Towards evolutionary knowledge representation under the big data circumstance

Purpose The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to gradually build conceptual models from data. Design/methodology/approach A semantic data model named meaning graph (MGraph) is introduced to rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic library Jg. 39; H. 3; S. 392 - 410
Hauptverfasser: Li, Xuhui, Liu, Liuyan, Wang, Xiaoguang, Li, Yiwen, Wu, Qingfeng, Qian, Tieyun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Emerald Publishing Limited 04.11.2021
Emerald Group Publishing Limited
Schlagworte:
ISSN:0264-0473, 1758-616X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to gradually build conceptual models from data. Design/methodology/approach A semantic data model named meaning graph (MGraph) is introduced to represent knowledge concepts to organize the knowledge instances in a graph-based knowledge base. MGraph uses directed acyclic graph–like types as concept schemas to specify the structural features of knowledge with intention variety. It also proposes several specialization mechanisms to enable knowledge evolution. Based on MGraph, a paradigm is introduced to model the evolutionary concept schemas, and a scenario on video semantics modeling is introduced in detail. Findings MGraph is fit for the evolution features of representing knowledge from big data and lays the foundation for building a knowledge base under the big data circumstance. Originality/value The representation approach based on MGraph can effectively and coherently address the major issues of evolutionary knowledge from big data. The new approach is promising in building a big knowledge base.
AbstractList Purpose The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to gradually build conceptual models from data. Design/methodology/approach A semantic data model named meaning graph (MGraph) is introduced to represent knowledge concepts to organize the knowledge instances in a graph-based knowledge base. MGraph uses directed acyclic graph–like types as concept schemas to specify the structural features of knowledge with intention variety. It also proposes several specialization mechanisms to enable knowledge evolution. Based on MGraph, a paradigm is introduced to model the evolutionary concept schemas, and a scenario on video semantics modeling is introduced in detail. Findings MGraph is fit for the evolution features of representing knowledge from big data and lays the foundation for building a knowledge base under the big data circumstance. Originality/value The representation approach based on MGraph can effectively and coherently address the major issues of evolutionary knowledge from big data. The new approach is promising in building a big knowledge base.
Purpose>The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to gradually build conceptual models from data.Design/methodology/approach>A semantic data model named meaning graph (MGraph) is introduced to represent knowledge concepts to organize the knowledge instances in a graph-based knowledge base. MGraph uses directed acyclic graph–like types as concept schemas to specify the structural features of knowledge with intention variety. It also proposes several specialization mechanisms to enable knowledge evolution. Based on MGraph, a paradigm is introduced to model the evolutionary concept schemas, and a scenario on video semantics modeling is introduced in detail.Findings>MGraph is fit for the evolution features of representing knowledge from big data and lays the foundation for building a knowledge base under the big data circumstance.Originality/value>The representation approach based on MGraph can effectively and coherently address the major issues of evolutionary knowledge from big data. The new approach is promising in building a big knowledge base.
Author Wang, Xiaoguang
Wu, Qingfeng
Qian, Tieyun
Li, Xuhui
Li, Yiwen
Liu, Liuyan
Author_xml – sequence: 1
  givenname: Xuhui
  surname: Li
  fullname: Li, Xuhui
  email: lixuhui@whu.edu.cn
– sequence: 2
  givenname: Liuyan
  surname: Liu
  fullname: Liu, Liuyan
  email: liuyan661@163.com
– sequence: 3
  givenname: Xiaoguang
  surname: Wang
  fullname: Wang, Xiaoguang
  email: whu_wxg@126.com
– sequence: 4
  givenname: Yiwen
  surname: Li
  fullname: Li, Yiwen
  email: liyiwen1999@gmail.com
– sequence: 5
  givenname: Qingfeng
  surname: Wu
  fullname: Wu, Qingfeng
  email: lianruo504546182@qq.com
– sequence: 6
  givenname: Tieyun
  surname: Qian
  fullname: Qian, Tieyun
  email: qty@whu.edu.cn
BookMark eNp9kb1PwzAQxS1UJEphZrXE7NYfieOOqCofUhBLkdgsJ76UlNQudkLFf0-isIAQ0xvufvf03p2jifMOELpidM4YVYt1ThgjnHJKqGDqBE1ZlioimXyZoCnlMiE0ycQZOo9xRyllMqNT9LjxRxNsxPDhm66tvTPhE785f2zAbgEHOASI4FozzHDnLATcvgIu6i22pjW4rEPZ7WNrXAkX6LQyTYTLb52h59v1ZnVP8qe7h9VNTkpBVUsMSFhazpJSQZqqtJLLihuVioRXGRRSppIpLotMyCXPWCErq7jiliqTSFsaMUPX491D8O8dxFbvfBdcb6m5FEnfR8aSfmsxbpXBxxig0odQ7_t8mlE9dKbXea966EwPnfVE-oso6zF5G0zd_MPNRw72EExj_zD68RzxBRaLf6M
CitedBy_id crossref_primary_10_1145_3618295
crossref_primary_10_1108_LHT_05_2022_0230
crossref_primary_10_3390_fi14060161
crossref_primary_10_3390_buildings13040971
Cites_doi 10.1111/j.1365-2575.2005.00193.x
10.1016/j.websem.2003.07.001
10.1109/JBHI.2015.2406883
10.1007/s11192-017-2579-4
10.1145/230538.230540
10.1007/s00799-015-0164-0
10.1109/MIS.2015.56
10.1108/EL-09-2018-0187
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
0-V
7RV
7SC
7XB
8FD
8FE
8FG
8FI
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BEC
BENPR
BGLVJ
CCPQU
CJNVE
CNYFK
DWQXO
E3H
F2A
FYUFA
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M0P
M1O
M2O
MBDVC
NAPCQ
P5Z
P62
PHGZM
PHGZT
PKEHL
PPXIY
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOI 10.1108/EL-11-2020-0318
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
Nursing & Allied Health Database
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
eLibrary
ProQuest Central
Technology collection
ProQuest One Community College
Education Collection
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Health Research Premium Collection
ProQuest Central Student
Research Library Prep (ProQuest)
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Education Database
Library Science Database
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
One Health & Nursing
One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Education
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
elibrary
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Library Science
Health Research Premium Collection
ProQuest Central Korea
Library & Information Science Collection
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
Education Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest One Education
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Computer Science
Engineering
EISSN 1758-616X
EndPage 410
ExternalDocumentID 10_1108_EL_11_2020_0318
10.1108/EL-11-2020-0318
GroupedDBID 0R
29G
3FY
4.4
5GY
5VS
70U
77K
7RV
9F-
AADTA
AADXL
AAGBP
AAMCF
AAOWE
AAUDR
AAWTL
ABHCV
ABIJV
ABSDC
ABTMD
ACGFS
ACHQT
ACMTK
ADBBV
ADOMW
AEBZA
AEDOK
AEUCW
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
APPLU
ARAPS
ASMFL
ASUFR
ATGMP
AUCOK
AVELQ
BLEHN
BUONS
BVLZF
CAG
CS3
DU5
EBS
FNNZZ
GEA
GEC
GEI
GMM
GMN
GQ.
HCIFZ
HZ
IJT
IPNFZ
J1Y
JI-
JL0
K7-
KLENG
M0P
M2O
O9-
TDX
TEM
TET
TGG
TMD
TMF
TMT
TN5
V1G
WH7
X0
YZZ
Z11
Z21
.X0
0-V
0R~
1XV
77I
8FE
8FG
8FI
8FW
8R4
8R5
AAPSD
AAYXX
ABEAN
ABJNI
ABUWG
ABXQL
ABYQI
ACKOT
ACXJU
ADFRT
ADMHG
AEMMR
AETHF
AFFHD
AFKRA
AFNZV
AGZLY
AHAFT
AHMHQ
AIAFM
AJFKA
AODMV
ARALO
AZQEC
BCU
BEC
BENPR
BGLVJ
BKEYQ
BPHCQ
BVXVI
CCPQU
CITATION
CJNVE
CNYFK
DWQXO
EX3
FYUFA
GNUQQ
GUQSH
H13
HZ~
K6V
M1O
M42
NAPCQ
P62
PCD
PHGZM
PHGZT
PPXIY
PQEDU
PQGLB
PQQKQ
PRG
PROAC
PRQQA
Q2X
RIG
SCAQC
SDURG
SJFOW
UKHRP
WOW
7SC
7XB
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c308t-ae6e9d214c8e5585f69f2a85342f7eb66561826b7369271b6fd8282d08a46dca3
IEDL.DBID TMT
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672782300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-0473
IngestDate Sat Nov 15 11:51:54 EST 2025
Sat Nov 29 07:44:40 EST 2025
Tue Nov 18 22:24:05 EST 2025
Tue Nov 30 13:58:29 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Modeling
Big data
Knowledge representation
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-ae6e9d214c8e5585f69f2a85342f7eb66561826b7369271b6fd8282d08a46dca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2634110714
PQPubID 32127
PageCount 19
ParticipantIDs proquest_journals_2634110714
crossref_citationtrail_10_1108_EL_11_2020_0318
emerald_primary_10_1108_EL-11-2020-0318
crossref_primary_10_1108_EL_11_2020_0318
PublicationCentury 2000
PublicationDate 2021-11-04
PublicationDateYYYYMMDD 2021-11-04
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-04
  day: 04
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electronic library
PublicationYear 2021
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2021110310070123200_ref007) 2018
(key2021110310070123200_ref014) 2016; 23
(key2021110310070123200_ref001) 2013
(key2021110310070123200_ref002) 2019; 8
(key2021110310070123200_ref015) 2015
(key2021110310070123200_ref012) 2014; 27
(key2021110310070123200_ref005) 2005; 15
(key2021110310070123200_ref010) 2019; 37
(key2021110310070123200_ref016) 2018; 114
(key2021110310070123200_ref003) 2002
(key2021110310070123200_ref011) 2016; 17
(key2021110310070123200_ref006) 1996; 14
(key2021110310070123200_ref009) 2017
(key2021110310070123200_ref008) 2003; 1
(key2021110310070123200_ref017) 2015; 19
(key2021110310070123200_ref018) 2015; 30
(key2021110310070123200_ref004) 2015
(key2021110310070123200_ref013) 1999
References_xml – volume: 15
  start-page: 147
  issue: 2
  year: 2005
  ident: key2021110310070123200_ref005
  article-title: Towards a cognitive foundation for knowledge representation
  publication-title: Information Systems Journal
  doi: 10.1111/j.1365-2575.2005.00193.x
– volume: 8
  start-page: 29
  issue: 9
  year: 2019
  ident: key2021110310070123200_ref002
  article-title: Knowledge graphs: new directions for knowledge representation on the semantic web
  publication-title: Dagstuhl Reports
– start-page: 359
  year: 2002
  ident: key2021110310070123200_ref003
  article-title: Description logics: foundations for class-based knowledge representation
– start-page: 1
  volume-title: International Conference on Cloud Technologies and Applications (CloudTech ‘15)
  year: 2015
  ident: key2021110310070123200_ref004
  article-title: From big data to big knowledge: the art of making big data alive
– volume: 1
  start-page: 7
  issue: 1
  year: 2003
  ident: key2021110310070123200_ref008
  article-title: From SHIQ and RDF to OWL: the making of a web ontology language
  publication-title: Journal of Web Semantics
  doi: 10.1016/j.websem.2003.07.001
– volume: 23
  start-page: 41
  issue: 4
  year: 2016
  ident: key2021110310070123200_ref014
  article-title: Knowledge representation learning with entities, attributes and relations
  publication-title: IEEE Signal Processing Letters
– volume: 19
  start-page: 1209
  issue: 4
  year: 2015
  ident: key2021110310070123200_ref017
  article-title: Big data, big knowledge: big data for personalized healthcare
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2015.2406883
– volume-title: iConference 2017 Proceedings
  year: 2017
  ident: key2021110310070123200_ref009
  article-title: Towards a graph-based data model for semantics evolution
– volume-title: The Knowledge Evolution: Expanding Organizational Intelligence
  year: 2013
  ident: key2021110310070123200_ref001
– volume-title: Knowledge Representation: Logical, Philosophical and Computational Foundations
  year: 1999
  ident: key2021110310070123200_ref013
– volume: 114
  start-page: 307
  issue: 1
  year: 2018
  ident: key2021110310070123200_ref016
  article-title: The co-evolution of knowledge and collaboration networks: the role of the technology life-cycle
  publication-title: Scientometrics
  doi: 10.1007/s11192-017-2579-4
– volume: 14
  start-page: 268
  issue: 3
  year: 1996
  ident: key2021110310070123200_ref006
  article-title: Extending object-oriented systems with roles
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/230538.230540
– volume-title: Smart Health (ICSH ‘18), (Lecture Notes in Computer Science series, Vol. 10983)
  year: 2018
  ident: key2021110310070123200_ref007
  article-title: Visualizing knowledge evolution of emerging information technologies in chronic diseases research
– volume: 17
  start-page: 49
  issue: 1
  year: 2016
  ident: key2021110310070123200_ref011
  article-title: A sharing-oriented design strategy for networked knowledge organization systems
  publication-title: International Journal on Digital Libraries
  doi: 10.1007/s00799-015-0164-0
– volume: 27
  start-page: 443
  issue: 2
  year: 2014
  ident: key2021110310070123200_ref012
  article-title: Entity linking with a knowledge base: issues, techniques, and solutions
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 30
  start-page: 46
  issue: 5
  year: 2015
  ident: key2021110310070123200_ref018
  article-title: Knowledge engineering with big data
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2015.56
– volume: 37
  start-page: 386
  issue: 3
  year: 2019
  ident: key2021110310070123200_ref010
  article-title: Towards a semantics representation framework for narrative images
  publication-title: The Electronic Library
  doi: 10.1108/EL-09-2018-0187
– start-page: 603
  volume-title: International Conference on Conceptual Modeling
  year: 2015
  ident: key2021110310070123200_ref015
  article-title: Enhancing entity-relationship schemata for conceptual database structure models
SSID ssj0001670
Score 2.265654
Snippet Purpose The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to...
Purpose>The purpose of this paper is to propose a graph-based representation approach for evolutionary knowledge under the big data circumstance, aiming to...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 392
SubjectTerms Big Data
Cognition & reasoning
Cognitive Structures
Conceptual models
Data models
Discovery tools
Electronic Libraries
Engineering
Evolution
Graphical representations
Graphs
Knowledge
Knowledge base
Knowledge bases (artificial intelligence)
Knowledge discovery
Knowledge management
Knowledge organization
Knowledge representation
Logical Thinking
Networks
Ontology
Pattern Recognition
Representation
Researchers
Resource Description Framework-RDF
Schemas
Semantic web
Semantics
Semiotics
Software engineering
Specialization
Teaching Methods
Video Technology
Web Ontology Language-OWL
SummonAdditionalLinks – databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oetCDKGpE0ezBqJcq3S7b9mSMgXhAYgwSbs12d2tItGB5_H53yhbEqBdPPXTaNPlm59WZ-QDOWV0mLhPKcTVXJkFpmCNFA-H4Lo0Z0ywWOfNcr-13OkG_Hz7ZgtvYtlUWNjE31GoosUZ-Q7mxty6O29yOPhxkjcK_q5ZCYx02XIyNjT77z72FJXa5b2ss2Gzhe3a1DzLfNNs4UEYxeUK1XvFK30Zzl-Y59zmt8n-_dhd2bLRJ7ubqsQdrOq1AuWByIPZgV2D7y1rCCpzaYQZyQey0EqJXSO_DYzfvtR0TPbOKi8KL6hzJF2UWQ00pwTG1jJhAk8SDV4ItqUQOMjl9x8BU6gN4aTW79w-OpWVwpFcPJo7QXIeKukwGumGyjYSHCRXG7TOaIMOKiRAxaYl9j4fUd2OeKJPWUVUPBONKCu8QSukw1UdAjDNUEjcMck8wRaV5iRcyEZikUBrvHVfhuoAlknZnOVJnvEV57lIPombbXCPEMUIcq3C1eGA0X9fxu-ilxfkHyRXlqEKtADmyJ3wcLRE-_vv2CWxR7IPBUjSrQWmSTfUpbMrZZDDOznKF_QRi3e8r
  priority: 102
  providerName: ProQuest
Title Towards evolutionary knowledge representation under the big data circumstance
URI https://www.emerald.com/insight/content/doi/10.1108/EL-11-2020-0318/full/html
https://www.proquest.com/docview/2634110714
Volume 39
WOSCitedRecordID wos000672782300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald Management 120
  customDbUrl:
  eissn: 1758-616X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: TMT
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-616X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: P5Z
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1758-616X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: K7-
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Education Database
  customDbUrl:
  eissn: 1758-616X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: M0P
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/education
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1758-616X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: M1O
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1758-616X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: 7RV
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-616X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: BENPR
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1758-616X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: M2O
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NS8Mw9DGnBy_OT5wfIwdRL3VtmqXtUWUiuM0hU4aXkqapDrYq-_r95mXpRFHw4OWV0jQted-P9wFwwlyZeUykjqd4qh2UhmYpGgon8GjCmGKJMJPnnlpBpxP2-1G3BO2iFsakVS7CMUZOD_IJOql1TNzWUnjZcACn1zRbWBRG0QFC0qxjwLr-Oh0NjUR2kU177d5SLns8sBEXTL0IfNvo54edvuiob4W6n8LaaKCbyj__-yZsWFOUXC5oZwtKKt-GSjHmgViu34ZjW9tAToktXkJkFs93oN0zqbcTouaWjnHxMlhHTN_MosYpJ1i1Niba7iTJ4IVghiqRg7GcjdBOlWoXHm-avetbx05pcKTvhlNHKK6ilHpMhqqhnY-MRxkV2gpgNMOBK9pgRB8mCXwe0cBLeJZqL4-mbigYT6Xw96Ccv-VqH4jWjanEhoPcFyylUm_iR0yE2keUWpknVbgo8BJL28IcJ2kMY-PKuGHcbOlrjMca47FW4Xz5wvuie8fvS88s7n5Y-QVXVTgqCCG2DD-JKdfmgIfVYAd__-YhrFNMkcEoNTuC8nQ8U8ewJufTwWRcg5Xg4akGq1fNTvdB390FjoZtt4vQu0dIEXYbzzVD6R8aoPpq
linkProvider Emerald
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQQIOLAVEWX1guwQax3WSA0IsRSBChVBB3IJjO6gSFGgLiJ_iG_GkTlkE3DhwyiETH5I3a-bNACyzskxdJpTjaq5MglIxKkUD4fguTRjTLBHZ5rmLyK_VgsvL8LQPXnMuDLZV5jYxM9TqTmKNfJNyY29dpNts3z84uDUK_67mKzS6sDjWL88mZWtvHe2b77tC6UG1vnfo2K0CjvTKQccRmutQUZfJQFdMsJzyMKXCeC1GU1wQYgIcjLkT3-Mh9d2Ep8pkJVSVA8G4ksIz5_bDAPMYrxRgYLdaOz3r2X6X-7aqg-0dvmeHCeGunWqEFDaK6Roq0ic_-IUM_O4QMi93MPbf3s84jNp4mux0FWAC-nSzCGP5rgpiTVcRRj4MXizCgqVrkFVi-ViIz1x6Ek7qWTdxm-gnq5oo3Ks_kmwUaE7bahIk4rWICaVJ0rgm2HRLZKMlH28x9JZ6Cs7_5BVMQ6F519QzQIy7VxJnKHJPMEWlOcQLmQhM2itNfJKUYCOHQSztVHZcDnITZ9lZOYirkbnGiJsYcVOC9d4D992BJD-LrllcfSP5CYwlmM9BFVsb1o7fETX7--0lGDqsn0RxdFQ7noNhil0_WHhn81DotB71AgzKp06j3Vq06kLg6q8R-AY0s0u3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RgCp6KBBApIWyByhcDPF6s7YPCPFIBCJEUUUrbma9u0aRINA8qPrX-uuYcdbhocKNAycfPN6D_c3MN-N5AKyJqs58oYznW2kwQKmhSvFIeaHPUyGsSFW-ee5XM2y1ovPzuD0B_4peGCqrLGxibqjNjaYc-TaXaG99arfZzlxZRPuwsXv726MNUvSntVinMYLIif37B8O3_s7xIX7rdc4b9bODI89tGPB0UI0GnrLSxob7Qke2hsQ5k3HGFXowwTNaFoJkh_h3GgYy5qGfysxghMJNNVJCGq0CPPcDTIYBBj0lmNyvt9o_xn7Al6HL8FCpRxi4wUK0d6fepHY2TqEbKdUTn_isMfjBOeQerzHznt_VLHx2PJvtjRRjDiZstwwzxQ4L5kxaGT49GshYhhXXxsG-M9enRbgtpOfh9CyvMu4ze-dUloTHeUmWjwgt2rm6jBr0egwpNks7l4yKcZnu9PTwmii5tgvw801ewSKUujdduwQMaYDRNFtRBkoYrvGQIBYqwnBYI29JK7BVQCLRblo7LQ25SvKorRol9SZeE8JQQhiqwOb4gdvRoJKXRTccxv4j-QSYFVguAJY429ZPHtD15fXbq_ARYZc0j1snX2GaUzEQ5ePFMpQGvaFdgSl9N-j0e9-c5jC4eGsA3gMjz1R6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+evolutionary+knowledge+representation+under+the+big+data+circumstance&rft.jtitle=Electronic+library&rft.au=Li%2C+Xuhui&rft.au=Liu%2C+Liuyan&rft.au=Wang%2C+Xiaoguang&rft.au=Li%2C+Yiwen&rft.date=2021-11-04&rft.issn=0264-0473&rft.volume=39&rft.issue=3&rft.spage=392&rft.epage=410&rft_id=info:doi/10.1108%2FEL-11-2020-0318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_EL_11_2020_0318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-0473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-0473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-0473&client=summon