univariate model for long-term wind speed forecasting based on wavelet soft threshold denoising and improved autoformer
  publication-title: Energy
– volume: 121
  year: 2023
  ident: b23
  article-title: Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features
  publication-title: Eng Appl Artif Intell
– volume: 302
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b15
  article-title: Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131802
– volume: 299
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b16
  article-title: A new perspective of wind speed forecasting: Multi-objective and model selection-based ensemble interval-valued wind speed forecasting system
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2023.117868
– volume: 133
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b46
  article-title: Refined offshore wind speed prediction: Leveraging a two-layer decomposition technique, gated recurrent unit, and kernel density estimation for precise point and interval forecasts
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.108435
– volume: 146
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b30
  article-title: Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2022.108743
– volume: 349
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b32
  article-title: Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121607
– volume: 236
  year: 2021
  ident: 10.1016/j.energy.2025.136497_b48
  article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2021.114002
– year: 2022
  ident: 10.1016/j.energy.2025.136497_b49
  article-title: Forecasting oil consumption with attention-based IndRNN optimized by adaptive differential evolution
  publication-title: Appl Intell
– volume: 322
  year: 2025
  ident: 10.1016/j.energy.2025.136497_b45
  article-title: Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2025.135551
– volume: 191
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b3
  article-title: A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.114035
– volume: 304
  year: 2021
  ident: 10.1016/j.energy.2025.136497_b12
  article-title: A review of wind speed and wind power forecasting with deep neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117766
– volume: 37
  start-page: 1748
  issue: 4
  year: 2021
  ident: 10.1016/j.energy.2025.136497_b31
  article-title: Temporal Fusion Transformers for interpretable multi-horizon time series forecasting
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2021.03.012
– volume: 290
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b57
  article-title: The univariate model for long-term wind speed forecasting based on wavelet soft threshold denoising and improved autoformer
  publication-title: Energy
  doi: 10.1016/j.energy.2023.130225
– volume: 369
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b7
  article-title: Optimizing multi-step wind power forecasting: Integrating advanced deep neuralnetworks with stacking-based probabilistic learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.123487
– volume: 294
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b55
  article-title: Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130782
– volume: 234
  year: 2021
  ident: 10.1016/j.energy.2025.136497_b27
  article-title: Kovoor decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2021.113944
– volume: 298
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b13
  article-title: A wind speed forecasting model using nonlinear auto-regressive model optimized by the hybrid chaos-cloud salp swarm algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131332
– volume: 228
  year: 2021
  ident: 10.1016/j.energy.2025.136497_b28
  article-title: An improved residual-based convolutional neural network for very short-term wind power forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113731
– volume: 35
  start-page: 5437
  issue: 7
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b33
  article-title: Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07967-y
– volume: 259
  year: 2022
  ident: 10.1016/j.energy.2025.136497_b35
  article-title: Quaternion convolutional long short-term memory neural model with an adaptive decomposition method for wind speed forecasting: North aegean islands case studies
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2022.115590
– volume: 121
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b23
  article-title: Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.105982
– volume: 43
  start-page: 334
  issue: 8
  year: 2022
  ident: 10.1016/j.energy.2025.136497_b38
  article-title: Research on multi-stepwind speed forecast based on CEEMDAN secondary decomposition and LSTM
  publication-title: Acta Energiae Solaris Sin
– volume: 223
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b44
  article-title: Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119878
– volume: 292
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b4
  article-title: Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130493
– volume: 374
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b9
  article-title: Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.124035
– volume: 358
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b21
  article-title: An innovative interpretable combined learning model for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.122553
– volume: 67
  start-page: 6039
  issue: 23
  year: 2019
  ident: 10.1016/j.energy.2025.136497_b41
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2019.2951223
– volume: 294
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b24
  article-title: Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130875
– volume: 14
  start-page: 4840
  issue: 11
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b53
  article-title: Research on the fiber-to-the-room network traffic prediction method based on crested porcupine optimizer optimization
  publication-title: Appl Sci
  doi: 10.3390/app14114840
– volume: 252
  year: 2022
  ident: 10.1016/j.energy.2025.136497_b11
  article-title: Interpretable wind speed prediction with multivariate time series and temporal fusion transformers
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123990
– volume: 360
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b17
  article-title: Improving probabilistic wind speed forecasting using M-Rice distribution and spatial data integration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.122840
– volume: 146
  year: 2025
  ident: 10.1016/j.energy.2025.136497_b40
  article-title: Short-term offshore wind speed forecasting approach based on multi-stage decomposition and deep residual network with self-attention
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2025.110313
– volume: 375
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b39
  article-title: An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.124057
– volume: 283
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b56
  article-title: Short-term wind power forecasting model based on temporal convolutional network and informer
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129171
– volume: 299
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b43
  article-title: Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131448
– volume: 284
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b50
  article-title: Crested porcupine optimizer: A new nature-inspired metaheuristic
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.111257
– volume: 421
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b20
  article-title: A hybrid model based on STL with simple exponential smoothing and ARMA for wind forecast in a Brazilian nuclear power plant site
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2024.113026
– volume: 223
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b10
  article-title: Wind power curve modeling: A probabilistic beta regression approach
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2024.119970
– volume: 284
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b22
  article-title: A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128565
– volume: 216
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b37
  article-title: Rolling decomposition method in fusion with echo state network for wind speed forecasting
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2023.119101
– volume: 227
  year: 2021
  ident: 10.1016/j.energy.2025.136497_b18
  article-title: Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120492
– volume: 254
  year: 2022
  ident: 10.1016/j.energy.2025.136497_b29
  article-title: An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124250
– volume: 632
  start-page: 390
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b47
  article-title: Evolving long short-term memory neural network for wind speed forecasting
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2023.03.031
– volume: 360
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b8
  article-title: A short-term wind power forecasting method based on multivariate signal decomposition and variable selection
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.122759
– volume: 232
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b5
  article-title: The influence of grid connectivity, electricity pricing, policy-driven power incentives, and carbon emissions on renewable energy adoption: Exploring key factors
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2024.121108
– volume: 219
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b25
  article-title: A hybrid VMD based contextual feature representation approach for wind speed forecasting
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2023.119391
– volume: 44
  start-page: 36
  issue: 1
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b34
  article-title: Assessing deep learning performance in power demand forecasting for smart grid
  publication-title: Int J Sens Networks
  doi: 10.1504/IJSNET.2024.136340
– volume: 56
  start-page: 13187
  issue: 11
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b52
  article-title: An exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challenges
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10470-y
– volume: 217
  year: 2021
  ident: 10.1016/j.energy.2025.136497_b42
  article-title: A combined forecasting system based on statistical method
  publication-title: Artif Neural Networks, Deep Learn Methods Short- Term Wind Speed Forecast Energy
– volume: 373
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b6
  article-title: Accuracy of a short-term wind power forecasting model based on deep learning using lidar-scada integration: A case study of the 400-mw anholt offshore wind farm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.123882
– volume: 21
  start-page: 741
  issue: 2
  year: 2023
  ident: 10.1016/j.energy.2025.136497_b2
  article-title: Cost, environmental impact, and resilience of renewable energy under a changing climate: A review
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-022-01532-8
– volume: 145
  start-page: 191
  year: 2015
  ident: 10.1016/j.energy.2025.136497_b19
  article-title: Recursive wind speed forecasting based on Hammerstein auto-regressive model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.032
– volume: 165
  start-page: 840
  year: 2018
  ident: 10.1016/j.energy.2025.136497_b14
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.118
– volume: 308
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b36
  article-title: Wind speed short-term prediction using recurrent neural network GRU model and stationary wavelet transform GRU hybrid model
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2024.118333
– year: 2024
  ident: 10.1016/j.energy.2025.136497_b1
  article-title: How nitrogen compounds in fertilizers and fossil-fuel emissions affect global warming
  publication-title: Nature
– volume: 133
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b26
  article-title: Short term wind speed forecasting using artificial and wavelet neural networks with and without wavelet filtered data based on feature selections technique
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.108201
– volume: 313
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b54
  article-title: A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133826
– volume: 288
  year: 2024
  ident: 10.1016/j.energy.2025.136497_b51
  article-title: Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129728
SSID ssj0005899
Score 2.484471
Snippet Accurate and efficient wind speed forecasting is essential for the stable operation of wind farm and power grids. However, the high volatility of wind speed,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136497
SubjectTerms Intelligent optimization algorithm
Interpretable forecasting model
Multi meteorological features decomposition
Wind speed forecasting
Title A novel interpretable wind speed forecasting based on the multivariate variational mode decomposition and temporal fusion transformer
URI https://dx.doi.org/10.1016/j.energy.2025.136497
Volume 331
WOSCitedRecordID wos001514074100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFwkuCBZWLC_5wK3KKiRO7BwLKloQWiGxoN4iJ3Gkrqqkaptu-QH8b2Y8zqMs4iVxSSsrdtLM1_jz-JsZxl6WfpwEmS3uoo0nApN4SuvMS4xUhTZhEdhqDV8-yIsLNZ8nH0ej6zYWZreUVaX2-2T1X00NbWBsDJ39C3N3g0IDfAejwxHMDsc_Mvx0UtU7s7SJIEhOiMFR1wt0kK9grkJhocn1xuqdcRIr3IYBiQt3sHgG_jmhT3IUYrmcSWFQfu40XiS8pLRWy0nZoM8Ny00QCXaK39bhT-GFmNd0T1L6zvkwb6yJm0UHI-e-Ptf116ZzahvX2ACR7feSbN_Xi2pdu9nXOS-CCJUWFL5JHrU2qqaXMFEkl-9FQhy8pV1g1403Pjkfrs6M_S1neBGU7glS_f6QS_sTDo0jA_ELgPtGt9hRIKNEjdnR9N1s_r5XBylberS7lTbq0koDb17r56xmwFQu77N7bonBpwSNB2xkqmN2p41A3xyzk1kf3Qgnutf75iH7NuUWO_wAOxyxwy12-AA73GKH1xUH7PAhdvgAOxyxww-wwwE7vMUOJ-zwAXYesc9vZ5dvzj1Xp8PLQ19tvSxWuDmc5UkUlTD3a3ggWspMqUJoleg41sGrTBRalKWfAz80ZRYJLWQB698s88MTNq7qyjxmXOZ-WMAaWgKxFnFYqBzjJZWWQEvLws9PWdg-5zR3SeyxlsoybdWKVylZJ0XrpGSdU-Z1vVaUxOU358vWhKkjokQwU0DdL3s--eeeT9nd_g_yjI2368Y8Z7fz3XaxWb9w8PwOzHa2yA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+interpretable+wind+speed+forecasting+based+on+the+multivariate+variational+mode+decomposition+and+temporal+fusion+transformer&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Rui&rft.au=Fang%2C+Haoyu&rft.au=Zeng%2C+Huanze&rft.au=Wu%2C+Binrong&rft.date=2025-09-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=331&rft_id=info:doi/10.1016%2Fj.energy.2025.136497&rft.externalDocID=S0360544225021395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon