A competitive-collaborative nonnegative representation method and its application for face recognition in smart campus

The nonnegative representation-based classification (NRC) method has attracted increasing attention in the field of face recognition. Building upon collaborative representation (CR), NRC incorporates a nonnegative constraint on the representation coefficients, thereby reducing the contribution of ir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms & computational technology Jg. 19
Hauptverfasser: Guo, Tingting, Li, Ziqi, Sun, Jun, Zhang, Yonghong, Xia, Qingfeng, Ren, Ke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: SAGE Publishing 01.07.2025
ISSN:1748-3018, 1748-3026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The nonnegative representation-based classification (NRC) method has attracted increasing attention in the field of face recognition. Building upon collaborative representation (CR), NRC incorporates a nonnegative constraint on the representation coefficients, thereby reducing the contribution of irrelevant training samples and enhancing overall classification performance. Despite these improvements, NRC inherits the same decision-making mechanism as the CR method, resulting in a decoupling of the representation and classification stages. This separation limits the method’s classification effectiveness. Furthermore, the presence of multicollinearity in the nonnegative representation may introduce inaccuracies in classification estimates, further undermining performance. To address these limitations, this paper proposes the competitive-collaborative nonnegative representation (CCNR) model. CCNR integrates two regularization terms: A competitive constraint and a collaborative constraint. The competitive constraint adopts a residual-based strategy during the classification stage, thereby strengthening the connection between representation and classification. This approach enables training samples from different classes to compete in representing the query sample, significantly improving classification performance. In parallel, the collaborative constraint applies an ℓ 2 -norm regularization to the representation coefficients, enhancing the stability of the model’s solution. Moreover, the CCNR model has been effectively deployed in smart campus environments. Extensive comparative experiments conducted on publicly available face datasets validate the effectiveness of the proposed model, consistently demonstrating its competitive performance. Habitually, the source code will be made available on the author’s profile page at https://github.com/li-zi-qi/CCNR .
AbstractList The nonnegative representation-based classification (NRC) method has attracted increasing attention in the field of face recognition. Building upon collaborative representation (CR), NRC incorporates a nonnegative constraint on the representation coefficients, thereby reducing the contribution of irrelevant training samples and enhancing overall classification performance. Despite these improvements, NRC inherits the same decision-making mechanism as the CR method, resulting in a decoupling of the representation and classification stages. This separation limits the method’s classification effectiveness. Furthermore, the presence of multicollinearity in the nonnegative representation may introduce inaccuracies in classification estimates, further undermining performance. To address these limitations, this paper proposes the competitive-collaborative nonnegative representation (CCNR) model. CCNR integrates two regularization terms: A competitive constraint and a collaborative constraint. The competitive constraint adopts a residual-based strategy during the classification stage, thereby strengthening the connection between representation and classification. This approach enables training samples from different classes to compete in representing the query sample, significantly improving classification performance. In parallel, the collaborative constraint applies an ℓ 2 -norm regularization to the representation coefficients, enhancing the stability of the model’s solution. Moreover, the CCNR model has been effectively deployed in smart campus environments. Extensive comparative experiments conducted on publicly available face datasets validate the effectiveness of the proposed model, consistently demonstrating its competitive performance. Habitually, the source code will be made available on the author’s profile page at https://github.com/li-zi-qi/CCNR .
Author Sun, Jun
Zhang, Yonghong
Li, Ziqi
Ren, Ke
Guo, Tingting
Xia, Qingfeng
Author_xml – sequence: 1
  givenname: Tingting
  surname: Guo
  fullname: Guo, Tingting
  organization: Information Construction and Management Centre, Wuxi University, Wuxi, China
– sequence: 2
  givenname: Ziqi
  orcidid: 0000-0003-4694-4456
  surname: Li
  fullname: Li, Ziqi
  organization: School of Automation, Wuxi University, Wuxi, China, Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Wuxi, China
– sequence: 3
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
  organization: Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Wuxi, China, School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
– sequence: 4
  givenname: Yonghong
  surname: Zhang
  fullname: Zhang, Yonghong
  organization: School of Automation, Wuxi University, Wuxi, China
– sequence: 5
  givenname: Qingfeng
  surname: Xia
  fullname: Xia, Qingfeng
  organization: Information Construction and Management Centre, Wuxi University, Wuxi, China, School of Automation, Wuxi University, Wuxi, China
– sequence: 6
  givenname: Ke
  surname: Ren
  fullname: Ren, Ke
  organization: Information Construction and Management Centre, Wuxi University, Wuxi, China
BookMark eNplkc9uwyAMxtHUSeu6PsBuvEA2CElDjlW1f1KlXbZzZMB0VEmIIKu0tx9ppl7mC_4-yz8MviWL3vdIyD1nD5xX1SOvCilYvslLLjYsZ_KKLCcvm8zFJefyhqxjPLIUIq8kF0ty2lLtuwFHN7oTZtq3LSgfYFI0XdPjYc4DDgEj9mOSvqcdjl_eUOgNdWOkMAyt03PJ-kAt6KlF-0PvzqbraewgjFRDN3zHO3JtoY24_jtX5PP56WP3mu3fX952232mBZNjBii10kIW0hRaiPRA5NrqUtVCohBFLhVDpaDelAZKw1FxVlWgSsVSD9ZiRd5mrvFwbIbg0gw_jQfXnA0fDk0ayukWG0BtEssqw2UBtVUSKwBbqTp9LDKTWHxm6eBjDGgvPM6aaQ_Nvz2IXzrkgKU
Cites_doi 10.1109/TCYB.2020.3021712
10.1038/44565
10.3390/math12010052
10.1109/TPAMI.2008.79
10.1023/A:1022627411411
10.1016/j.neucom.2011.08.018
10.1177/17483026211065375
10.1177/17483026211044922
10.1109/CVPR.2016.322
10.1109/LGRS.2023.3282310
10.1109/TPAMI.2005.92
10.1007/s10489-021-02486-0
10.1109/TIP.2023.3322593
10.1016/j.patcog.2018.12.023
10.1561/2200000016
10.1016/j.neucom.2017.09.022
10.1109/TPAMI.2013.236
10.1109/TPAMI.2023.3279378
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1177/17483026251360208
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1748-3026
ExternalDocumentID oai_doaj_org_article_aecdebbfbd184a9fb8e7aaf7b9262e0d
10_1177_17483026251360208
GroupedDBID .4S
.DC
0R~
29J
4.4
54M
5GY
5VS
8G5
AAJPV
AAOTM
AATZT
AAYXX
ABAWP
ABQXT
ABUWG
ACDXX
ACGFS
ACHEB
ACROE
ADBBV
ADEBD
ADMLS
ADOGD
AEDFJ
AEWDL
AFCOW
AFFHD
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AUTPY
AYAKG
AZQEC
BCNDV
BDDNI
BENPR
BPHCQ
CCPQU
CITATION
CKLRP
CS3
DWQXO
EBS
EDO
EJD
F5P
GNUQQ
GROUPED_DOAJ
GUQSH
H13
IL9
IPNFZ
J8X
J9A
K.F
KQ8
M2O
MET
MK~
MV1
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
RIG
ROL
SAUOL
SCDPB
SCNPE
SFC
AASGM
ID FETCH-LOGICAL-c308t-ae8cbc3848d4c33625e1cfc5b938e33428b0ebba965da5d1eb1077ab5b0848e93
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001533832300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-3018
IngestDate Fri Oct 03 12:53:13 EDT 2025
Sat Nov 29 07:43:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-ae8cbc3848d4c33625e1cfc5b938e33428b0ebba965da5d1eb1077ab5b0848e93
ORCID 0000-0003-4694-4456
OpenAccessLink https://doaj.org/article/aecdebbfbd184a9fb8e7aaf7b9262e0d
ParticipantIDs doaj_primary_oai_doaj_org_article_aecdebbfbd184a9fb8e7aaf7b9262e0d
crossref_primary_10_1177_17483026251360208
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of algorithms & computational technology
PublicationYear 2025
Publisher SAGE Publishing
Publisher_xml – name: SAGE Publishing
References Yuan T (e_1_3_3_17_2) 2023; 20
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_11_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_10_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_13_2
  doi: 10.1109/TCYB.2020.3021712
– ident: e_1_3_3_15_2
  doi: 10.1038/44565
– ident: e_1_3_3_18_2
  doi: 10.3390/math12010052
– ident: e_1_3_3_6_2
  doi: 10.1109/TPAMI.2008.79
– ident: e_1_3_3_21_2
  doi: 10.1023/A:1022627411411
– ident: e_1_3_3_7_2
  doi: 10.1016/j.neucom.2011.08.018
– ident: e_1_3_3_8_2
– ident: e_1_3_3_4_2
  doi: 10.1177/17483026211065375
– ident: e_1_3_3_9_2
– ident: e_1_3_3_10_2
– ident: e_1_3_3_2_2
  doi: 10.1177/17483026211044922
– ident: e_1_3_3_11_2
  doi: 10.1109/CVPR.2016.322
– volume: 20
  start-page: 1
  year: 2023
  ident: e_1_3_3_17_2
  article-title: Double discriminative constraint-based affine nonnegative representation for few-shot remote sensing scene classification
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2023.3282310
– ident: e_1_3_3_20_2
  doi: 10.1109/TPAMI.2005.92
– ident: e_1_3_3_16_2
  doi: 10.1007/s10489-021-02486-0
– ident: e_1_3_3_3_2
  doi: 10.1109/TIP.2023.3322593
– ident: e_1_3_3_14_2
  doi: 10.1016/j.patcog.2018.12.023
– ident: e_1_3_3_19_2
  doi: 10.1561/2200000016
– ident: e_1_3_3_12_2
  doi: 10.1016/j.neucom.2017.09.022
– ident: e_1_3_3_22_2
  doi: 10.1109/TPAMI.2013.236
– ident: e_1_3_3_5_2
  doi: 10.1109/TPAMI.2023.3279378
SSID ssj0000327813
Score 2.3100383
Snippet The nonnegative representation-based classification (NRC) method has attracted increasing attention in the field of face recognition. Building upon...
SourceID doaj
crossref
SourceType Open Website
Index Database
Title A competitive-collaborative nonnegative representation method and its application for face recognition in smart campus
URI https://doaj.org/article/aecdebbfbd184a9fb8e7aaf7b9262e0d
Volume 19
WOSCitedRecordID wos001533832300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: M2O
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDqAc9iD9x_hg5eBKK7ZIsyXGKQ8GNHRTmqeTHi-ywMtZuf79J2o2KBy_eSmhKeK-890K--TyE7oBJoE4HzZPUic9QJtGOksQILqwPf0AhQlzf-HgsplM5abX6CpqwGg9cG-5BgbGgtdPW70WUdFoAV8pxHUB3kNoQfVMuW5upGINJj4uMNMeYgbDkK--AuvLlfkb6oTPlj0TU4vXHxDI8RkdNRYgH9UpO0A4Up-hwtMWplmdoPcAm1rdR6JO0fLcGXASpylf9HBGVm-tEBa7bQ2NVWDyrStw6rMa-VsVOmTClURD5wVmBy7k3CTZqvliV5-hj-Pz-9JI0DRMSQ1JRJQqE0YYIKiw1xKcmBplxhmlJBBDidxo69bZUss-sYjbzcTrlXGmmA1UfJLlAu37RcImw0kQLmwo_nVLmmJSWEkWpTbkBzlwH3W-sly9qLkaeNejwX6buoMdg3-2LAWkdB7yj88bR-V-OvvqPj1yjg15o4Bv1tjdot1qu4Bbtm3U1K5fd-A910d7kdTT5_Aaq0tPI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+competitive-collaborative+nonnegative+representation+method+and+its+application+for+face+recognition+in+smart+campus&rft.jtitle=Journal+of+algorithms+%26+computational+technology&rft.au=Tingting+Guo&rft.au=Ziqi+Li&rft.au=Jun+Sun&rft.au=Yonghong+Zhang&rft.date=2025-07-01&rft.pub=SAGE+Publishing&rft.eissn=1748-3026&rft.volume=19&rft_id=info:doi/10.1177%2F17483026251360208&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aecdebbfbd184a9fb8e7aaf7b9262e0d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3018&client=summon