Towards evolutionary knowledge representation under the big data circumstance
Purpose The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to gradually build conceptual models from data. Design/methodology/approach A semantic data model named meaning graph (MGraph) is introduced to rep...
Gespeichert in:
| Veröffentlicht in: | Electronic library Jg. 39; H. 3; S. 392 - 410 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Emerald Publishing Limited
04.11.2021
Emerald Group Publishing Limited |
| Schlagworte: | |
| ISSN: | 0264-0473, 1758-616X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to gradually build conceptual models from data.
Design/methodology/approach
A semantic data model named meaning graph (MGraph) is introduced to represent knowledge concepts to organize the knowledge instances in a graph-based knowledge base. MGraph uses directed acyclic graph–like types as concept schemas to specify the structural features of knowledge with intention variety. It also proposes several specialization mechanisms to enable knowledge evolution. Based on MGraph, a paradigm is introduced to model the evolutionary concept schemas, and a scenario on video semantics modeling is introduced in detail.
Findings
MGraph is fit for the evolution features of representing knowledge from big data and lays the foundation for building a knowledge base under the big data circumstance.
Originality/value
The representation approach based on MGraph can effectively and coherently address the major issues of evolutionary knowledge from big data. The new approach is promising in building a big knowledge base. |
|---|---|
| AbstractList | Purpose
The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to gradually build conceptual models from data.
Design/methodology/approach
A semantic data model named meaning graph (MGraph) is introduced to represent knowledge concepts to organize the knowledge instances in a graph-based knowledge base. MGraph uses directed acyclic graph–like types as concept schemas to specify the structural features of knowledge with intention variety. It also proposes several specialization mechanisms to enable knowledge evolution. Based on MGraph, a paradigm is introduced to model the evolutionary concept schemas, and a scenario on video semantics modeling is introduced in detail.
Findings
MGraph is fit for the evolution features of representing knowledge from big data and lays the foundation for building a knowledge base under the big data circumstance.
Originality/value
The representation approach based on MGraph can effectively and coherently address the major issues of evolutionary knowledge from big data. The new approach is promising in building a big knowledge base. Purpose>The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to gradually build conceptual models from data.Design/methodology/approach>A semantic data model named meaning graph (MGraph) is introduced to represent knowledge concepts to organize the knowledge instances in a graph-based knowledge base. MGraph uses directed acyclic graph–like types as concept schemas to specify the structural features of knowledge with intention variety. It also proposes several specialization mechanisms to enable knowledge evolution. Based on MGraph, a paradigm is introduced to model the evolutionary concept schemas, and a scenario on video semantics modeling is introduced in detail.Findings>MGraph is fit for the evolution features of representing knowledge from big data and lays the foundation for building a knowledge base under the big data circumstance.Originality/value>The representation approach based on MGraph can effectively and coherently address the major issues of evolutionary knowledge from big data. The new approach is promising in building a big knowledge base. |
| Author | Wang, Xiaoguang Wu, Qingfeng Qian, Tieyun Li, Xuhui Li, Yiwen Liu, Liuyan |
| Author_xml | – sequence: 1 givenname: Xuhui surname: Li fullname: Li, Xuhui email: lixuhui@whu.edu.cn – sequence: 2 givenname: Liuyan surname: Liu fullname: Liu, Liuyan email: liuyan661@163.com – sequence: 3 givenname: Xiaoguang surname: Wang fullname: Wang, Xiaoguang email: whu_wxg@126.com – sequence: 4 givenname: Yiwen surname: Li fullname: Li, Yiwen email: liyiwen1999@gmail.com – sequence: 5 givenname: Qingfeng surname: Wu fullname: Wu, Qingfeng email: lianruo504546182@qq.com – sequence: 6 givenname: Tieyun surname: Qian fullname: Qian, Tieyun email: qty@whu.edu.cn |
| BookMark | eNp9kb1PwzAQxS1UJEphZrXE7NYfieOOqCofUhBLkdgsJ76UlNQudkLFf0-isIAQ0xvufvf03p2jifMOELpidM4YVYt1ThgjnHJKqGDqBE1ZlioimXyZoCnlMiE0ycQZOo9xRyllMqNT9LjxRxNsxPDhm66tvTPhE785f2zAbgEHOASI4FozzHDnLATcvgIu6i22pjW4rEPZ7WNrXAkX6LQyTYTLb52h59v1ZnVP8qe7h9VNTkpBVUsMSFhazpJSQZqqtJLLihuVioRXGRRSppIpLotMyCXPWCErq7jiliqTSFsaMUPX491D8O8dxFbvfBdcb6m5FEnfR8aSfmsxbpXBxxig0odQ7_t8mlE9dKbXea966EwPnfVE-oso6zF5G0zd_MPNRw72EExj_zD68RzxBRaLf6M |
| CitedBy_id | crossref_primary_10_1145_3618295 crossref_primary_10_1108_LHT_05_2022_0230 crossref_primary_10_3390_fi14060161 crossref_primary_10_3390_buildings13040971 |
| Cites_doi | 10.1111/j.1365-2575.2005.00193.x 10.1016/j.websem.2003.07.001 10.1109/JBHI.2015.2406883 10.1007/s11192-017-2579-4 10.1145/230538.230540 10.1007/s00799-015-0164-0 10.1109/MIS.2015.56 10.1108/EL-09-2018-0187 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
| DBID | AAYXX CITATION 0-V 7RV 7SC 7XB 8FD 8FE 8FG 8FI ABUWG AFKRA ALSLI ARAPS AZQEC BEC BENPR BGLVJ CCPQU CJNVE CNYFK DWQXO E3H F2A FYUFA GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M0P M1O M2O MBDVC NAPCQ P5Z P62 PHGZM PHGZT PKEHL PPXIY PQEDU PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U |
| DOI | 10.1108/EL-11-2020-0318 |
| DatabaseName | CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 Nursing & Allied Health Database Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials eLibrary ProQuest Central Technology collection ProQuest One Community College Education Collection Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Health Research Premium Collection ProQuest Central Student Research Library Prep (ProQuest) SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Education Database Library Science Database Research Library Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) One Health & Nursing One Education ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Social Sciences ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest One Education Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection elibrary Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Library Science Health Research Premium Collection ProQuest Central Korea Library & Information Science Collection ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Computing Education Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest Education Journals ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest One Education |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science Computer Science Engineering |
| EISSN | 1758-616X |
| EndPage | 410 |
| ExternalDocumentID | 10_1108_EL_11_2020_0318 10.1108/EL-11-2020-0318 |
| GroupedDBID | 0R 29G 3FY 4.4 5GY 5VS 70U 77K 7RV 9F- AADTA AADXL AAGBP AAMCF AAOWE AAUDR AAWTL ABHCV ABIJV ABSDC ABTMD ACGFS ACHQT ACMTK ADBBV ADOMW AEBZA AEDOK AEUCW AJEBP ALMA_UNASSIGNED_HOLDINGS ALSLI APPLU ARAPS ASMFL ASUFR ATGMP AUCOK AVELQ BLEHN BUONS BVLZF CAG CS3 DU5 EBS FNNZZ GEA GEC GEI GMM GMN GQ. HCIFZ HZ IJT IPNFZ J1Y JI- JL0 K7- KLENG M0P M2O O9- TDX TEM TET TGG TMD TMF TMT TN5 V1G WH7 X0 YZZ Z11 Z21 .X0 0-V 0R~ 1XV 77I 8FE 8FG 8FI 8FW 8R4 8R5 AAPSD AAYXX ABEAN ABJNI ABUWG ABXQL ABYQI ACKOT ACXJU ADFRT ADMHG AEMMR AETHF AFFHD AFKRA AFNZV AGZLY AHAFT AHMHQ AIAFM AJFKA AODMV ARALO AZQEC BCU BEC BENPR BGLVJ BKEYQ BPHCQ BVXVI CCPQU CITATION CJNVE CNYFK DWQXO EX3 FYUFA GNUQQ GUQSH H13 HZ~ K6V M1O M42 NAPCQ P62 PCD PHGZM PHGZT PPXIY PQEDU PQGLB PQQKQ PRG PROAC PRQQA Q2X RIG SCAQC SDURG SJFOW UKHRP WOW 7SC 7XB 8FD E3H F2A JQ2 L7M L~C L~D M0N MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c308t-ae6e9d214c8e5585f69f2a85342f7eb66561826b7369271b6fd8282d08a46dca3 |
| IEDL.DBID | TMT |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672782300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0264-0473 |
| IngestDate | Sat Nov 15 11:51:54 EST 2025 Sat Nov 29 07:44:40 EST 2025 Tue Nov 18 22:24:05 EST 2025 Tue Nov 30 13:58:29 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Modeling Big data Knowledge representation |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c308t-ae6e9d214c8e5585f69f2a85342f7eb66561826b7369271b6fd8282d08a46dca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2634110714 |
| PQPubID | 32127 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2634110714 crossref_citationtrail_10_1108_EL_11_2020_0318 emerald_primary_10_1108_EL-11-2020-0318 crossref_primary_10_1108_EL_11_2020_0318 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-04 |
| PublicationDateYYYYMMDD | 2021-11-04 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Electronic library |
| PublicationYear | 2021 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2021110310070123200_ref007) 2018 (key2021110310070123200_ref014) 2016; 23 (key2021110310070123200_ref001) 2013 (key2021110310070123200_ref002) 2019; 8 (key2021110310070123200_ref015) 2015 (key2021110310070123200_ref012) 2014; 27 (key2021110310070123200_ref005) 2005; 15 (key2021110310070123200_ref010) 2019; 37 (key2021110310070123200_ref016) 2018; 114 (key2021110310070123200_ref003) 2002 (key2021110310070123200_ref011) 2016; 17 (key2021110310070123200_ref006) 1996; 14 (key2021110310070123200_ref009) 2017 (key2021110310070123200_ref008) 2003; 1 (key2021110310070123200_ref017) 2015; 19 (key2021110310070123200_ref018) 2015; 30 (key2021110310070123200_ref004) 2015 (key2021110310070123200_ref013) 1999 |
| References_xml | – volume: 15 start-page: 147 issue: 2 year: 2005 ident: key2021110310070123200_ref005 article-title: Towards a cognitive foundation for knowledge representation publication-title: Information Systems Journal doi: 10.1111/j.1365-2575.2005.00193.x – volume: 8 start-page: 29 issue: 9 year: 2019 ident: key2021110310070123200_ref002 article-title: Knowledge graphs: new directions for knowledge representation on the semantic web publication-title: Dagstuhl Reports – start-page: 359 year: 2002 ident: key2021110310070123200_ref003 article-title: Description logics: foundations for class-based knowledge representation – start-page: 1 volume-title: International Conference on Cloud Technologies and Applications (CloudTech ‘15) year: 2015 ident: key2021110310070123200_ref004 article-title: From big data to big knowledge: the art of making big data alive – volume: 1 start-page: 7 issue: 1 year: 2003 ident: key2021110310070123200_ref008 article-title: From SHIQ and RDF to OWL: the making of a web ontology language publication-title: Journal of Web Semantics doi: 10.1016/j.websem.2003.07.001 – volume: 23 start-page: 41 issue: 4 year: 2016 ident: key2021110310070123200_ref014 article-title: Knowledge representation learning with entities, attributes and relations publication-title: IEEE Signal Processing Letters – volume: 19 start-page: 1209 issue: 4 year: 2015 ident: key2021110310070123200_ref017 article-title: Big data, big knowledge: big data for personalized healthcare publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2015.2406883 – volume-title: iConference 2017 Proceedings year: 2017 ident: key2021110310070123200_ref009 article-title: Towards a graph-based data model for semantics evolution – volume-title: The Knowledge Evolution: Expanding Organizational Intelligence year: 2013 ident: key2021110310070123200_ref001 – volume-title: Knowledge Representation: Logical, Philosophical and Computational Foundations year: 1999 ident: key2021110310070123200_ref013 – volume: 114 start-page: 307 issue: 1 year: 2018 ident: key2021110310070123200_ref016 article-title: The co-evolution of knowledge and collaboration networks: the role of the technology life-cycle publication-title: Scientometrics doi: 10.1007/s11192-017-2579-4 – volume: 14 start-page: 268 issue: 3 year: 1996 ident: key2021110310070123200_ref006 article-title: Extending object-oriented systems with roles publication-title: ACM Transactions on Information Systems doi: 10.1145/230538.230540 – volume-title: Smart Health (ICSH ‘18), (Lecture Notes in Computer Science series, Vol. 10983) year: 2018 ident: key2021110310070123200_ref007 article-title: Visualizing knowledge evolution of emerging information technologies in chronic diseases research – volume: 17 start-page: 49 issue: 1 year: 2016 ident: key2021110310070123200_ref011 article-title: A sharing-oriented design strategy for networked knowledge organization systems publication-title: International Journal on Digital Libraries doi: 10.1007/s00799-015-0164-0 – volume: 27 start-page: 443 issue: 2 year: 2014 ident: key2021110310070123200_ref012 article-title: Entity linking with a knowledge base: issues, techniques, and solutions publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 30 start-page: 46 issue: 5 year: 2015 ident: key2021110310070123200_ref018 article-title: Knowledge engineering with big data publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2015.56 – volume: 37 start-page: 386 issue: 3 year: 2019 ident: key2021110310070123200_ref010 article-title: Towards a semantics representation framework for narrative images publication-title: The Electronic Library doi: 10.1108/EL-09-2018-0187 – start-page: 603 volume-title: International Conference on Conceptual Modeling year: 2015 ident: key2021110310070123200_ref015 article-title: Enhancing entity-relationship schemata for conceptual database structure models |
| SSID | ssj0001670 |
| Score | 2.265654 |
| Snippet | Purpose
The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to... Purpose>The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 392 |
| SubjectTerms | Big Data Cognition & reasoning Cognitive Structures Conceptual models Data models Discovery tools Electronic Libraries Engineering Evolution Graphical representations Graphs Knowledge Knowledge base Knowledge bases (artificial intelligence) Knowledge discovery Knowledge management Knowledge organization Knowledge representation Logical Thinking Networks Ontology Pattern Recognition Representation Researchers Resource Description Framework-RDF Schemas Semantic web Semantics Semiotics Software engineering Specialization Teaching Methods Video Technology Web Ontology Language-OWL |
| SummonAdditionalLinks | – databaseName: Nursing & Allied Health Database dbid: 7RV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oetCDKGpE0ezBqJcq3S7b9mSMgXhAYgwSbs12d2tItGB5_H53yhbEqBdPPXTaNPlm59WZ-QDOWV0mLhPKcTVXJkFpmCNFA-H4Lo0Z0ywWOfNcr-13OkG_Hz7ZgtvYtlUWNjE31GoosUZ-Q7mxty6O29yOPhxkjcK_q5ZCYx02XIyNjT77z72FJXa5b2ss2Gzhe3a1DzLfNNs4UEYxeUK1XvFK30Zzl-Y59zmt8n-_dhd2bLRJ7ubqsQdrOq1AuWByIPZgV2D7y1rCCpzaYQZyQey0EqJXSO_DYzfvtR0TPbOKi8KL6hzJF2UWQ00pwTG1jJhAk8SDV4ItqUQOMjl9x8BU6gN4aTW79w-OpWVwpFcPJo7QXIeKukwGumGyjYSHCRXG7TOaIMOKiRAxaYl9j4fUd2OeKJPWUVUPBONKCu8QSukw1UdAjDNUEjcMck8wRaV5iRcyEZikUBrvHVfhuoAlknZnOVJnvEV57lIPombbXCPEMUIcq3C1eGA0X9fxu-ilxfkHyRXlqEKtADmyJ3wcLRE-_vv2CWxR7IPBUjSrQWmSTfUpbMrZZDDOznKF_QRi3e8r priority: 102 providerName: ProQuest |
| Title | Towards evolutionary knowledge representation under the big data circumstance |
| URI | https://www.emerald.com/insight/content/doi/10.1108/EL-11-2020-0318/full/html https://www.proquest.com/docview/2634110714 |
| Volume | 39 |
| WOSCitedRecordID | wos000672782300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald Management 120 customDbUrl: eissn: 1758-616X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: TMT dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1758-616X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: P5Z dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1758-616X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: K7- dateStart: 19980601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Education Database customDbUrl: eissn: 1758-616X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: M0P dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.proquest.com/education providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 1758-616X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: M1O dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1758-616X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: 7RV dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1758-616X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: BENPR dateStart: 19980601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1758-616X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: M2O dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NS8Mw9DGnBy_OT5wfIwdRL3VtmqXtUWUiuM0hU4aXkqapDrYq-_r95mXpRFHw4OWV0jQted-P9wFwwlyZeUykjqd4qh2UhmYpGgon8GjCmGKJMJPnnlpBpxP2-1G3BO2iFsakVS7CMUZOD_IJOql1TNzWUnjZcACn1zRbWBRG0QFC0qxjwLr-Oh0NjUR2kU177d5SLns8sBEXTL0IfNvo54edvuiob4W6n8LaaKCbyj__-yZsWFOUXC5oZwtKKt-GSjHmgViu34ZjW9tAToktXkJkFs93oN0zqbcTouaWjnHxMlhHTN_MosYpJ1i1Niba7iTJ4IVghiqRg7GcjdBOlWoXHm-avetbx05pcKTvhlNHKK6ilHpMhqqhnY-MRxkV2gpgNMOBK9pgRB8mCXwe0cBLeJZqL4-mbigYT6Xw96Ccv-VqH4jWjanEhoPcFyylUm_iR0yE2keUWpknVbgo8BJL28IcJ2kMY-PKuGHcbOlrjMca47FW4Xz5wvuie8fvS88s7n5Y-QVXVTgqCCG2DD-JKdfmgIfVYAd__-YhrFNMkcEoNTuC8nQ8U8ewJufTwWRcg5Xg4akGq1fNTvdB390FjoZtt4vQu0dIEXYbzzVD6R8aoPpq |
| linkProvider | Emerald |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQQIOLAVEWX1guwQax3WSA0IsRSBChVBB3IJjO6gSFGgLiJ_iG_GkTlkE3DhwyiETH5I3a-bNACyzskxdJpTjaq5MglIxKkUD4fguTRjTLBHZ5rmLyK_VgsvL8LQPXnMuDLZV5jYxM9TqTmKNfJNyY29dpNts3z84uDUK_67mKzS6sDjWL88mZWtvHe2b77tC6UG1vnfo2K0CjvTKQccRmutQUZfJQFdMsJzyMKXCeC1GU1wQYgIcjLkT3-Mh9d2Ep8pkJVSVA8G4ksIz5_bDAPMYrxRgYLdaOz3r2X6X-7aqg-0dvmeHCeGunWqEFDaK6Roq0ic_-IUM_O4QMi93MPbf3s84jNp4mux0FWAC-nSzCGP5rgpiTVcRRj4MXizCgqVrkFVi-ViIz1x6Ek7qWTdxm-gnq5oo3Ks_kmwUaE7bahIk4rWICaVJ0rgm2HRLZKMlH28x9JZ6Cs7_5BVMQ6F519QzQIy7VxJnKHJPMEWlOcQLmQhM2itNfJKUYCOHQSztVHZcDnITZ9lZOYirkbnGiJsYcVOC9d4D992BJD-LrllcfSP5CYwlmM9BFVsb1o7fETX7--0lGDqsn0RxdFQ7noNhil0_WHhn81DotB71AgzKp06j3Vq06kLg6q8R-AY0s0u3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RgCp6KBBApIWyByhcDPF6s7YPCPFIBCJEUUUrbma9u0aRINA8qPrX-uuYcdbhocKNAycfPN6D_c3MN-N5AKyJqs58oYznW2kwQKmhSvFIeaHPUyGsSFW-ee5XM2y1ovPzuD0B_4peGCqrLGxibqjNjaYc-TaXaG99arfZzlxZRPuwsXv726MNUvSntVinMYLIif37B8O3_s7xIX7rdc4b9bODI89tGPB0UI0GnrLSxob7Qke2hsQ5k3HGFXowwTNaFoJkh_h3GgYy5qGfysxghMJNNVJCGq0CPPcDTIYBBj0lmNyvt9o_xn7Al6HL8FCpRxi4wUK0d6fepHY2TqEbKdUTn_isMfjBOeQerzHznt_VLHx2PJvtjRRjDiZstwwzxQ4L5kxaGT49GshYhhXXxsG-M9enRbgtpOfh9CyvMu4ze-dUloTHeUmWjwgt2rm6jBr0egwpNks7l4yKcZnu9PTwmii5tgvw801ewSKUujdduwQMaYDRNFtRBkoYrvGQIBYqwnBYI29JK7BVQCLRblo7LQ25SvKorRol9SZeE8JQQhiqwOb4gdvRoJKXRTccxv4j-QSYFVguAJY429ZPHtD15fXbq_ARYZc0j1snX2GaUzEQ5ePFMpQGvaFdgSl9N-j0e9-c5jC4eGsA3gMjz1R6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+evolutionary+knowledge+representation+under+the+big+data+circumstance&rft.jtitle=Electronic+library&rft.au=Li%2C+Xuhui&rft.au=Liu%2C+Liuyan&rft.au=Wang%2C+Xiaoguang&rft.au=Li%2C+Yiwen&rft.date=2021-11-04&rft.issn=0264-0473&rft.volume=39&rft.issue=3&rft.spage=392&rft.epage=410&rft_id=info:doi/10.1108%2FEL-11-2020-0318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_EL_11_2020_0318 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-0473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-0473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-0473&client=summon |