Application of genetic programming in the identification of tool wear

Purpose The purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear. Design/methodology/approach In this paper, genetic programming (GP), which is originally used to solve the symbolic regression problem, is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering computations Jg. 38; H. 6; S. 2900 - 2920
Hauptverfasser: Wang, Hao, Dong, Guangming, Chen, Jin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bradford Emerald Publishing Limited 09.07.2021
Emerald Group Publishing Limited
Schlagworte:
ISSN:0264-4401, 1758-7077
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose The purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear. Design/methodology/approach In this paper, genetic programming (GP), which is originally used to solve the symbolic regression problem, is used to build the regression model related to tool wear with the strong regression ability. GP is improved in genetic operation and weighted matrix. The performance of GP is verified in the tool vibration, force and acoustic emission data provided by 2010 prognostics health management. Findings In result, the regression model discovered by GP can identify the state of tool wear. Compared to other regression algorithms, e.g. support vector regression and polynomial regression, the identification of GP is more precise. Research limitations/implications The regression models built in this paper can only make an assessment of the current wear state with current signals of tool. It cannot predict or estimate the tool wear after the current state. In addition, the generalization of model has some limitations. The performance of models is just proved in the signals from the same type of tools and under the same work condition, and different tools and different work conditions may have influences on the performance of models. Originality/value In this study, the discovered regression model can identify the state of tool wear precisely, and the identification performances of model applied in other tools are also excellent. It can provide a significant information about the health of tool, so the tools can be replaced or repaired in time, and the loss caused by tool damage can be avoided.
AbstractList PurposeThe purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear.Design/methodology/approachIn this paper, genetic programming (GP), which is originally used to solve the symbolic regression problem, is used to build the regression model related to tool wear with the strong regression ability. GP is improved in genetic operation and weighted matrix. The performance of GP is verified in the tool vibration, force and acoustic emission data provided by 2010 prognostics health management.FindingsIn result, the regression model discovered by GP can identify the state of tool wear. Compared to other regression algorithms, e.g. support vector regression and polynomial regression, the identification of GP is more precise.Research limitations/implicationsThe regression models built in this paper can only make an assessment of the current wear state with current signals of tool. It cannot predict or estimate the tool wear after the current state. In addition, the generalization of model has some limitations. The performance of models is just proved in the signals from the same type of tools and under the same work condition, and different tools and different work conditions may have influences on the performance of models.Originality/valueIn this study, the discovered regression model can identify the state of tool wear precisely, and the identification performances of model applied in other tools are also excellent. It can provide a significant information about the health of tool, so the tools can be replaced or repaired in time, and the loss caused by tool damage can be avoided.
Purpose The purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear. Design/methodology/approach In this paper, genetic programming (GP), which is originally used to solve the symbolic regression problem, is used to build the regression model related to tool wear with the strong regression ability. GP is improved in genetic operation and weighted matrix. The performance of GP is verified in the tool vibration, force and acoustic emission data provided by 2010 prognostics health management. Findings In result, the regression model discovered by GP can identify the state of tool wear. Compared to other regression algorithms, e.g. support vector regression and polynomial regression, the identification of GP is more precise. Research limitations/implications The regression models built in this paper can only make an assessment of the current wear state with current signals of tool. It cannot predict or estimate the tool wear after the current state. In addition, the generalization of model has some limitations. The performance of models is just proved in the signals from the same type of tools and under the same work condition, and different tools and different work conditions may have influences on the performance of models. Originality/value In this study, the discovered regression model can identify the state of tool wear precisely, and the identification performances of model applied in other tools are also excellent. It can provide a significant information about the health of tool, so the tools can be replaced or repaired in time, and the loss caused by tool damage can be avoided.
Author Chen, Jin
Dong, Guangming
Wang, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  email: 2018wanghao@sjtu.edu.cn
– sequence: 2
  givenname: Guangming
  surname: Dong
  fullname: Dong, Guangming
  email: gmdong@sjtu.edu.cn
– sequence: 3
  givenname: Jin
  surname: Chen
  fullname: Chen, Jin
  email: jinchen@sjtu.edu.cn
BookMark eNp9kb1PwzAQxS1UJNrCzBqJOe05X07GKgofUiUWmC3HPhdXiR0cV4j_npQyAEIsd8v73T29tyAz6ywSck1hRSmU66aOoYwTSCCGjMEZmVOWlzEDxmZkDkmRxVkG9IIsxnEPACxNYU6azTB0RopgnI2cjnZoMRgZDd7tvOh7Y3eRsVF4wcgotMHob-LgXBe9ofCX5FyLbsSrr70kz7fNU30fbx_vHurNNpYplCEWjJaKgdYKlEqqTOcASmolWYFUKC0rprGVEpEVZQIqpRrzNGOtbKsWizZdkpvT3cne6wHHwPfu4O30kid5VtEkL3M6qfKTSno3jh41lyZ8mg5emI5T4MfEeFPzaR4T48fEJm79ixu86YV__4dYnQjs0YtO_QH8KCX9AAGGfeM
CitedBy_id crossref_primary_10_1016_j_probengmech_2024_103698
crossref_primary_10_1007_s00170_023_11832_0
crossref_primary_10_1016_j_rcim_2025_103065
crossref_primary_10_1016_j_jmsy_2025_02_021
crossref_primary_10_1088_1361_6501_ac22ee
crossref_primary_10_1007_s00170_025_15919_8
Cites_doi 10.1109/TEVC.2008.926486
10.1109/TIE.2013.2270212
10.1109/ICASSP.2015.7178923
10.1016/S0890-6955(96)00091-0
10.3788/OPE.20152305.1314
10.1016/S0952-1976(02)00013-1
10.1016/j.jmsy.2015.03.005
10.1016/j.neucom.2017.02.045
10.1016/j.rcim.2016.05.010
10.1016/j.engappai.2008.02.001
10.1016/S0890-6955(87)80052-4
10.1007/s10845-015-1155-0
10.1016/j.eswa.2015.05.008
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited 2021
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited 2021
DBID AAYXX
CITATION
7SC
7TB
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1108/EC-08-2020-0470
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest_ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1758-7077
EndPage 2920
ExternalDocumentID 10_1108_EC_08_2020_0470
10.1108/EC-08-2020-0470
GroupedDBID 02
0R
29G
4.4
5GY
5VS
70U
7WY
9E0
AADTA
AADXL
AAGBP
AAMCF
AATHL
AAUDR
ABFLS
ABIJV
ABPTK
ABSDC
ACGFS
ACGOD
ACIWK
ADOMW
AEBZA
AENEX
AEUCW
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASMFL
AUCOK
BPQFQ
BUONS
CAG
CS3
DU5
EBS
ECCUG
FNNZZ
GEI
GEL
GQ.
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HZ
IPNFZ
J1Y
JI-
JL0
K6
K7-
KBGRL
M0C
M2P
O9-
P2P
RIG
RWL
TAE
TN5
U5U
UNMZH
V1G
0R~
8AO
8FE
8FG
8FW
8R4
8R5
AAYXX
ABJCF
ABJNI
ABKQV
ABYQI
ACBEA
ACZLT
ADFRT
AFFHD
AFKRA
AHMHQ
AODMV
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
H13
HZ~
IJT
K6V
K6~
L6V
M42
M7S
P62
PHGZM
PHGZT
PQBIZ
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
SBBZN
~02
7SC
7TB
7XB
8FD
FR3
JQ2
KR7
L.-
L.0
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c308t-a718d70ffd0dd294f500dcfdc76e1adfc97febccee76820d31fe5347bcb9be6b3
IEDL.DBID M7S
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614560600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-4401
IngestDate Mon Nov 10 03:11:15 EST 2025
Tue Nov 18 22:44:21 EST 2025
Sat Nov 29 07:42:01 EST 2025
Tue Nov 30 13:57:06 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Support vector regression
Identification
Detection
Genetic programming
Polynomial regression
Tool wear
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-a718d70ffd0dd294f500dcfdc76e1adfc97febccee76820d31fe5347bcb9be6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2549125851
PQPubID 26043
PageCount 21
ParticipantIDs crossref_citationtrail_10_1108_EC_08_2020_0470
proquest_journals_2549125851
crossref_primary_10_1108_EC_08_2020_0470
emerald_primary_10_1108_EC-08-2020-0470
PublicationCentury 2000
PublicationDate 2021-07-09
PublicationDateYYYYMMDD 2021-07-09
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-09
  day: 09
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Engineering computations
PublicationYear 2021
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2021070808323074400_ref011) 2005; 45
(key2021070808323074400_ref009) 2014; 61
(key2021070808323074400_ref006) 2011; 30
(key2021070808323074400_ref013) 2015; 23
(key2021070808323074400_ref015) 2018
(key2021070808323074400_ref003) 1987; 27
(key2021070808323074400_ref019) 2008; 21
(key2021070808323074400_ref023) 2017; 17
(key2021070808323074400_ref016) 2009; 13
(key2021070808323074400_ref018) 2017; 45
(key2021070808323074400_ref004) 2017; 28
(key2021070808323074400_ref020) 2017; 139
(key2021070808323074400_ref007) 2017; 240
(key2021070808323074400_ref017) 2015; 36
(key2021070808323074400_ref014) 2001; 14
(key2021070808323074400_ref005) 2015; 26
(key2021070808323074400_ref021) 2016; 28
(key2021070808323074400_ref008) 2010
key2021070808323074400_ref012
(key2021070808323074400_ref001) 1997; 37
(key2021070808323074400_ref002) 1998
(key2021070808323074400_ref010) 2015; 42
(key2021070808323074400_ref022) 2015
References_xml – volume: 13
  start-page: 333
  issue: 2
  year: 2009
  ident: key2021070808323074400_ref016
  article-title: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.926486
– volume-title: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and Its Applications
  year: 1998
  ident: key2021070808323074400_ref002
– volume: 61
  start-page: 2464
  issue: 5
  year: 2014
  ident: key2021070808323074400_ref009
  article-title: Discovering prognostic features using genetic programming in remaining useful life prediction
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2013.2270212
– volume: 28
  start-page: 132
  issue: 1
  year: 2016
  ident: key2021070808323074400_ref021
  article-title: An intelligent tool wear estimation technology based on multi-feature and support vector machine
  publication-title: China Mechanical Engineering
– start-page: 5004
  volume-title: 2015 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
  year: 2015
  ident: key2021070808323074400_ref022
  article-title: Speech recognition with prediction-adaptation-correction recurrent neural networks
  doi: 10.1109/ICASSP.2015.7178923
– volume: 37
  start-page: 1475
  issue: 10
  year: 1997
  ident: key2021070808323074400_ref001
  article-title: Calibrated method for ultrasonic on-line monitoring of gradual wear during turning operations
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/S0890-6955(96)00091-0
– volume: 23
  start-page: 1314
  issue: 5
  year: 2015
  ident: key2021070808323074400_ref013
  article-title: Detection and control for tool wear based on neural network and genetic algorithm
  publication-title: Optics and Precision Engineering
  doi: 10.3788/OPE.20152305.1314
– volume: 45
  start-page: 467
  issue: 4/5
  year: 2005
  ident: key2021070808323074400_ref011
  article-title: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
  publication-title: International Journal of Machine Tools and Manufacture
– volume: 14
  start-page: 727
  issue: 6
  year: 2001
  ident: key2021070808323074400_ref014
  article-title: Genetic programming: principles and applications
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/S0952-1976(02)00013-1
– volume: 36
  start-page: 35
  year: 2015
  ident: key2021070808323074400_ref017
  article-title: Enhanced particle filter for tool wear prediction
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2015.03.005
– volume: 240
  start-page: 98
  year: 2017
  ident: key2021070808323074400_ref007
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
– volume: 139
  issue: 7
  year: 2017
  ident: key2021070808323074400_ref020
  article-title: A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests
  publication-title: Journal of Manufacturing Science and Engineering
– volume: 30
  start-page: 124
  issue: 1
  year: 2011
  ident: key2021070808323074400_ref006
  article-title: Several new methods for features extraction based on genetic algorithm and their application
  publication-title: Mechanical Science and Technology for Aerospace Engineering
– volume: 17
  issue: 2
  year: 2017
  ident: key2021070808323074400_ref023
  article-title: Learning to monitor machine health with convolutional Bi-Directional LSTM networks
  publication-title: Sensors
– volume-title: Annual Conference of the Prognostics and Health Management Society
  year: 2010
  ident: key2021070808323074400_ref008
  article-title: Tool wear estimation using support vector machines in ball-nose end milling
– volume: 45
  start-page: 47
  year: 2017
  ident: key2021070808323074400_ref018
  article-title: Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2016.05.010
– volume: 21
  start-page: 1347
  issue: 8
  year: 2008
  ident: key2021070808323074400_ref019
  article-title: Direct transformation of coordinates for GPS positioning using the techniques of genetic programming and symbolic regression
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2008.02.001
– volume: 27
  start-page: 225
  issue: 2
  year: 1987
  ident: key2021070808323074400_ref003
  article-title: An investigation of methods for the on-line estimation of tool wear
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/S0890-6955(87)80052-4
– volume: 26
  start-page: 217
  issue: 2
  year: 2015
  ident: key2021070808323074400_ref005
  article-title: Application of regression algorithm of LS-SVM in tool wear prediction
  publication-title: China Mechanical Engineering
– ident: key2021070808323074400_ref012
– volume: 28
  start-page: 1285
  issue: 6
  year: 2017
  ident: key2021070808323074400_ref004
  article-title: Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1155-0
– start-page: 314
  volume-title: Proceedings of the 2018 3rd International Workshop on Materials Engineering and Computer Sciences (Iwmecs 2018)
  year: 2018
  ident: key2021070808323074400_ref015
  article-title: Research on tool wear prediction based on deep residual network
– volume: 42
  start-page: 7026
  issue: 20
  year: 2015
  ident: key2021070808323074400_ref010
  article-title: Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.05.008
SSID ssj0007330
Score 2.2906237
Snippet Purpose The purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear....
PurposeThe purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2900
SubjectTerms Acoustic emission
Algorithms
Fault diagnosis
Genetic algorithms
Machine learning
Mutation
Neural networks
Polynomials
Population
Regression models
Signal processing
Support vector machines
Tool wear
Title Application of genetic programming in the identification of tool wear
URI https://www.emerald.com/insight/content/doi/10.1108/EC-08-2020-0470/full/html
https://www.proquest.com/docview/2549125851
Volume 38
WOSCitedRecordID wos000614560600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: 7WY
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection (ProQuest)
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M0C
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: P5Z
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: K7-
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M7S
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: BENPR
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M2P
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60etCDb7E-yh4EvaxunpucREtEUEvxgY9LyL6goI22Vf--s3HbqqgXLwMhsxDy7Tx3dgZg21MyFihl1Fd-SkOOAWsiBae-8bSMokIKWSF9xlut5PY2bbuEW9-VVQ51YqWoVSltjnzfBjJojNFBOHh6pnZqlD1ddSM0JmHKdknwqtK9y5Em5kHgciwhDTGQcK197OSbrGkTg74NnlhoJxV_skrfruaO1XNlc47n__u1CzDnvE1y-LE9FmFCd5dg3nmexMl1fwlmP7UlXIbscHyqTUpDcI_Zq47E1XI9IhPpdAm6jqSjXLXRiHlQlg_kDeVnBa6Ps6vmCXXjFqgMWDKgBZopxZkxiikELjQRY0oaJXmsvUIZmXKjhUSriiGKz1TgGR0FIRdSpELHIliFWrfs6jUgPDaSJTpWphBhnKgiNj5LisAkYYQ6hNVhb_i7c-l6kduRGA95FZOwJM-aOVKLT27xqcPuaMHTRxuO31l3HH4_cH4BvQ6bQ_ByJ7n9fIzc-t-vN2DGt_UtNtWbbkJt0HvRWzAtXwedfq8Bk_zmrgFTR1mrfYFPp5wiPWdNS_12o9qoSNvR_Tupqumi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BigQ9lAKtCKV0D0VwMWzWa699qBBKg0CkEQeQEBfjfUmRQgwkJeJP8Rs766wTQNAbBy6-eGx5vd9-89jZGYCfDa1iiassYJqlARfosCZKioDZhlFRlCupyplui04nOT9PT2bgoToL49IqK04siVoXysXId50jg8oYDYS965vAdY1yu6tVC40xLI7N_QhdtsGvo984v5uMHbROm4eB7yoQqJAmwyBHNtaCWqupxu_jNqJUK6uViE0j11alwhqpUHmgJc6oDhvWRCEXUslUmliG-N5Z-MA5o65jwkl0MWF-EYY-psMDjo6LLyXkOu20mi4QyZyzRrnrjPxICz47CjxVB6WOO1h8b3_nM3zy1jTZH8N_CWZMfxkWvWVNPG8NluHjo7KLK9Dan-7ak8ISXEPuKCfxuWpXKES6fYKmMelqn001ER4WRY-McKhf4OxNhvYVav2ib1aBiNgqmphY21zyONF5bBlN8tAmPEKOpHXYqaY3U77Wumv50ctKn4smWauZ4dXhIXN4qMP25IHrcZmR10W3PF5ekHwCsjqsV2DJPDMNsilS1v5_-wfMH57-aWfto87xN1hgLpfHhbXTdagNb_-a7zCn7obdwe1GuQgIXL41rv4B_slFyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+genetic+programming+in+the+identification+of+tool+wear&rft.jtitle=Engineering+computations&rft.au=Wang%2C+Hao&rft.au=Dong%2C+Guangming&rft.au=Chen%2C+Jin&rft.date=2021-07-09&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0264-4401&rft.eissn=1758-7077&rft.volume=38&rft.issue=6&rft.spage=2900&rft.epage=2920&rft_id=info:doi/10.1108%2FEC-08-2020-0470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon