Application of genetic programming in the identification of tool wear
Purpose The purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear. Design/methodology/approach In this paper, genetic programming (GP), which is originally used to solve the symbolic regression problem, is use...
Gespeichert in:
| Veröffentlicht in: | Engineering computations Jg. 38; H. 6; S. 2900 - 2920 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bradford
Emerald Publishing Limited
09.07.2021
Emerald Group Publishing Limited |
| Schlagworte: | |
| ISSN: | 0264-4401, 1758-7077 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
The purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear.
Design/methodology/approach
In this paper, genetic programming (GP), which is originally used to solve the symbolic regression problem, is used to build the regression model related to tool wear with the strong regression ability. GP is improved in genetic operation and weighted matrix. The performance of GP is verified in the tool vibration, force and acoustic emission data provided by 2010 prognostics health management.
Findings
In result, the regression model discovered by GP can identify the state of tool wear. Compared to other regression algorithms, e.g. support vector regression and polynomial regression, the identification of GP is more precise.
Research limitations/implications
The regression models built in this paper can only make an assessment of the current wear state with current signals of tool. It cannot predict or estimate the tool wear after the current state. In addition, the generalization of model has some limitations. The performance of models is just proved in the signals from the same type of tools and under the same work condition, and different tools and different work conditions may have influences on the performance of models.
Originality/value
In this study, the discovered regression model can identify the state of tool wear precisely, and the identification performances of model applied in other tools are also excellent. It can provide a significant information about the health of tool, so the tools can be replaced or repaired in time, and the loss caused by tool damage can be avoided. |
|---|---|
| AbstractList | PurposeThe purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear.Design/methodology/approachIn this paper, genetic programming (GP), which is originally used to solve the symbolic regression problem, is used to build the regression model related to tool wear with the strong regression ability. GP is improved in genetic operation and weighted matrix. The performance of GP is verified in the tool vibration, force and acoustic emission data provided by 2010 prognostics health management.FindingsIn result, the regression model discovered by GP can identify the state of tool wear. Compared to other regression algorithms, e.g. support vector regression and polynomial regression, the identification of GP is more precise.Research limitations/implicationsThe regression models built in this paper can only make an assessment of the current wear state with current signals of tool. It cannot predict or estimate the tool wear after the current state. In addition, the generalization of model has some limitations. The performance of models is just proved in the signals from the same type of tools and under the same work condition, and different tools and different work conditions may have influences on the performance of models.Originality/valueIn this study, the discovered regression model can identify the state of tool wear precisely, and the identification performances of model applied in other tools are also excellent. It can provide a significant information about the health of tool, so the tools can be replaced or repaired in time, and the loss caused by tool damage can be avoided. Purpose The purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear. Design/methodology/approach In this paper, genetic programming (GP), which is originally used to solve the symbolic regression problem, is used to build the regression model related to tool wear with the strong regression ability. GP is improved in genetic operation and weighted matrix. The performance of GP is verified in the tool vibration, force and acoustic emission data provided by 2010 prognostics health management. Findings In result, the regression model discovered by GP can identify the state of tool wear. Compared to other regression algorithms, e.g. support vector regression and polynomial regression, the identification of GP is more precise. Research limitations/implications The regression models built in this paper can only make an assessment of the current wear state with current signals of tool. It cannot predict or estimate the tool wear after the current state. In addition, the generalization of model has some limitations. The performance of models is just proved in the signals from the same type of tools and under the same work condition, and different tools and different work conditions may have influences on the performance of models. Originality/value In this study, the discovered regression model can identify the state of tool wear precisely, and the identification performances of model applied in other tools are also excellent. It can provide a significant information about the health of tool, so the tools can be replaced or repaired in time, and the loss caused by tool damage can be avoided. |
| Author | Chen, Jin Dong, Guangming Wang, Hao |
| Author_xml | – sequence: 1 givenname: Hao surname: Wang fullname: Wang, Hao email: 2018wanghao@sjtu.edu.cn – sequence: 2 givenname: Guangming surname: Dong fullname: Dong, Guangming email: gmdong@sjtu.edu.cn – sequence: 3 givenname: Jin surname: Chen fullname: Chen, Jin email: jinchen@sjtu.edu.cn |
| BookMark | eNp9kb1PwzAQxS1UJNrCzBqJOe05X07GKgofUiUWmC3HPhdXiR0cV4j_npQyAEIsd8v73T29tyAz6ywSck1hRSmU66aOoYwTSCCGjMEZmVOWlzEDxmZkDkmRxVkG9IIsxnEPACxNYU6azTB0RopgnI2cjnZoMRgZDd7tvOh7Y3eRsVF4wcgotMHob-LgXBe9ofCX5FyLbsSrr70kz7fNU30fbx_vHurNNpYplCEWjJaKgdYKlEqqTOcASmolWYFUKC0rprGVEpEVZQIqpRrzNGOtbKsWizZdkpvT3cne6wHHwPfu4O30kid5VtEkL3M6qfKTSno3jh41lyZ8mg5emI5T4MfEeFPzaR4T48fEJm79ixu86YV__4dYnQjs0YtO_QH8KCX9AAGGfeM |
| CitedBy_id | crossref_primary_10_1016_j_probengmech_2024_103698 crossref_primary_10_1007_s00170_023_11832_0 crossref_primary_10_1016_j_rcim_2025_103065 crossref_primary_10_1016_j_jmsy_2025_02_021 crossref_primary_10_1088_1361_6501_ac22ee crossref_primary_10_1007_s00170_025_15919_8 |
| Cites_doi | 10.1109/TEVC.2008.926486 10.1109/TIE.2013.2270212 10.1109/ICASSP.2015.7178923 10.1016/S0890-6955(96)00091-0 10.3788/OPE.20152305.1314 10.1016/S0952-1976(02)00013-1 10.1016/j.jmsy.2015.03.005 10.1016/j.neucom.2017.02.045 10.1016/j.rcim.2016.05.010 10.1016/j.engappai.2008.02.001 10.1016/S0890-6955(87)80052-4 10.1007/s10845-015-1155-0 10.1016/j.eswa.2015.05.008 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited 2021 |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited 2021 |
| DBID | AAYXX CITATION 7SC 7TB 7WY 7WZ 7XB 8AO 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 F~G GNUQQ HCIFZ JQ2 K6~ K7- KR7 L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1108/EC-08-2020-0470 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest_ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1758-7077 |
| EndPage | 2920 |
| ExternalDocumentID | 10_1108_EC_08_2020_0470 10.1108/EC-08-2020-0470 |
| GroupedDBID | 02 0R 29G 4.4 5GY 5VS 70U 7WY 9E0 AADTA AADXL AAGBP AAMCF AATHL AAUDR ABFLS ABIJV ABPTK ABSDC ACGFS ACGOD ACIWK ADOMW AEBZA AENEX AEUCW AFYHH AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS ARAPS ASMFL AUCOK BPQFQ BUONS CAG CS3 DU5 EBS ECCUG FNNZZ GEI GEL GQ. GROUPED_ABI_INFORM_COMPLETE HCIFZ HZ IPNFZ J1Y JI- JL0 K6 K7- KBGRL M0C M2P O9- P2P RIG RWL TAE TN5 U5U UNMZH V1G 0R~ 8AO 8FE 8FG 8FW 8R4 8R5 AAYXX ABJCF ABJNI ABKQV ABYQI ACBEA ACZLT ADFRT AFFHD AFKRA AHMHQ AODMV AZQEC BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ H13 HZ~ IJT K6V K6~ L6V M42 M7S P62 PHGZM PHGZT PQBIZ PQGLB PQQKQ PROAC PTHSS Q2X SBBZN ~02 7SC 7TB 7XB 8FD FR3 JQ2 KR7 L.- L.0 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c308t-a718d70ffd0dd294f500dcfdc76e1adfc97febccee76820d31fe5347bcb9be6b3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614560600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0264-4401 |
| IngestDate | Mon Nov 10 03:11:15 EST 2025 Tue Nov 18 22:44:21 EST 2025 Sat Nov 29 07:42:01 EST 2025 Tue Nov 30 13:57:06 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Support vector regression Identification Detection Genetic programming Polynomial regression Tool wear |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c308t-a718d70ffd0dd294f500dcfdc76e1adfc97febccee76820d31fe5347bcb9be6b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2549125851 |
| PQPubID | 26043 |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1108_EC_08_2020_0470 proquest_journals_2549125851 crossref_primary_10_1108_EC_08_2020_0470 emerald_primary_10_1108_EC-08-2020-0470 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-09 |
| PublicationDateYYYYMMDD | 2021-07-09 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | Bradford |
| PublicationPlace_xml | – name: Bradford |
| PublicationTitle | Engineering computations |
| PublicationYear | 2021 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2021070808323074400_ref011) 2005; 45 (key2021070808323074400_ref009) 2014; 61 (key2021070808323074400_ref006) 2011; 30 (key2021070808323074400_ref013) 2015; 23 (key2021070808323074400_ref015) 2018 (key2021070808323074400_ref003) 1987; 27 (key2021070808323074400_ref019) 2008; 21 (key2021070808323074400_ref023) 2017; 17 (key2021070808323074400_ref016) 2009; 13 (key2021070808323074400_ref018) 2017; 45 (key2021070808323074400_ref004) 2017; 28 (key2021070808323074400_ref020) 2017; 139 (key2021070808323074400_ref007) 2017; 240 (key2021070808323074400_ref017) 2015; 36 (key2021070808323074400_ref014) 2001; 14 (key2021070808323074400_ref005) 2015; 26 (key2021070808323074400_ref021) 2016; 28 (key2021070808323074400_ref008) 2010 key2021070808323074400_ref012 (key2021070808323074400_ref001) 1997; 37 (key2021070808323074400_ref002) 1998 (key2021070808323074400_ref010) 2015; 42 (key2021070808323074400_ref022) 2015 |
| References_xml | – volume: 13 start-page: 333 issue: 2 year: 2009 ident: key2021070808323074400_ref016 article-title: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.926486 – volume-title: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and Its Applications year: 1998 ident: key2021070808323074400_ref002 – volume: 61 start-page: 2464 issue: 5 year: 2014 ident: key2021070808323074400_ref009 article-title: Discovering prognostic features using genetic programming in remaining useful life prediction publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2013.2270212 – volume: 28 start-page: 132 issue: 1 year: 2016 ident: key2021070808323074400_ref021 article-title: An intelligent tool wear estimation technology based on multi-feature and support vector machine publication-title: China Mechanical Engineering – start-page: 5004 volume-title: 2015 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) year: 2015 ident: key2021070808323074400_ref022 article-title: Speech recognition with prediction-adaptation-correction recurrent neural networks doi: 10.1109/ICASSP.2015.7178923 – volume: 37 start-page: 1475 issue: 10 year: 1997 ident: key2021070808323074400_ref001 article-title: Calibrated method for ultrasonic on-line monitoring of gradual wear during turning operations publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/S0890-6955(96)00091-0 – volume: 23 start-page: 1314 issue: 5 year: 2015 ident: key2021070808323074400_ref013 article-title: Detection and control for tool wear based on neural network and genetic algorithm publication-title: Optics and Precision Engineering doi: 10.3788/OPE.20152305.1314 – volume: 45 start-page: 467 issue: 4/5 year: 2005 ident: key2021070808323074400_ref011 article-title: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks publication-title: International Journal of Machine Tools and Manufacture – volume: 14 start-page: 727 issue: 6 year: 2001 ident: key2021070808323074400_ref014 article-title: Genetic programming: principles and applications publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/S0952-1976(02)00013-1 – volume: 36 start-page: 35 year: 2015 ident: key2021070808323074400_ref017 article-title: Enhanced particle filter for tool wear prediction publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2015.03.005 – volume: 240 start-page: 98 year: 2017 ident: key2021070808323074400_ref007 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.045 – volume: 139 issue: 7 year: 2017 ident: key2021070808323074400_ref020 article-title: A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests publication-title: Journal of Manufacturing Science and Engineering – volume: 30 start-page: 124 issue: 1 year: 2011 ident: key2021070808323074400_ref006 article-title: Several new methods for features extraction based on genetic algorithm and their application publication-title: Mechanical Science and Technology for Aerospace Engineering – volume: 17 issue: 2 year: 2017 ident: key2021070808323074400_ref023 article-title: Learning to monitor machine health with convolutional Bi-Directional LSTM networks publication-title: Sensors – volume-title: Annual Conference of the Prognostics and Health Management Society year: 2010 ident: key2021070808323074400_ref008 article-title: Tool wear estimation using support vector machines in ball-nose end milling – volume: 45 start-page: 47 year: 2017 ident: key2021070808323074400_ref018 article-title: Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2016.05.010 – volume: 21 start-page: 1347 issue: 8 year: 2008 ident: key2021070808323074400_ref019 article-title: Direct transformation of coordinates for GPS positioning using the techniques of genetic programming and symbolic regression publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2008.02.001 – volume: 27 start-page: 225 issue: 2 year: 1987 ident: key2021070808323074400_ref003 article-title: An investigation of methods for the on-line estimation of tool wear publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/S0890-6955(87)80052-4 – volume: 26 start-page: 217 issue: 2 year: 2015 ident: key2021070808323074400_ref005 article-title: Application of regression algorithm of LS-SVM in tool wear prediction publication-title: China Mechanical Engineering – ident: key2021070808323074400_ref012 – volume: 28 start-page: 1285 issue: 6 year: 2017 ident: key2021070808323074400_ref004 article-title: Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-015-1155-0 – start-page: 314 volume-title: Proceedings of the 2018 3rd International Workshop on Materials Engineering and Computer Sciences (Iwmecs 2018) year: 2018 ident: key2021070808323074400_ref015 article-title: Research on tool wear prediction based on deep residual network – volume: 42 start-page: 7026 issue: 20 year: 2015 ident: key2021070808323074400_ref010 article-title: Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.05.008 |
| SSID | ssj0007330 |
| Score | 2.2906237 |
| Snippet | Purpose
The purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool wear.... PurposeThe purpose of this paper is building the regression model related to tool wear, and the regression model is used to identify the state of tool... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2900 |
| SubjectTerms | Acoustic emission Algorithms Fault diagnosis Genetic algorithms Machine learning Mutation Neural networks Polynomials Population Regression models Signal processing Support vector machines Tool wear |
| Title | Application of genetic programming in the identification of tool wear |
| URI | https://www.emerald.com/insight/content/doi/10.1108/EC-08-2020-0470/full/html https://www.proquest.com/docview/2549125851 |
| Volume | 38 |
| WOSCitedRecordID | wos000614560600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1758-7077 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: 7WY dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Collection (ProQuest) customDbUrl: eissn: 1758-7077 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: M0C dateStart: 19960101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1758-7077 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: P5Z dateStart: 19960101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1758-7077 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: K7- dateStart: 19960101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1758-7077 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: M7S dateStart: 19960101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1758-7077 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: BENPR dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1758-7077 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0007330 issn: 0264-4401 databaseCode: M2P dateStart: 19960101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60etCDb7E-yh4EvaxunpucREtEUEvxgY9LyL6goI22Vf--s3HbqqgXLwMhsxDy7Tx3dgZg21MyFihl1Fd-SkOOAWsiBae-8bSMokIKWSF9xlut5PY2bbuEW9-VVQ51YqWoVSltjnzfBjJojNFBOHh6pnZqlD1ddSM0JmHKdknwqtK9y5Em5kHgciwhDTGQcK197OSbrGkTg74NnlhoJxV_skrfruaO1XNlc47n__u1CzDnvE1y-LE9FmFCd5dg3nmexMl1fwlmP7UlXIbscHyqTUpDcI_Zq47E1XI9IhPpdAm6jqSjXLXRiHlQlg_kDeVnBa6Ps6vmCXXjFqgMWDKgBZopxZkxiikELjQRY0oaJXmsvUIZmXKjhUSriiGKz1TgGR0FIRdSpELHIliFWrfs6jUgPDaSJTpWphBhnKgiNj5LisAkYYQ6hNVhb_i7c-l6kduRGA95FZOwJM-aOVKLT27xqcPuaMHTRxuO31l3HH4_cH4BvQ6bQ_ByJ7n9fIzc-t-vN2DGt_UtNtWbbkJt0HvRWzAtXwedfq8Bk_zmrgFTR1mrfYFPp5wiPWdNS_12o9qoSNvR_Tupqumi |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BigQ9lAKtCKV0D0VwMWzWa699qBBKg0CkEQeQEBfjfUmRQgwkJeJP8Rs766wTQNAbBy6-eGx5vd9-89jZGYCfDa1iiassYJqlARfosCZKioDZhlFRlCupyplui04nOT9PT2bgoToL49IqK04siVoXysXId50jg8oYDYS965vAdY1yu6tVC40xLI7N_QhdtsGvo984v5uMHbROm4eB7yoQqJAmwyBHNtaCWqupxu_jNqJUK6uViE0j11alwhqpUHmgJc6oDhvWRCEXUslUmliG-N5Z-MA5o65jwkl0MWF-EYY-psMDjo6LLyXkOu20mi4QyZyzRrnrjPxICz47CjxVB6WOO1h8b3_nM3zy1jTZH8N_CWZMfxkWvWVNPG8NluHjo7KLK9Dan-7ak8ISXEPuKCfxuWpXKES6fYKmMelqn001ER4WRY-McKhf4OxNhvYVav2ib1aBiNgqmphY21zyONF5bBlN8tAmPEKOpHXYqaY3U77Wumv50ctKn4smWauZ4dXhIXN4qMP25IHrcZmR10W3PF5ekHwCsjqsV2DJPDMNsilS1v5_-wfMH57-aWfto87xN1hgLpfHhbXTdagNb_-a7zCn7obdwe1GuQgIXL41rv4B_slFyw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+genetic+programming+in+the+identification+of+tool+wear&rft.jtitle=Engineering+computations&rft.au=Wang%2C+Hao&rft.au=Dong%2C+Guangming&rft.au=Chen%2C+Jin&rft.date=2021-07-09&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0264-4401&rft.eissn=1758-7077&rft.volume=38&rft.issue=6&rft.spage=2900&rft.epage=2920&rft_id=info:doi/10.1108%2FEC-08-2020-0470 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon |