Convolution algebra representation of systems described by linear hyperbolic partial differential equations

The representation of the input-output operator in convolution algebra B(σ 0 ) is obtained for distributed parameter systems described by linear hyperbolic partial differential equations. Three kinds of system are considered depending on the kind of coefficient matrix corresponding to the space vari...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of control Ročník 49; číslo 6; s. 2029 - 2044
Hlavní autori: Levkov, S. P., Korbicz, Józef
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Taylor & Francis Group 01.06.1989
Taylor & Francis
Predmet:
ISSN:0020-7179, 1366-5820
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The representation of the input-output operator in convolution algebra B(σ 0 ) is obtained for distributed parameter systems described by linear hyperbolic partial differential equations. Three kinds of system are considered depending on the kind of coefficient matrix corresponding to the space variable derivative, and their properties are studied. Necessary and sufficient conditions for stability are obtained in terms of factorization of the transition matrix. The obtained results allow the use of modern algebraic methods for analysis of such systems.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7179
1366-5820
DOI:10.1080/00207178908559760