A Decoding Approach to Reed-Solomon Codes from Their Definition

Because of their importance in applications and their quite simple definition, Reed-Solomon codes can be explained in any introductory course on coding theory. However, decoding algorithms for Reed-Solomon codes are far from being simple and it is difficult to fit them in introductory courses for un...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The American mathematical monthly Ročník 125; číslo 4; s. 320 - 338
Hlavní autor: Bras-Amorós, Maria
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington Taylor & Francis 21.04.2018
Taylor & Francis, Ltd
Taylor & Francis Ltd
Témata:
ISSN:0002-9890, 1930-0972
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Because of their importance in applications and their quite simple definition, Reed-Solomon codes can be explained in any introductory course on coding theory. However, decoding algorithms for Reed-Solomon codes are far from being simple and it is difficult to fit them in introductory courses for undergraduates. We introduce a new decoding approach, in a self-contained presentation, which we think may be appropriate for introducing error correction of Reed-Solomon codes to nonexperts. In particular, we interpret Reed-Solomon codes by means of the degree of the interpolation polynomial of the code words and from this derive a decoding algorithm. Compared to the classical algorithms, our algorithm appears to arise more naturally from definitions and to be easier to understand. It is related to the Peterson-Gorenstein-Zierler algorithm (see [ 10 ] and [ 20 ]).
AbstractList Because of their importance in applications and their quite simple definition, Reed-Solomon codes can be explained in any introductory course on coding theory. However, decoding algorithms for Reed-Solomon codes are far from being simple and it is difficult to fit them in introductory courses for undergraduates. We introduce a new decoding approach, in a self-contained presentation, which we think may be appropriate for introducing error correction of Reed-Solomon codes to nonexperts. In particular, we interpret Reed-Solomon codes by means of the degree of the interpolation polynomial of the code words and from this derive a decoding algorithm. Compared to the classical algorithms, our algorithm appears to arise more naturally from definitions and to be easier to understand. It is related to the Peterson-Gorenstein-Zierler algorithm (see [ 10 ] and [ 20 ]).
Because of their importance in applications and their quite simple definition, Reed–Solomon codes can be explained in any introductory course on coding theory. However, decoding algorithms for Reed–Solomon codes are far from being simple and it is difficult to fit them in introductory courses for undergraduates. We introduce a new decoding approach, in a self-contained presentation, which we think may be appropriate for introducing error correction of Reed–Solomon codes to nonexperts. In particular, we interpret Reed–Solomon codes by means of the degree of the interpolation polynomial of the code words and from this derive a decoding algorithm. Compared to the classical algorithms, our algorithm appears to arise more naturally from definitions and to be easier to understand. It is related to the Peterson–Gorenstein–Zierler algorithm (see [10] and [20]).
Because of their importance in applications and their quite simple definition, Reed– Solomon codes can be explained in any introductory course on coding theory. However, decoding algorithms for Reed–Solomon codes are far from being simple and it is difficult to fit them in introductory courses for undergraduates. We introduce a new decoding approach, in a selfcontained presentation, which we think may be appropriate for introducing error correction of Reed–Solomon codes to nonexperts. In particular, we interpret Reed–Solomon codes bymeans of the degree of the interpolation polynomial of the code words and from this derive a decoding algorithm. Compared to the classical algorithms, our algorithm appears to arise more naturally from definitions and to be easier to understand. It is related to the Peterson–Gorenstein–Zierler algorithm (see [10] and [20]).
Author Bras-Amorós, Maria
Author_xml – sequence: 1
  givenname: Maria
  surname: Bras-Amorós
  fullname: Bras-Amorós, Maria
  organization: Universitat Rovira i Virgili
BookMark eNp9kN1LwzAUxYNMcJv-CYOCz535aps86ZifMBB0Poe0SVzGmsykQ_bfm9Lpo0-XyznnnstvAkbOOw3ADME5ggzeQAgxZxzOMURsjiiGhJAzMEacwBzyCo_AuPfkvekCTGLcphUWFI_B7SK7141X1n1mi_0-eNlsss5nb1qr_N3vfOtdtvRKx8wE32brjbYhRYx1trPeXYJzI3dRX53mFHw8PqyXz_nq9elluVjlDYGsy1ldFFAxpDjRVSNVRbjBFUfEYFZrVHJaUqXSoJpLSgqmipqRuoZENqasMZmC6-FuevHroGMntv4QXKoUGBWkxKxkRXIVg6sJPsagjdgH28pwFAiKnpX4ZSV6VuLEKuVmQ24bOx_-QpSVJcGcJv1u0K0zPrTy24edEp087nwwQbrGRkH-r_gBikF5ZQ
Cites_doi 10.1137/0109020
10.1109/TIT.1982.1056591
10.1109/TIT.1969.1054260
10.1017/CBO9780511808968
10.1016/0012-365X(92)90567-Y
10.1006/jcom.1997.0439
10.4171/001
10.1109/18.887869
10.1016/0378-3758(95)00088-7
10.1137/0108018
10.1109/PROC.1980.11696
10.1016/S0019-9958(75)90090-X
10.1109/TIT.1987.1057299
10.1109/TIT.2013.2274454
10.1109/TIT.1960.1057586
10.1049/el:19930689
10.1109/TIT.2004.842738
10.1007/s10623-012-9626-1
10.1109/18.490539
10.1109/18.782097
10.1002/j.1538-7305.1948.tb01338.x
ContentType Journal Article
Copyright The Mathematical Association of America 2018
Copyright Taylor & Francis Ltd. Apr 2018
Copyright_xml – notice: The Mathematical Association of America 2018
– notice: Copyright Taylor & Francis Ltd. Apr 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1080/00029890.2018.1420333
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1930-0972
EndPage 338
ExternalDocumentID 10_1080_00029890_2018_1420333
48663294
1420333
Genre Article
GroupedDBID -DZ
-ET
-~X
0BK
0R~
123
23M
2AX
2FS
30N
6OB
85S
8S2
9EM
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCQX
ABDPE
ABEFU
ABIFP
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPFR
ABPPZ
ABPQH
ABRLO
ABXSQ
ABXUL
ABXYU
ABYWD
ABZEH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADFET
ADGTB
ADODI
ADULT
AEISY
AENEX
AEUPB
AEYOC
AFRVT
AFXHP
AGDLA
AGLNM
AHDZW
AIHAF
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AWYRJ
BKOMP
BLEHA
CCCUG
CJ0
CS3
DGEBU
E.L
EBS
ECEWR
EJD
F5P
H13
HF~
HQ6
IPNFZ
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KOO
KYCEM
L7B
LU7
M0P
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
SA0
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UKR
UPT
USG
WH7
YZZ
ZCA
ZGOLN
ADYSH
AMPGV
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c308t-8b550d81d93e7cad739f27913f28be169464dd6944e9a4358d5b83bb03acf6b23
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457782000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0002-9890
IngestDate Sat Aug 23 12:47:26 EDT 2025
Sat Nov 29 05:51:06 EST 2025
Thu Jul 03 22:16:41 EDT 2025
Mon Oct 20 23:35:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-8b550d81d93e7cad739f27913f28be169464dd6944e9a4358d5b83bb03acf6b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2153628685
PQPubID 47349
PageCount 19
ParticipantIDs proquest_journals_2153628685
informaworld_taylorfrancis_310_1080_00029890_2018_1420333
jstor_primary_48663294
crossref_primary_10_1080_00029890_2018_1420333
PublicationCentury 2000
PublicationDate 2018-04-21
PublicationDateYYYYMMDD 2018-04-21
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-21
  day: 21
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle The American mathematical monthly
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis, Ltd
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis, Ltd
– name: Taylor & Francis Ltd
References Peterson W. W. (cit0020) 1960; 6
Sugiyama Y. (cit0026) 1975; 27
Heydtmann A. E. (cit0012) 2000; 46
Shannon C. E. (cit0024) 1948; 27
Guruswami V. (cit0011) 1999; 45
Chambers W. G. (cit0007) 1993; 29
MacWilliams F. J. (cit0014) 1977; 16
Gorenstein D. (cit0010) 1961; 9
Mateer T. D. (cit0017) 2013; 69
Pellikaan R. (cit0018) 1992; 106
Bierbrauer J. (cit0005) 2005
Pellikaan R. (cit0019) 1996; 51
Dornstetter J.-L. (cit0008) 1987; 33
Bossert M. (cit0006) 2013; 59
Berlekamp E. R. (cit0004) 1996; 42
Berlekamp E. R. (cit0003) 1982; 28
Sudan M. (cit0025) 1997; 13
Fedorenko S. V. (cit0009) 2005; 51
Justesen J. (cit0013) 2004
Massey J. L. (cit0015) 1969; 15
Mateer T. D. (cit0016) 2011
Berlekamp E. R. (cit0001) 1968
Berlekamp E. R. (cit0002) 1980; 68
Roman S. (cit0022) 1997
Reed I. S. (cit0021) 1960; 8
Roth R. M. (cit0023) 2006
References_xml – volume: 9
  start-page: 207
  year: 1961
  ident: cit0010
  publication-title: J. Soc. Indust. Appl. Math
  doi: 10.1137/0109020
– volume: 28
  start-page: 869
  year: 1982
  ident: cit0003
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1982.1056591
– volume: 15
  start-page: 122
  year: 1969
  ident: cit0015
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1969.1054260
– volume-title: Introduction to Coding Theory
  year: 2006
  ident: cit0023
  doi: 10.1017/CBO9780511808968
– volume-title: Introduction to Coding and Information Theory
  year: 1997
  ident: cit0022
– volume: 106
  start-page: 369
  year: 1992
  ident: cit0018
  publication-title: Discrete Math
  doi: 10.1016/0012-365X(92)90567-Y
– volume-title: Algebraic Coding Theory
  year: 1968
  ident: cit0001
– volume: 13
  start-page: 180
  year: 1997
  ident: cit0025
  publication-title: J. Complex
  doi: 10.1006/jcom.1997.0439
– volume-title: A Course in Error-Correcting Codes
  year: 2004
  ident: cit0013
  doi: 10.4171/001
– volume: 16
  volume-title: The Theory of Error-Correcting Codes
  year: 1977
  ident: cit0014
– volume: 46
  start-page: 2614
  year: 2000
  ident: cit0012
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.887869
– volume: 51
  start-page: 229
  year: 1996
  ident: cit0019
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/0378-3758(95)00088-7
– volume: 8
  start-page: 300
  year: 1960
  ident: cit0021
  publication-title: J. Soc. Indust. Appl. Math
  doi: 10.1137/0108018
– volume: 68
  start-page: 564
  year: 1980
  ident: cit0002
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1980.11696
– volume: 27
  start-page: 87
  year: 1975
  ident: cit0026
  publication-title: Inform. Control
  doi: 10.1016/S0019-9958(75)90090-X
– volume: 33
  start-page: 428
  year: 1987
  ident: cit0008
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1987.1057299
– volume: 59
  start-page: 7320
  year: 2013
  ident: cit0006
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2013.2274454
– volume: 6
  start-page: 459
  year: 1960
  ident: cit0020
  publication-title: IRE Trans. Inform. Theory
  doi: 10.1109/TIT.1960.1057586
– volume: 29
  start-page: 1031
  year: 1993
  ident: cit0007
  publication-title: Electron. Lett.
  doi: 10.1049/el:19930689
– volume: 51
  start-page: 1196
  year: 2005
  ident: cit0009
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2004.842738
– volume: 69
  start-page: 107
  year: 2013
  ident: cit0017
  publication-title: Des. Codes Cryptogr
  doi: 10.1007/s10623-012-9626-1
– volume-title: Introduction to Coding Theory
  year: 2005
  ident: cit0005
– volume: 42
  start-page: 704
  year: 1996
  ident: cit0004
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.490539
– volume: 45
  start-page: 1757
  year: 1999
  ident: cit0011
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.782097
– volume: 27
  start-page: 379
  year: 1948
  ident: cit0024
  publication-title: Bell System Tech. J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– start-page: 139
  volume-title: Cheng, J., Schober, R., chairs. 12th Canadian Workshop on Information Theory (CWIT), 2011. Piscataway, NJ: IEEE
  year: 2011
  ident: cit0016
SSID ssj0000542
Score 2.1227946
Snippet Because of their importance in applications and their quite simple definition, Reed-Solomon codes can be explained in any introductory course on coding theory....
Because of their importance in applications and their quite simple definition, Reed–Solomon codes can be explained in any introductory course on coding theory....
Because of their importance in applications and their quite simple definition, Reed– Solomon codes can be explained in any introductory course on coding...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 320
SubjectTerms Algorithms
Coding theory
Decoding
Error correction
Interpolation
Introductory Courses
Polynomials
Primary 12Y05
Secondary 94B35
Title A Decoding Approach to Reed-Solomon Codes from Their Definition
URI https://www.tandfonline.com/doi/abs/10.1080/00029890.2018.1420333
https://www.jstor.org/stable/48663294
https://www.proquest.com/docview/2153628685
Volume 125
WOSCitedRecordID wos000457782000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1930-0972
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000542
  issn: 0002-9890
  databaseCode: TFW
  dateStart: 18940101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD74pCQR5YgxI_EntCVaFioUJQRDfLjm2pS4qawO_Hl0cBIcQAU5TBtnLvi---Q-gitZlzzPPIU5tFLNU8MoEZkU-89URb4V1cD5vIplMxn8v7tpqwbMsqIYf2DVBEbatBubUpu4o4aD4A3PAYCrNEUHUSUwp4n8H1g2rOJs8ftpgz0gXAsKTr4flply_e6Qt2aVev-M1m145osvsPn7CHdtooFI8asdlHG644QNt3awjX8hBdjfB1SE3BteFRCzyOqyV-CO4uegwmM8gvHi-tKzG0qOAZ3DiEJX5R1FVgR-hpcjMb30bttIUop7GoImFCsmJD-Cqpy3JtMyo9yWRCPRHGJalkKbM2PJiTOgRZwnIjqDEx1blPDaF91CuWhTtG2FhKmQYotNQwza3k1gdllwkzVHAnBuiyo7J6aUA1VLLGKm0oo4AyqqXMAMnPvFBV_TfDN6NHFP1lbb9m3PokJkKURSQboGHHSdUqbqlCBEShW1fwkz-ceYq24BVunUgyRL1q9erO0Gb-Vi3K1Xktou_5k991
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xkoCBd0V5emANSmI7sSdUFSoQbQcoopsV17bUpUVt4Pfjy6OAEGKAKUN0sXJv23ffAVwkJrWWOR44atKAJRkPtBdG4CJnXJwZ4WxYDJtI-30xHMrPvTBYVol7aFcCRRS-Go0bD6PrkjjsPkDg8BArs4S39TiklC7DKvexFvHzB53nD2_MWVynwEhTd_H89Jkv8ekLemldsfjNaxehqLP9Hz-xA1tVIkpapebswpKd7MFmb4HiOt-Hqxa59rtTjG6kVWGPk3xKHnzECx691_QqTNpTY-cEu1TIAC8dPIkbT4pCsAN46twM2rdBNXAhGNFQ5IHQfr9ifAYrqU1HmUmpdHEqI-pioW2USJYwY_yDWZn5PEsYrgXVOqTZyCU6pg1YmUwn9hCINpSyDNHQEs0ybiQ3ztu7jJimglvRhMuazeqlxNVQ0QKutOSMQs6oijNNkJ-FofLiQMOV00cU_YW2UUhusRITPtGKJWvCSS1KVdnuXPkkiGLDruBHf1jzHNZvB72u6t71749hA1_hJVQcncBKPnu1p7A2esvH89lZoa_vPDjjnw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oFNGD38Pp1By8VtombZOTjGlR1DF04m6haRLYpRtr9e836cd0iHjQUw8lCX2fvzTv_QJwEcpIKaIDR2MZOSRMAkcYZTja01L7iaRaueVlE9FgQMdjNqyrCfO6rNLuoXVFFFHGauvcM6mbijjbfGB5w11bmEWNq_suxngV1gx0Dq2Rj-LXz2AcEL9BwHZM08Tz0zRL6WmJvLQpWPwWtMtMFO_8wzfswnYNQ1Gvsps9WFHZPmw9Ljhc8wO46qFrsze1uQ31auZxVEzRk8l3zrOJmcaAUX8qVY5sjwoa2SMHM0RPsrIM7BBe4ptR_9apr1twUuzSwqHC7Fakwa8MqyhNZISZ9iPmYe1TobyQkZBIaR5EscSgLCoDQbEQLk5SHQoft6GVTTN1BEhIjEliudBCQZJAskBq4-3MIwLTQNEOXDZS5rOKVYN7C7LSSjLcSobXkukA-6oLXpS_M3R19wjHv4xtl4pbrESogVk-Ix3oNprktefm3EAgbNt1aXD8hzXPYWN4HfOHu8H9CWzaN_YEyve60Crmb-oU1tP3YpLPz0pr_QCX3eJR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Decoding+Approach+to+Reed%E2%80%93Solomon+Codes+from+Their+Definition&rft.jtitle=The+American+mathematical+monthly&rft.au=Bras-Amor%C3%B3s%2C+Maria&rft.date=2018-04-21&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0002-9890&rft.eissn=1930-0972&rft.volume=125&rft.issue=4&rft.spage=320&rft_id=info:doi/10.1080%2F00029890.2018.1420333&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9890&client=summon